स्थिति गणना

From Vigyanwiki

स्थिति गणना एक तर्क औपचारिकता है जिसे गतिशील कार्यक्षेत्र के बारे में प्रतिनिधित्व और तर्क करने के लिए डिज़ाइन किया गया है। इसे पहली बार 1963 में जॉन मैक्कार्थी (कंप्यूटर वैज्ञानिक) द्वारा प्रस्तुत किया गया था।[1] इस आलेख में प्रस्तुत स्थितिजन्य गणना का मुख्य संस्करण 1991 में रे रेइटर द्वारा प्रस्तुत किए गए संस्करण पर आधारित है। इसके बाद मैक्कार्थी के 1986 संस्करण और एक तर्क क्रमादेशन सूत्रीकरण के बारे में अनुभाग दिए गए हैं।

अवलोकन

स्थिति गणना प्रथम-क्रम तर्क सूत्रों के एक समूह के रूप में बदलते परिदृश्यों का प्रतिनिधित्व करती है। गणना के मूल अवयव हैं:

कार्यक्षेत्र को कई सूत्रों द्वारा औपचारिक रूप दिया जाता है, अर्थात्:

  • प्रत्येक क्रिया के लिए एक पूर्वपेक्षित सिद्धांत क्रिया
  • प्रत्येक स्पष्टता के लिए एक अनुक्रम स्थिति सिद्धांत
  • विभिन्न स्थितियों में दुनिया का वर्णन करने वाले सिद्धांत
  • स्थिति गणना के मूलभूत सिद्धांत

एक सामान्य रोबोट दुनिया को एक संचालित उदाहरण के रूप में तैयार किया जाएगा। इस दुनिया में एक रोबोट और कई निर्जीव वस्तुएं हैं। दुनिया को एक ग्रिड के अनुसार व्यवस्थित किया गया है ताकि स्थानों को समन्वय बिंदु के अनुसार निर्दिष्ट किया जा सके। रोबोट के लिए दुनिया भर में घूमना और वस्तुओं को उठाना और छोड़ना संभव है। कुछ वस्तुएं रोबोट के उठाने के लिए बहुत भारी हो सकती हैं, या इतनी नाजुक हो सकती हैं कि गिराए जाने पर वे टूट जाएं। रोबोट अपने पास उपलब्ध किसी भी टूटी हुई वस्तु की मरम्मत करने की भी क्षमता रखता है।

अवयव

स्थिति गणना के मुख्य अवयव क्रियाएं, स्पष्टता और स्थितियां हैं। दुनिया के वर्णन में सामान्यतौर पर कई वस्तुएं भी सम्मिलित होती हैं। स्थिति गणना तीन प्रकार के क्रमबद्ध कार्यक्षेत्र पर आधारित है: क्रियाएं, स्थितियां और वस्तुएं, जहां वस्तुओं में वह सब कुछ सम्मिलित होता है जो कोई क्रिया या स्थिति में नहीं होता है। प्रत्येक प्रकार के क्रमबद्ध चर का उपयोग किया जा सकता है। जबकि क्रियाएँ, परिस्थितियाँ और वस्तुएँ कार्यक्षेत्र के अवयव हैं, स्पष्टता को या तो विधेय या फलन के रूप में तैयार किया जाता है।

क्रियाएं

क्रियाएँ एक प्रकार का कार्यक्षेत्र बनाती हैं। क्रमबद्ध क्रिया के चरों का उपयोग किया जा सकता है और क्रियाओं को परिमाणित भी किया जा सकता है। रोबोट की दुनिया के उदाहरण में, संभावित क्रिया पद , रोबोट को एक नए स्थान पर ले जाने के लिए  का प्रतिरूपण बनाना, और किसी वस्तु o को उठाने वाले रोबोट का प्रतिरूपण बनाना सम्मिलित है। सम्बंधित कार्रवाई निष्पादन योग्य होने पर इंगित करने के लिए एक विशेष विधेय पॉस का उपयोग किया जाता है।

