स्थानीय संबद्ध समष्टि

From Vigyanwiki
इस टोपोलॉजिकल समष्टि में, V, p का प्रतिवेश है और इसमें एक संबद्ध ओपन समुच्चय (गहरे हरे रंग की डिस्क) है जिसमें p सामान्यतः है।

गणित की टोपोलॉजी और अन्य शाखाओं में, टोपोलॉजिकल समष्टि X स्थानीय संबद्ध होता है यदि हर बिंदु आसन्न आधार को स्वीकार करता है जिसमें पूरी तरह से विवृत, संयुक्त समुच्चय होता है।

पृष्ठभूमि

टोपोलॉजी के पूरे इतिहास में, संयोजकता और संहतता सबसे व्यापक रूप से अध्ययन किए गए दो टोपोलॉजिकल गुण रहे हैं। वास्तव में, यूक्लिडियन समष्टि के उपसमुच्चय के बीच भी इन गुणों का अध्ययन, और यूक्लिडियन मीट्रिक के विशेष रूप से उनकी स्वतंत्रता की मान्यता ने टोपोलॉजिकल गुण और इस प्रकार टोपोलॉजिकल समष्टि की धारणा को स्पष्ट करने में बड़ी भूमिका निभाई है। हालाँकि, जबकि यूक्लिडियन समष्टि के सघन उपसमुच्चय की संरचना को हेइन-बोरेल प्रमेय के माध्यम से काफी पहले ही समझ लिया गया था, के संयुक्त उपसमुच्चय (n>1 के लिए) बहुत अधिक जटिल साबित हुए। दरअसल, जबकि कोई भी सघन हॉसडॉर्फ समष्टि स्थानीय सघन होता है, संबद्ध समष्टि - और यहां तक ​​कि यूक्लिडियन प्लेन का संयुक्त उपसमुच्चय - स्थानीय संबद्ध होने की आवश्यकता नहीं है (नीचे देखें)।

इससे बीसवीं शताब्दी के पूर्वार्ध में अनुसंधान की समृद्ध श्रृंखला प्रारम्भ हुई, जिसमें टोपोलॉजिस्ट ने स्थानीय संबद्ध समष्टि की धारणा पर तेजी से सूक्ष्म और जटिल विविधताओं के बीच निहितार्थ का अध्ययन किया। उदाहरण के तौर पर, एक बिंदु पर अशक्त स्थानीय संयोजकता की धारणा और स्थानीय संयोजकता से इसके संबंध पर लेख में बाद में विचार किया जाएगा।

बीसवीं सदी के उत्तरार्ध में, अनुसंधान की प्रवृत्ति मैनिफोल्ड्स जैसे स्थानों के अधिक गहन अध्ययन की ओर स्थानांतरित हो गई, जो स्थानीय अच्छी तरह से समझे जाते हैं (यूक्लिडियन समष्टि के लिए स्थानीय समरूपी होने के कारण) लेकिन जटिल वैश्विक व्यवहार वाले हैं। इसका तात्पर्य यह है कि यद्यपि मैनिफोल्ड्स की मूल बिंदु-समुच्चय टोपोलॉजी अपेक्षाकृत सरल है (क्योंकि अवधारणा की अधिकांश परिभाषाओं के अनुसार मैनिफोल्ड्स अनिवार्य रूप से मेट्रिज़ेबल हैं), उनकी बीजगणितीय टोपोलॉजी कहीं अधिक जटिल है। इस आधुनिक दृष्टिकोण से, स्थानीय पथ संयोजकता की पर्याप्त गुण अधिक महत्वपूर्ण हो जाती है: उदाहरण के लिए, किसी समष्टि को सार्वभौमिक कवर स्वीकार करने के लिए इसे संबद्ध किया जाना चाहिए और स्थानीय पथ से संबद्ध होना चाहिए। स्थानीय पथ संयोजकता पर भी चर्चा की जाएगी।

समष्टि स्थानीय तभी संबद्ध होता है जब प्रत्येक विवृत समुच्चय U के लिए, U के संबद्ध घटक (सबसमष्टि टोपोलॉजी में) विवृत हों। उदाहरण के लिए, यह निम्नानुसार है कि स्थानीय संबद्ध समष्टि से पूरी तरह से वियोजित किए गए समष्टि तक निरंतर कार्य स्थानीय स्थिर होना चाहिए। वास्तव में, घटकों का खुलापन इतना स्वाभाविक है कि किसी को यह ध्यान में रखना चाहिए कि यह सामान्य रूप से सच नहीं है: उदाहरण के लिए, कैंटर समष्टि पूरी तरह से अलग है लेकिन अलग नहीं है।

