होलोग्राफिक एसोसिएटिव मेमोरी
होलोग्राफिक डेटा स्टोरेज के लिए होलोग्राफिक एसोसिएटिव मेमोरी (एचएएम) मुख्य रूप से होलोग्रफ़ी के सिद्धांतों पर आधारित इनफार्मेशन स्टोरेज और पुनर्प्राप्ति प्राप्त करने वाली प्रणाली है। इसके आधार पर होलोग्राम प्रकाश की दो किरणों का उपयोग करके बनाए जाते हैं, जिन्हें संदर्भ किरण और ऑब्जेक्ट किरण कहा जाता है। इस प्रकार के फोटोग्राफिक पेपर पर प्रारूप तैयार करते हैं, जिसमें वे दोनों सम्मिलित होते हैं। जिसे बाद में, संदर्भ किरण को पुन: प्रस्तुत करके, होलोग्राम मूल वस्तु की इमेज को फिर से बनाता है। इस सिद्धांत के अनुसार कोई ऑब्जेक्ट बीम का उपयोग ही कार्य करने के लिए कर सकता है: इस प्रकार मूलतः इस संदर्भ के आधार पर बीम को पुन: उत्पन्न करना आवश्यक होता हैं। इस प्रकार एचएएम में, सूचना के टुकड़े दो किरणों की समान कार्य करते हैं। इसके लिए इस प्रमाण का उपयोग प्रारूप से दूसरे को पुनः प्राप्त करने के लिए किया जा सकता है। इसे आर्टिफिशियल न्यूरल नेटवर्क के रूप में सोचा जा सकता है, जो मस्तिष्क द्वारा सूचना का उपयोग करने की विधि की नकल करता है। जिससे प्राप्त होने वाली जानकारी को जटिल सदिश द्वारा विशेष रूपों में प्रस्तुत किया जाता है, जिसे आवृत्ति और परिमाण वाले तरंग रूप द्वारा सीधे व्यक्त किया जा सकता है। यह तरंग रूप विद्युतरासायनिक आवेगों के अनुरूप है जो जैविक न्यूरॉन कोशिकाओं के बीच सूचना संचारित करता है।
परिभाषा
एचएएम एनालॉग, सहसंबंध-आधारित, सहयोगी, उत्तेजना-प्रतिक्रिया याद के लिए इसे इस समूह का विशेष भाग माना जाता है, जहाँ इस प्रकार से प्राप्त होने वाली जानकारी को काॅम्प्लेक्स नंबर्स के इस प्रकार के विशेष अभिविन्यासों पर मैप किया जाता है। इसे काॅम्प्लेक्स नंबर्स के आधार पर मूल्यवान आर्टिफिशियल न्यूरल नेटवर्क माना जा सकता है। इस प्रकार होलोग्राफिक साहचर्य स्टोरेज कुछ उल्लेखनीय विशेषताओं को प्रदर्शित करती है। इस प्रकार एसोसिएशन (मनोविज्ञान) स्टोरेज फंक्शन, सामान्यीकरण और परिवर्तनशील ध्यान के साथ प्रारूप पहचान के लिए होलोग्राफ को प्रभावी दिखाया गया है। इस प्रकार गतिशीलता की खोज के आधार पर स्थानीयकरण की क्षमता को प्राकृतिक स्टोरेज के केंद्र के रूप में मान लिया जाता है।[1] उदाहरण के लिए, दृश्य धारणा में, मनुष्य सदैव प्रारूप में कुछ विशिष्ट वस्तुओं पर ध्यान केंद्रित करते हैं। इस प्रकार कोई मनुष्य पुनः सीखने की आवश्यकता के बिना आसानी से फोकस को वस्तु से दूसरी वस्तु पर परिवर्तित कर सकता है। इसके लिए एचएएम कम्प्यूटरीकृत प्रारूप प्रदान करता है, जो फोकस के लिए प्रतिनिधित्व बनाकर इस क्षमता की नकल कर सकता है। इस नई मेमोरी के केंद्र में प्रारूप का नया द्वि-मोडल प्रतिनिधित्व और होलोग्राम जैसा जटिल गोलाकार वजन स्थित में निहित रहता है। इस प्रकार एसोसिएटिव कंप्यूटिंग के सामान्य लाभों के अतिरिक्त, इस तकनीक में तेजी से ऑप्टिकल प्राप्ति की उत्कृष्ट क्षमता भी है क्योंकि अंतर्निहित हाइपर-गोलाकार गणनाओं को स्वाभाविक रूप से ऑप्टिकल गणनाओं पर लागू किया जा सकता है।