परिस्थितियाँ

स्थिति गणना में, एक गतिशील दुनिया को दुनिया के भीतर किए जा रहे विभिन्न फलन के परिणामस्वरूप स्थितियों की एक श्रृंखला के माध्यम से प्रगति के रूप में तैयार किया जाता है। एक स्थिति क्रिया घटित होने के इतिहास का प्रतिनिधित्व करती है। यहां वर्णित स्थिति गणना के रेइटर संस्करण में, एक स्थिति, शब्द के शाब्दिक अर्थ के विपरीत और मैककार्थी और हेस द्वारा मूल परिभाषा के विपरीत एक स्थिति का प्रतिनिधित्व नहीं करती है। इस बिंदु को रेइटर द्वारा इस प्रकार संक्षेप में प्रस्तुत किया गया है:

स्थिति क्रियाओं का एक सीमित क्रम अवधि है। यह कोई स्थिति नहीं है, यह कोई आशुचित्र नहीं है, यह एक इतिहास है।[2]

किसी भी कार्य को करने से पहले की स्थिति को सामान्य तौर पर द्वारा दर्शाया जाता है और इसे प्रारंभिक स्थिति कहा जाता है। किसी क्रिया के निष्पादन से उत्पन्न नई स्थिति को फलन प्रतीक do का उपयोग करके दर्शाया जाता है और कुछ अन्य सन्दर्भ में result का भी प्रयोग किया जाता है। इस फलन प्रतीक में तर्क के रूप में एक स्थिति और एक क्रिया होती है, और परिणाम के रूप में एक स्थिति होती है, बाद वाली स्थिति वह स्थिति होती है जो दी गई स्थिति में दी गई कार्रवाई को करने के परिणामस्वरूप होती है।

तथ्य यह है कि परिस्थितियाँ क्रियाओं का क्रम हैं न कि अवस्थाएँ, इसलिए अगर और केवल अगर और होता है तो के बराबर  है यह इस सिद्धांत द्वारा लागू किया जाता है। यह सिद्धांत अर्थहीन है यदि स्थितियाँ ही अवस्था हों, क्योंकि दो अलग-अलग अवस्थाओं में निष्पादित दो अलग-अलग क्रियाओं का परिणाम एक ही अवस्था में हो सकता है।

उदाहरण रोबोट की दुनिया में, यदि रोबोट की पहली क्रिया स्थान पर जाना है तो पहली क्रिया होगी और परिणामी स्थिति होगी। यदि इसकी अगली क्रिया गेंद को उठाना है, तो परिणामी स्थिति होगी। स्थितियों के पद जैसे और निष्पादित फलन के अनुक्रम को निरूपित करते है, न कि निष्पादन के परिणामस्वरूप होने वाली अवस्था का विवरण करते है।

स्पष्टता

ऐसे कथन जिनका सत्य मान बदल सकता है, उन्हें संबंधपरक स्पष्टता, विधेय द्वारा प्रतिरूपित किया जाता है जो किसी स्थिति को अपने अंतिम तर्क के रूप में लेते हैं। ,यदि कोई फलन जो किसी स्थिति को अपने अंतिम तर्क के रूप में लेते हैं और स्थिति-आश्रित मान लौटाते हैं तो कार्यात्मक स्पष्टता भी संभव होती हैं। स्पष्टता को दुनिया का गुणधर्म माना जा सकता है।

उदाहरण में, स्पष्टता का उपयोग यह इंगित करने के लिए किया जा सकता है कि रोबोट किसी विशेष स्थिति में किसी विशेष वस्तु को ले जा रहा है। यदि रोबोट प्रारंभ में कुछ भी नहीं ले जाता है तो गलत है और सही है। रोबोट के स्थान को एक कार्यात्मक स्पष्टता का उपयोग करके में प्रतिरूपित किया जा सकता है जो किसी विशेष स्थिति में रोबोट का स्थान लौटाता है।

सूत्र

एक गतिशील दुनिया का वर्णन तीन प्रकार के सूत्रों जैसे; फलन के बारे में सूत्र (पूर्वापेक्षा और प्रभाव), दुनिया की अवस्था के बारे में सूत्र, और मूलभूत सिद्धांत का उपयोग करके द्वितीय क्रम का तर्क में संकेतित्र किया गया है।