परिभाषाएँ

माना कि टोपोलॉजिकल समष्टि है और मान लीजिए कि , का एक बिंदु है।

समष्टि को स्थानीय [1] से जोड़ा जाता है, यदि के प्रत्येक प्रतिवेश में से संयुक्त विवृत प्रतिवेश है,  यदि बिंदु में प्रतिवेश का आधार है जो संबद्ध हुए विवृत समुच्चयों से युक्त है। स्थानीय संबद्ध समष्टि[2][1] एक ऐसा समष्टि है जो स्थानीय अपने प्रत्येक बिंदु पर संयुक्त है।

स्थानीय संयोजकता का तात्पर्य संयोजकता नहीं है (उदाहरण के लिए में दो असंयुक्त विवृत अंतराल पर विचार करें); और संयोजकता का तात्पर्य स्थानीय संयोजकता नहीं है (टोपोलॉजिस्ट की साइन वक्र देखें)।

समष्टि को [1] से संबद्ध स्थानीय पथ कहा जाता है, यदि के प्रत्येक प्रतिवेश में का पथ-संबद्ध विवृत प्रतिवेश होता है, यदि बिंदु में पथ-संबद्ध विवृत समुच्चयों से मिलकर प्रतिवेश आधार है. स्थानीय पथ-संबद्ध समष्टि [3][1] एक ऐसा समष्टि है जो स्थानीय अपने प्रत्येक बिंदु पर संयुक्त है।

स्थानीय पथ से संबद्ध समष्टि स्थानीय संबद्ध हुए हैं। इसके विपरीत ( (इकाई वर्ग पर लेक्सिकोग्राफ़िक ऑर्डर टोपोलॉजी देखें)

संयुक्तता आईएम क्लेनन

समष्टि को [4][5] या अशक्त रूप से स्थानीय [6] से संयुक्त आईएम क्लेनन कहा जाता है यदि के प्रत्येक प्रतिवेश में का संयुक्त प्रतिवेश होता है, यदि बिंदु में प्रतिवेश आधार है जो संबद्ध हुए समुच्चयों से मिलकर बना है। समष्टि को अशक्त रूप से स्थानीय संबद्ध कहा जाता है यदि यह अपने प्रत्येक बिंदु पर स्थानीय संबद्ध है; जैसा कि नीचे बताया गया है, यह अवधारणा वास्तव में स्थानीय संबद्ध होने के समान है.

समष्टि जो स्थानीय से संयुक्त है, वह पर आईएम क्लेनन से संयुक्त है। शंकु धारण नहीं करता है, जैसा कि उदाहरण के लिए दिखाया गया है कि ब्रूम समष्टि के एक निश्चित अनंत संघ द्वारा, जो एक विशेष बिंदु पर इम क्लेन से संयुक्त है, लेकिन उस बिंदु पर स्थानीय संबद्ध नहीं है।[7][8][9] हालाँकि, यदि कोई समष्टि अपने प्रत्येक बिंदु पर इम क्लेन से संबद्ध है, तो यह स्थानीय संबद्ध है।[10]

समष्टि को [5] पर पथ से संबद्ध आईएम क्लेनन कहा जाता है, यदि के प्रत्येक प्रतिवेश में का पथ-संबद्ध प्रतिवेश होता है, यदि बिंदु में पथ-संबद्ध समुच्चयों से मिलकर एक प्रतिवेश आधार है।

समष्टि जो स्थानीय पर पथ से संबद्ध है, वह पर संयुक्त पथ है। जैसा कि उपरोक्त घटते ब्रूम समष्टि के समान अनंत संघ द्वारा दिखाया गया है, इसका उलटा असर नहीं करता है। हालाँकि, यदि कोई समष्टि अपने प्रत्येक बिंदु पर आईएम क्लेनन पथ से संयुक्त है, तो यह स्थानीय पथ से संयुक्त है।[11]

प्रथम उदाहरण

  1. किसी भी धनात्मक पूर्णांक n के लिए, यूक्लिडियन समष्टि स्थानीय पथ से, इस प्रकार स्थानीय स्तर पर जुड़ा हुआ; यह भी संयुक्त है।
  2. अधिक सामान्यतः, प्रत्येक स्थानीय उत्तल टोपोलॉजिकल वेक्टर समष्टि स्थानीय जुड़ा होता है, क्योंकि प्रत्येक बिंदु पर उत्तल (और इसलिए संयुक्त हुआ) प्रतिवेश का एक स्थानीय आधार होता है।
  3. उपस्थान असली लाइन का स्थानीय पथ जुड़ा है लेकिन संयुक्त नहीं है.
  4. टोपोलॉजिस्ट का साइन वक्र यूक्लिडियन प्लेन का एक उपस्थान है जो जुड़ा हुआ है, लेकिन स्थानीय संबद्ध नहीं है।[12]
  5. समष्टि मानक यूक्लिडियन टोपोलॉजी से संपन्न परिमेय संख्याएँ, न तो जुड़ी हुई हैं और न ही स्थानीय जुड़ी हुई हैं।
  6. कंघी समष्टि पथ से जुड़ा है लेकिन स्थानीय पथ से संयुक्त नहीं है, और स्थानीय भी संयुक्त नहीं है।
  7. सहपरिमित टोपोलॉजी से संपन्न एक अनगिनत अनंत समुच्चय स्थानीय जुड़ा हुआ है (वास्तव में, हाइपरसंबद्ध) ​​लेकिन स्थानीय पथ से संयुक्तनहीं है।[13]
  8. यूनिट स्क्वायर पर लेक्सिकोग्राफ़िक ऑर्डर टोपोलॉजी संयुक्त और स्थानीय संबद्ध है, लेकिन पथ संयुक्त नहीं है, न ही स्थानीय पथ संयुक्त है।[14]
  9. किर्च समष्टि जुड़ा हुआ है और स्थानीय जुड़ा हुआ है, लेकिन पथ से संयुक्त नहीं है, और किसी भी बिंदु पर पथ से जुड़ा नहीं है। वास्तव में यह पूरी तरह से पथ विच्छेदित है।

प्रथम-गणनीय हॉसडॉर्फ़ समष्टि ( स्थानीय पथ से जुड़ा हुआ है यदि और केवल यदि सभी निरंतर पथों के समुच्चय से प्रेरित पर अंतिम टोपोलॉजी के बराबर है।

गुण

प्रमेय - एक स्थान स्थानीय तभी जुड़ा होता है जब वह स्थानीय कमजोर रूप से संयुक्त होता है।

style="background: #F0F2F5; font-size:87%; padding:0.2em 0.3em; text-align:left; " |
प्रमाण

असतहीय दिशा के लिए, मान लें स्थानीय रूप से अशक्त रूप से जुड़ा हुआ है। यह दिखाने के लिए कि यह स्थानीय रूप से जुड़ा हुआ है, यह दिखाना पर्याप्त है कि विवृत समुच्चय के जुड़े घटक (टोपोलॉजी) विवृत हैं।

होने देना में खुले रहो और जाने का एक जुड़ा हुआ घटक बनें होने देना का एक तत्व बनें तब का पड़ोस है ताकि एक जुड़ा हुआ पड़ोस हो का में निहित तब से जुड़ा हुआ है और शामिल है का एक उपसमुच्चय होना चाहिए (जुड़ा हुआ घटक युक्त ). इसलिए का एक आंतरिक बिंदु है तब से का एक मनमाना बिंदु था में खुला है इसलिए, स्थानीय रूप से जुड़ा हुआ है।