क्रिया पूर्वापेक्षा

कुछ क्रियांए किसी दी गई स्थिति में निष्पादन योग्य नहीं हो सकती हैं। उदाहरण के लिए, किसी वस्तु को तब तक नीचे रखना असंभव है जब तक कोई वास्तव में उसे उठा न रहा हो। फलन के निष्पादन पर प्रतिबंध प्रपत्र के शाब्दिक अर्थों द्वारा प्रतिरूपित होते हैं, जहाँ a एक क्रिया है, s एक स्थिति, और Poss क्रियाओं की निष्पादन क्षमता को दर्शाने वाला एक विशेष द्विआधारी विधेय है। स्थिति के उदाहरण में, किसी वस्तु को गिराना केवल तभी संभव है जब कोई उसे ले जा रहा हो, इस स्थिति को इस प्रकार प्रतिरूपित किया गया है:

अधिक जटिल उदाहरण के रूप में, निम्नलिखित प्रतिरूपण बताते हैं कि रोबोट एक समय में केवल एक ही वस्तु ले जा सकता है, और कुछ वस्तुएँ रोबोट के उठाने के लिए बहुत भारी हैं (विधेय भारी द्वारा दर्शाया गया है):

क्रिया प्रभाव

यह देखते हुए कि किसी स्थिति में कोई क्रिया संभव है तो स्पष्टता से उस क्रिया के प्रभाव को निर्दिष्ट करना होगा। यह क्रिया प्रभाव सिद्धांतों द्वारा किया जाता है। उदाहरण के लिए, यदि किसी वस्तु को रोबोट द्वारा उठाया गया है तो यह माना जाता है की रोबोट उसको लेकर जा रहे है उस स्थिति को इस प्रकार दर्शाया जा सकता है:

ऐसे प्रभाव हैं जो वर्तमान स्थिति पर निर्भर करते हैं उन प्रतिबन्ध प्रभावों को निर्दिष्ट करना भी संभव है। निम्नलिखित प्रतिरूपण बताते हैं कि कुछ वस्तुएं नाजुक होती है जिन्हे नाजुक विधेय द्वारा दर्शाया जाता है और उन्हें गिराने से वे टूट जाते हैं (विघटित स्पष्टता द्वारा इंगित)):

हालाँकि यह सूत्र क्रियाओं के प्रभाव का सही वर्णन करता है, लेकिन तंत्र समस्या के कारण तर्क में क्रिया का सही वर्णन करने के लिए यह पर्याप्त नहीं है।

तंत्र समस्या

हालाँकि उपरोक्त सूत्र फलन के प्रभावों के बारे में तर्क करने के लिए उपयुक्त प्रतीत होते हैं, लेकिन उनमें एक गंभीर बाधा यह है की उनका उपयोग फलन के गैर-प्रभावों को प्राप्त करने के लिए नहीं किया जा सकता है। उदाहरण के लिए, यह निष्कर्ष निकालना संभव नहीं है कि किसी वस्तु को उठाने के बाद रोबोट का स्थान अपरिवर्तित रहता है। इसके लिए एक तथाकथित तंत्र सिद्धांत, एक सूत्र की आवश्यकता होती है:

तंत्र सिद्धांतों को निर्दिष्ट करने की आवश्यकता को सिद्धांतो की गतिशील दुनिया में एक समस्या के रूप में लंबे समय से पहचाना गया है, और इसे तंत्र समस्या के रूप में जाना जाता है। चूंकि सामान्य तौर पर ऐसे सिद्धांतों की बहुत बड़ी संख्या होती है, इसलिए डिजाइनर के लिए एक आवश्यक तंत्र सिद्धांत को छोड़ना, या दुनिया के विवरण में बदलाव करते समय सभी उपयुक्त सिद्धांतों को संशोधित करना या भूल जाना बहुत आसान होता है।

अनुक्रम स्थिति सिद्धांत

अनुक्रम स्थिति सिद्धांत स्थिति गणना में तंत्र समस्या को हल करते हैं। इस समाधान के अनुसार, डिज़ाइनर को प्रभाव सिद्धांतों के रूप में उन सभी तरीकों की गणना करनी चाहिए जिनसे किसी विशेष स्पष्टता का मान बदला जा सकता है। स्पष्टता के मान को प्रभावित करने वाले प्रभाव सिद्धांत इसे सामान्यीकृत रूप में धनात्मक और ऋणात्मक प्रभाव वाले सिद्धांत के रूप में लिखा जा सकता है:

सूत्र उन परिस्थितियों का वर्णन करता है जिनके अंतर्गत अनुक्रम स्थिति सत्य होती है और जहाँ a क्रिया, s स्थिति, और F स्पष्टता को दर्शाता है। वैसे ही, उन परिस्थितियों का वर्णन करता है जिनके अंतर्गत अनुक्रम स्थिति असत्य होती है और जहाँ a क्रिया, s स्थिति, और F स्पष्टता को दर्शाता है।

यदि सिद्धांतों की यह जोड़ी, F स्पष्टता के सभी तरीकों का वर्णन करती है जो मान बदल सकते हैं, उन्हें एकल सिद्धांत के रूप में फिर से लिखा जा सकता है:

शब्दों में, यह सूत्र बताता है: यह कहना सत्य होगा कि, परिणामी स्थिति में s स्थिति में F स्पष्टता के साथ a क्रिया करना संभव है, यदि और केवल यदि स्थिति s में क्रिया a निष्पादित करने से इसे सत्य बना देगा, या यह स्थिति s में क्रिया a निष्पादित करने से s इसे असत्य नहीं बनाएंगे।

उदाहरण के तौर पर, ऊपर प्रस्तुत विघटित स्पष्टता का मान निम्नलिखित अनुक्रम स्थिति सिद्धांत द्वारा दिया गया है:


अवस्थाएँ

प्रारंभिक या किसी अन्य स्थिति के गुणों को केवल सूत्रों के रूप में बताकर निर्दिष्ट किया जा सकता है। उदाहरण के लिए, प्रारंभिक अवस्था (जो एक अवस्था नहीं, बल्कि एक स्थिति है) के बारे में दृढता से किसी तथ्य को औपचारिक रूप दिया जाता है। निम्नलिखित कथनों से पता चलता है कि प्रारंभ में, रोबोट कुछ भी नहीं ले जाता है

स्थान , और कोई विघटित हुई वस्तु नहीं है:


मूलाधार सिद्धांत

स्थिति गणना के मूलभूत सिद्धांत इस विचार को औपचारिक बनाते हैं कि परिस्थितियाँ पूर्व समय की बात है, उनमें अन्य गुण जैसे स्थितियों पर दूसरे क्रम का प्रेरण भी सम्मिलित हैं।

समाश्रयण

समाश्रयण स्थिति गणना में परिणाम प्रमाणित करने के लिए एक तंत्र है। यह स्थिति को समाहित करने वाले एक सूत्र को व्यक्त करने पर आधारित है जहाँ a एक क्रिया है और s एक स्थिति , लेकिन स्थिति नहीं है। इस प्रक्रिया को दोहराकर, कोई व्यक्ति केवल प्रारंभिक स्थिति S_0 वाले समकक्ष सूत्र के साथ समाप्त हो सकता है। मूल सूत्र की तुलना में इस सूत्र से परिणाम सिद्ध करना संभवतः अधिक सरल है।

गोलोग

GOLOG स्थिति गणना पर आधारित एक तर्क प्रोग्रामिंग भाषा है।[3][4]


स्थिति गणना का मूल संस्करण

मैक्कार्थी और हेस द्वारा की गयी मूल स्थिति गणना और वर्त्तमान में उपयोग में आने वाली गणना के बीच मुख्य अंतर स्थितियों की व्याख्या करता है। स्थितिजन्य गणना के आधुनिक संस्करण में, स्थिति क्रियाओं का एक क्रम है। मूल रूप से, स्थितियों को एक पल में ब्रह्मांड की पूर्ण अवस्था के रूप में परिभाषित किया गया है। यह शुरू से ही स्पष्ट था कि ऐसी स्थितियों का पूरी तरह से वर्णन नहीं किया जा सकता है इसलिए प्रारंभिक विचारधारा केवल स्थितियों के बारे में कुछ विवरण देने और उनसे परिणाम प्राप्त करने के लिए था। यह उस दृष्टिकोण से भी अलग है जहां एक स्थिति ज्ञात तथ्यों का एक संग्रह हो सकता है, यानी, ब्रह्मांड का संभवतः अधूरा विवरण जो स्पष्ट गणना द्वारा अपनाया जाता है।