  1. स्थानीय संयोजकता, परिभाषा के अनुसार, टोपोलॉजिकल समष्टि की एक स्थानीय गुण है, अर्थात्,., टोपोलॉजिकल गुण P जैसे कि समष्टि X के पास गुण P होती है यदि और केवल अगर X में प्रत्येक पॉइंट x समुच्चय के प्रतिवेश के आधार को स्वीकार करता है जिसमें P है। तदनुसार, स्थानीय संयोजकता के लिए एक स्थानीय गुण धारण द्वारा आयोजित सभी "मेटागुणज़". विशेष रूप से:
  2. कोई समष्टि स्थानीय तभी जुड़ा होता है जब वह (विवृत) संयुक्त उपसमुच्चय के आधार (टोपोलॉजी) को स्वीकार करता है।
  3. असंयुक्त संघ (टोपोलॉजी) वर्ग का रिक्त समष्टि स्थानीय जुड़ा हुआ है यदि और केवल यदि प्रत्येक स्थानीय संबद्ध है. विशेष रूप से, चूंकि एक बिंदु निश्चित रूप से स्थानीय संबद्ध है, इसका तात्पर्य यह है कि कोई भी अलग समष्टि स्थानीय संबद्ध है। दूसरी ओर, एक अलग समष्टि पूरी तरह से वियोजित हो गया है, इसलिए यह केवल तभी संबद्ध होता है जब इसमें अधिकतम एक बिंदु होता है।
  4. इसके विपरीत, एक पूरी तरह से अलग किया गया समष्टि स्थानीय तभी संबद्ध होता है जब वह अलग हो। इसका उपयोग उपरोक्त तथ्य को समझाने के लिए किया जा सकता है कि तर्कसंगत संख्याएँ स्थानीय जुड़ी नहीं हैं।
  5. गैर-रिक्त उत्पाद समष्टि स्थानीय संबद्ध है यदि और केवल यदि प्रत्येक स्थानीय संबद्ध है और सीमित रूप से बहुत सारे को छोड़कर सभी संबद्ध हुए हैं।[15]
  6. प्रत्येक हाइपरसंबद्ध समष्टि स्थानीय संबद्ध है, और संयुक्त भी है।

अवयव और पथ अवयव

निम्नलिखित परिणाम परिभाषाओं से लगभग तुरंत अनुसरण करता है लेकिन काफी उपयोगी होगा:

लेम्मा: मान लीजिए कि X समष्टि है, और X के उपसमुच्चय का एक वर्ग। मान लीजिए कि गैर-रिक्त है. फिर, यदि प्रत्येक संयुक्त है (क्रमशः पथ संयुक्त) फिर संघ संयुक्त है (क्रमशः पथ संयुक्त है)।[16]

अब टोपोलॉजिकल समष्टि X: for पर दो संबंधों पर विचार करें लिखना:

यदि X का संयुक्त उपसमुच्चय है जिसमें x और y दोनों हैं; और
यदि X का पथ से संयुक्त उपसमुच्चय है जिसमें x और y दोनों हैं।

जाहिर तौर पर दोनों संबंध प्रतिवर्ती और सममित हैं। इसके अलावा, यदि x और y संबद्ध हुए (क्रमशः, पथ से संबद्ध) उपसमुच्चय A में समाहित हैं और y और z संबद्ध हुए (क्रमशः, पथ से संबद्ध) उपसमुच्चय B में संबद्ध हुए हैं, तो लेम्मा का तात्पर्य है कि संयुक्त (क्रमशः, पथ संयुक्त) उपसमुच्चय है जिसमें x, y और z सामान्यतः हैं। इस प्रकार प्रत्येक संबंध समतुल्य संबंध है, और X के विभाजन को समतुल्य वर्गों में परिभाषित करता है। हम इन दोनों विभाजनों पर बारी-बारी से विचार करते हैं।

X में X के लिए, समुच्चय सभी बिंदुओं में से y ऐसा है x का संबद्ध कंपोनेंट (टोपोलॉजी) कहलाता है।[17] लेम्मा का तात्पर्य यह है X युक्त X का अद्वितीय अधिकतम संयुक्त उपसमुच्चय है।[18] चूंकि का समापन यह संयुक्त उपसमुच्चय भी है जिसमें x सामान्यतः है,[19] यह इस प्रकार है कि संवृत है।[20]

यदि X में केवल सीमित रूप से कई संबद्ध हुए घटक हैं, तो प्रत्येक घटक संवृत समुच्चयों के सीमित संघ का पूरक है और इसलिए विवृत है। सामान्य तौर पर, संबद्ध हुए घटकों को विवृत होने की आवश्यकता नहीं है, क्योंकि, उदाहरण के लिए, पूरी तरह से वियोजित किए गए समष्टि उपस्थित हैं (यानी, सभी बिंदुओं के लिए x) जो अलग-अलग नहीं हैं, जैसे कैंटर समष्टि। हालाँकि, स्थानीय संबद्ध समष्टि के संबद्ध घटक भी विवृत हैं, और इस प्रकार क्लोपेन समुच्चय हैं।[21] यह इस प्रकार है कि स्थानीय संबद्ध समष्टि X टोपोलॉजिकल असंयुक्त संघ है इसके विशिष्ट संबद्ध घटकों की। इसके विपरीत, यदि X के प्रत्येक विवृत उपसमुच्चय U के लिए, U के संबद्ध हुए घटक विवृत हैं, तो X संबद्ध हुए समुच्चयों का आधार स्वीकार करता है और इसलिए स्थानीय संबद्ध है।[22]