स्थिति गणना के मूल संस्करण में, स्पष्टताओं का निर्देशन नहीं किया जाता है। दूसरे शब्दों में, जो स्थितियाँ बदल सकती हैं उन्हें विधेय द्वारा दर्शाया जाता है फलन द्वारा नहीं। दरअसल, मैक्कार्थी और हेस ने स्पष्टता को एक ऐसे कार्य के रूप में परिभाषित किया जो स्थिति पर निर्भर करता है, लेकिन फिर वे स्पष्टता का प्रतिनिधित्व करने के लिए हमेशा विधेय का उपयोग करते हुए आगे बढ़े। उदाहरण के लिए, यह तथ्य कि x स्थान पर s स्थिति में बारिश हो रही है जिसको शाब्दिक रूप से दर्शाया गया है। मैक्कार्थी द्वारा स्थिति गणना के 1986 संस्करण में, फलन स्पष्टता का उपयोग किया जाता है। उदाहरण के लिए, किसी वस्तु x की स्थिति s में के मान से दर्शाया जाता है, जहाँ लोकेशन एक फलन है। ऐसे फलन के बारे में विवरण, समानता का उपयोग करके दिए जा सकते हैं: इसका अर्थ है कि वस्तु x का स्थान s और दोनों स्थितियों में समान है।

क्रिया a का निष्पादन स्थिति s में स्थिति परिणाम द्वारा परिणाम फलन के माध्यम से दर्शाया जाता है। क्रियाओं के प्रभाव को संबंधित स्पष्ट सूत्र स्थिति s में स्थिति द्वारा व्यक्त किया जाता है। उदाहरण के लिए, दरवाज़ा खोलने की क्रिया के परिणामस्वरूप दरवाज़ा बंद न होने पर भी खुला रहता है, इसे निम्न द्वारा दर्शाया जाता है:

विधेय locked और open एक दरवाजे के क्रमशः बंद और खुले होने की स्थितियों का प्रतिनिधित्व करता है। चूँकि ये स्थितियाँ भिन्न-भिन्न हो सकती हैं, इसलिए इन्हें स्थिति तर्क के साथ विधेय द्वारा दर्शाया जाता है। सूत्र कहता है कि यदि किसी स्थिति में दरवाज़ा बंद नहीं है, तो खोलने की क्रिया निष्पादित करने के बाद दरवाज़ा खुला है, इस क्रिया को स्थिरांक opens द्वारा दर्शाया जाता है।

ये सूत्र उन सभी चीज़ों को प्राप्त करने के लिए पर्याप्त नहीं हैं जिन्हें कल्‍पनीय माना जाता है। वास्तव में, विभिन्न स्थितियों में स्पष्टता केवल तभी संबंधित होते हैं यदि वे फलन की पूर्वापेक्षा और प्रभाव हों; यदि कोई स्पष्टता किसी क्रिया से प्रभावित नहीं होता है, तो यह निष्कर्ष निकालने का कोई तरीका नहीं है कि उसमें कोई परिवर्तन नहीं हुआ है। उदाहरण के लिए, से अनुसरण करता है , जिसकी कोई अपेक्षा कर सकता है (दरवाजा खोलकर उसे बंद नहीं किया जाता है) उपरोक्त सूत्र का यह अर्थ नहीं है । निष्क्रियता को बनाए रखने के लिए, तंत्र सिद्धांत नामक सूत्रों की आवश्यकता होती है। ये सूत्र क्रियाओं के सभी गैर-प्रभावों को निर्दिष्ट करते हैं:

स्थिति गणना के मूल सूत्रीकरण में, प्रारंभिक स्थिति, जिसे बाद में से निरूपित किया गया, स्पष्ट रूप से पहचाना नहीं गया है। यदि स्थितियों को दुनिया का वर्णन मान लिया जाए तो प्रारंभिक स्थिति की आवश्यकता नहीं है। उदाहरण के लिए, उस परिदृश्य का प्रतिनिधित्व करने के लिए जिसमें दरवाज़ा बंद था लेकिन अवरोधक नहीं लगा हुआ था और इसे खोलने की क्रिया को प्रारंभिक स्थिति में स्थिरांक s लेकर और इसके बारे में विवरण देकर औपचारिक रूप दिया गया है (उदाहरण के लिए, )। परिवर्तन के बाद दरवाजा खुला है यह सूत्र द्वारा सम्मिलित करके परिलक्षित होता है। यदि आधुनिक स्थिति गणना की तरह, किसी स्थिति को फलन का इतिहास माना जाता है तो प्रारंभिक स्थिति की आवश्यकता होती है, क्योंकि प्रारंभिक स्थिति फलन के खाली अनुक्रम का प्रतिनिधित्व करती है।