इसी तरह X में X, समुच्चय सभी बिंदुओं में से y ऐसा है x का पथ घटक कहलाता है।[23] ऊपरोक्त अनुसार, X के सभी पथ से संबद्ध उपसमूहों का संघ भी है जिसमें X सामान्यतः है, इसलिए लेम्मा द्वारा स्वयं पथ संयुक्त है। क्योंकि पथ से संबद्ध समुच्चय संबद्ध हुए हैं, हमारे पास है सभी के लिए

हालाँकि, पथ से संबद्ध समुच्चय को संवृत करने के लिए पथ से संबद्ध होने की आवश्यकता नहीं है: उदाहरण के लिए, टोपोलॉजिस्ट का साइन वक्र विवृत उपसमुच्चय U का संवृत होना है जिसमें x > 0 के साथ सभी बिंदु (x, y) सामान्यतः हैं, और U, एक के लिए समरूपी है। वास्तविक रेखा पर अंतराल निश्चित रूप से पथ से संयुक्त है। इसके अलावा, टोपोलॉजिस्ट के साइन वक्र C के पथ घटक U हैं, जो विवृत है लेकिन संवृत नहीं है, और जो संवृत है लेकिन विवृत नहीं है।

एक समष्टि स्थानीय पथ से संबद्ध होता है यदि और केवल तभी जब सभी विवृत उपसमुच्चय U के लिए, U के पथ घटक विवृत हों।[23] इसलिए स्थानीय पथ से संबद्ध समष्टि के पथ घटक X को जोड़ीदार असंयुक्त विवृत समुच्चयों में विभाजित करते हैं। इसका तात्पर्य यह है कि स्थानीय पथ से संबद्ध समष्टि का एक विवृत संबद्ध उपस्थान आवश्यक रूप से पथ से संयुक्त है।[24] इसके अलावा, यदि कोई समष्टि स्थानीय पथ से संयुक्त है, तो वह स्थानीय भी संयुक्त है, इसलिए सभी के लिए संयुक्त और विवृत है, इसलिए पथ संयुक्त है, अर्थात, अर्थात्, स्थानीय पथ से संबद्ध समष्टि के लिए घटक और पथ घटक मेल खाते हैं।

उदाहरण

  1. समुच्चय (जहाँ ) शब्दावली क्रम में टोपोलॉजी में बिल्कुल घटक होता है (क्योंकि यह संयुक्त है) लेकिन इसमें अनगिनत पथ घटक होते हैं। दरअसल, फॉर्म का कोई भी समुच्चय I से संबंधित प्रत्येक a के लिए एक पथ घटक है।
  2. होने देना से सतत मानचित्र बनें को (जो है निचली सीमा टोपोलॉजी में)। तब से संयुक्त है, और एक सतत मानचित्र के अंतर्गत संबद्ध समष्टि की छवि जुड़ी होनी चाहिए, की छवि अंतर्गत संबद्ध होना चाहिए. इसलिए, की छवि अंतर्गत के एक घटक का उपसमुच्चय होना चाहिए चूँकि यह छवि गैर-रिक्त है, 'से एकमात्र सतत मानचित्र को स्थिर मानचित्र हैं. वास्तव में, किसी संबद्ध हुए समष्टि से पूरी तरह से असंबद्ध समष्टि तक का कोई भी निरंतर मानचित्र स्थिर होना चाहिए।

क्वैसीकॉम्पोनेंट

मान लीजिए कि X टोपोलॉजिकल समष्टि है। हम X पर तीसरा संबंध परिभाषित करते हैं: यदि विवृत समुच्चय A और B में X का कोई पृथक्करण नहीं है, जैसे कि x A का

अवयव है और y B का अवयव है। यह X पर समतुल्य संबंध है और समतुल्य वर्ग युक्त X को X का क्वैसीकॉम्पोनेंट कहा जाता है।[18]

इसे X के सभी क्लोपेन उपसमुच्चय के प्रतिच्छेदन के रूप में भी चित्रित किया जा सकता है जिसमें X सामान्यतः है।[18] इसलिए संवृत है; सामान्यतः इसे विवृत रखने की आवश्यकता नहीं है।

निस्संदेह सभी के लिए [18] कुल मिलाकर हमारे पास x पर पथ घटकों, घटकों और अर्धघटकों के बीच निम्नलिखित सामग्रियां हैं:

यदि X स्थानीय संबद्ध है, तो, ऊपर के अनुसार, क्लोपेन समुच्चय है जिसमें x है, इसलिए और इस तरह चूंकि स्थानीय पथ संयोजकता का तात्पर्य स्थानीय संयोजकता से है, इसका तात्पर्य यह है कि हमारे पास स्थानीय पथ से संबद्ध समष्टि के सभी बिंदुओं x पर है।
रिक्त समष्टि का एक अन्य वर्ग जिसके लिए अर्धघटक घटकों से सहमत होते हैं, सघन हॉसडॉर्फ रिक्त समष्टि का वर्ग है।[25]

उदाहरण

  1. किसी समष्टि का एक उदाहरण जिसके अर्धघटक उसके घटकों के बराबर नहीं हैं, दोहरे सीमा बिंदु वाला एक अनुक्रम है। यह समष्टि पूरी तरह से अलग हो गया है, लेकिन दोनों सीमा बिंदु एक ही अर्धघटक में स्थित हैं, क्योंकि उनमें से किसी एक वाले क्लोपेन समुच्चय में अनुक्रम की एक पूंछ होनी चाहिए, और इस प्रकार दूसरा बिंदु भी होना चाहिए।
  2. समष्टि स्थानीय सघन और हॉसडॉर्फ लेकिन समुच्चय हैं और दो अलग-अलग घटक हैं जो एक ही अर्धघटक में निहित हैं।
  3. एरेन्स-फोर्ट स्थान स्थानीय जुड़ा नहीं है, लेकिन फिर भी, घटक और अर्ध-घटक मेल खाते हैं: वास्तव में सभी बिंदुओं x के लिए [26]

यह भी देखें

टिप्पणियाँ

  1. 1.0 1.1 1.2 1.3 Munkres, p. 161
  2. Willard, Definition 27.7, p. 199
  3. Willard, Definition 27.4, p.199
  4. Willard, Definition 27.14, p. 201
  5. 5.0 5.1 Björn, Anders; Björn, Jana; Shanmugalingam, Nageswari (2016). "माजुरकिविज़ दूरी और सेट जो सीमा पर अंतिम रूप से जुड़े हुए हैं". Journal of Geometric Analysis. 26 (2): 873–897. arXiv:1311.5122. doi:10.1007/s12220-015-9575-9. S2CID 255549682., section 2
  6. Munkres, exercise 6, p. 162
  7. Steen & Seebach, example 119.4, p. 139
  8. Munkres, exercise 7, p. 162
  9. "दिखाएँ कि X, p पर स्थानीय रूप से जुड़ा नहीं है". Math StackExchange.
  10. Willard, Theorem 27.16, p. 201
  11. "स्थानीय रूप से पथवार जुड़े की परिभाषा". Math StackExchange.
  12. Steen & Seebach, pp. 137–138
  13. Steen & Seebach, pp. 49–50
  14. Steen & Seebach, example 48, p. 73
  15. Willard, theorem 27.13, p. 201
  16. Willard, Theorem 26.7a, p. 192
  17. Willard, Definition 26.11, p.194
  18. 18.0 18.1 18.2 18.3 विलार्ड, समस्या 26बी, पीपी. 195-196
  19. Kelley, Theorem 20, p. 54; Willard, Theorem 26.8, p.193
  20. Willard, Theorem 26.12, p. 194
  21. Willard, Corollary 27.10, p. 200
  22. Willard, Theorem 27.9, p. 200
  23. 23.0 23.1 Willard, Problem 27D, p. 202
  24. Willard, Theorem 27.5, p. 199
  25. Engelking, Theorem 6.1.23, p. 357
  26. Steen & Seebach, pp. 54-55

संदर्भ

अग्रिम पठन

  • Coppin, C. A. (1972), "Continuous Functions from a Connected Locally Connected Space into a Connected Space with a Dispersion Point", Proceedings of the American Mathematical Society, American Mathematical Society, 32 (2): 625–626, doi:10.1090/S0002-9939-1972-0296913-7, JSTOR 2037874. For Hausdorff spaces, it is shown that any continuous function from a connected locally connected space into a connected space with a dispersion point is constant
  • Davis, H. S. (1968), "A Note on Connectedness Im Kleinen", Proceedings of the American Mathematical Society, American Mathematical Society, 19 (5): 1237–1241, doi:10.1090/s0002-9939-1968-0254814-3, JSTOR 2036067.