1986 में मैक्कार्थी द्वारा प्रस्तुत स्थिति गणना का संस्करण (उदाहरण के लिए, स्थिति s में x की स्थिति का प्रतिनिधित्व करने वाला एक शब्द है) कार्यात्मक स्पष्टता के उपयोग के लिए मूल संस्करण तंत्र सिद्धांतो को बदलने के लिए परिधि का उपयोग करने के प्रयास से भिन्न है।

एक तर्क कार्यक्रम के रूप में स्थिति गणना

स्थिति कलन को (उदाहरण के लिए कोवाल्स्की 1979, एप्ट और बेज़ेम 1990, शानहन 1997) एक तर्क कार्यक्रम के रूप में लिखना भी संभव है:

यहाँ Holds एक मेटा-विधेय और f चर श्रेणी स्पष्टता से अधिक होती है। विधेय पोस, आरंभ और प्रतिबंध लगाना विधेय क्रमश Poss, , और के अनुरूप है। बायां तीर ← समतुल्यता ↔ का आधा है। अन्य आधा हिस्सा कार्यक्रम के पूरा होने में निहित है, जिसमें निषेध को निषेध विफलता के रूप में व्याख्या किया जाता है। प्रेरण सिद्धांत भी अंतर्निहित हैं, और केवल प्रोग्राम गुणों को प्रमाणित करने के लिए आवश्यक हैं। एसएलडी संकल्प के रूप में पिछड़ा तर्क, जो तर्क कार्यक्रमों को निष्पादित करने के लिए उपयोग किया जाने वाला सामान्य तंत्र है, प्रतिगमन को अंतर्निहित रूप से लागू करता है।

यह भी देखें

संदर्भ

  1. McCarthy, John (1963). "स्थितियाँ, कार्य और कारण नियम।" (PDF). Stanford University Technical Report. Archived from the original (PDF) on March 21, 2020.
  2. "ECSTER Debate Contribution".
  3. Lakemeyer, Gerhard. "The Situation Calculus and Golog: A Tutorial" (PDF). www.hybrid-reasoning.org. Retrieved 16 July 2014.
  4. "GOLOG के बारे में प्रकाशन". Retrieved 16 July 2014.
  • J. McCarthy and P. Hayes (1969). Some philosophical problems from the standpoint of artificial intelligence. In B. Meltzer and D. Michie, editors, Machine Intelligence, 4:463–502. Edinburgh University Press, 1969.
  • R. Kowalski (1979). Logic for Problem Solving - Elsevier North Holland.
  • K.R. Apt and M. Bezem (1990). Acyclic Programs. In: 7th International Conference on Logic Programming. MIT Press. Jerusalem, Israel.
  • R. Reiter (1991). The frame problem in the situation calculus: a simple solution (sometimes) and a completeness result for goal regression. In Vladimir Lifshitz, editor, Artificial intelligence and mathematical theory of computation: papers in honour of John McCarthy, pages 359–380, San Diego, CA, USA. Academic Press Professional, Inc. 1991.
  • M. Shanahan (1997). Solving the Frame Problem: a Mathematical Investigation of the Common Sense Law of Inertia. MIT Press.
  • H. Levesque, F. Pirri, and R. Reiter (1998). Foundations for the situation calculus. Electronic Transactions on Artificial Intelligence, 2(3–4):159-178.
  • F. Pirri and R. Reiter (1999). Some contributions to the metatheory of the Situation Calculus. Journal of the ACM, 46(3):325–361. doi:10.1145/316542.316545
  • R. Reiter (2001). Knowledge in Action: Logical Foundations for Specifying and Implementing Dynamical Systems. The MIT Press.