यह उत्तेजना-प्रतिक्रिया प्रारूप के रूप में सूचना स्टोरेज के सिद्धांत पर आधारित है जहां जानकारी रीमैन सतह पर काॅम्प्लेक्स नंबर्सओं के चरण अभिविन्यास द्वारा प्रस्तुत की जाती है।[2] इस प्रकार बहुत बड़ी संख्याओं में उत्तेजना के आधार पर प्रतिक्रियाओं के प्रारूप को ही तंत्रिका तत्व पर आरोपित या लपेटा जा सकता है। इस प्रकार की उत्तेजना से जुड़ी प्रतिक्रिया के संघों को गैर-पुनरावृत्तीय परिवर्तन में एन्कोड और डिकोड दोनों किया जा सकता है। इसके आधार पर संयोजनवाद के लिए तंत्रिका नेटवर्क के विपरीत, गणितीय आधार को मापदंडों के अनुकूलन या त्रुटि के आधार पर इनफोल्ड करने की आवश्यकता नहीं होती है। इसकी मुख्य आवश्यकता यह है कि जटिल क्षेत्र में उत्तेजना प्रारूप को सममित या ओर्थोगोनल बनाया जा सकता हैं। जिसके लिए एचएएम को सामान्यतः सिग्मॉइड फ़ंक्शन प्री-प्रोसेसिंग को नियोजित करता है, जहाँ राॅ इनपुट को ऑर्थोगोनलाइज़ किया जाता है, और गाऊसी वितरण में परिवर्तित किया जाता है।
संचालन के सिद्धांत
- उत्तेजना प्रतिक्रिया के संघों को गैर-पुनरावृत्तीय परिवर्तन में सीखा और व्यक्त किया जाता है। इस प्रकार की त्रुटियों के लिए इन शर्तों या पुनरावृत्तीय से जुड़े प्रसंस्करण का कोई बैकप्रोपेगेशन आवश्यक नहीं है।
- इस विधि के अनुसार यह असंयोजन का प्रारूप बनाती है, जिसमें व्यक्तिगत न्यूरॉन सेल के भीतर एनालॉग संकेत उत्तेजना-प्रतिक्रिया प्रारूप के बहुत बड़े सेट को सुपरइम्पोज़ करने की क्षमता उपस्थित होती है।
- उत्पन्न फ़ैसर प्रतिक्रिया जानकारी संचारित करता है, और परिमाण मान्यता (या परिणाम में विश्वास) के माप का संचार करता है।
- यह प्रक्रिया संग्रहीत जानकारी की प्रभुत्व प्रोफ़ाइल स्थापित करने के लिए तंत्रिका तंत्र के साथ क्षमता की अनुमति देती है, इस प्रकार किसी भी सीमा की मेमोरी प्रोफ़ाइल प्रदर्शित करती है - जिसके लिए शार्ट टाइम मेमोरी से या शार्ट टाइम मेमोरी से लाॅंग टाइम मेमोरी तक इसे सम्मिलित किया जाता हैं।
- प्रक्रिया गैर-अशांति नियम का पालन करती है, अर्थात पूर्व उत्तेजना प्रतिक्रिया संघ के बाद की शिक्षा से न्यूनतम रूप से प्रभावित होते हैं।
- जानकारी जटिल सदिश द्वारा अमूर्त रूप में प्रस्तुत की जाती है जिसे आवृत्ति और परिमाण वाले तरंग रूप द्वारा सीधे व्यक्त किया जा सकता है। यह तरंग रूप विद्युतरासायनिक आवेगों के अनुरूप है जो जैविक न्यूरॉन कोशिकाओं के बीच सूचना संचारित करता है।
यह भी देखें
- और निगम
- होलोग्राफिक डेटा स्टोरेज
- होलोनोमिक मस्तिष्क सिद्धांत
- स्व-व्यवस्थित मानचित्र
- विरल वितरित स्टोरेज
संदर्भ
- ↑ Khan, J.I. (1998). "गतिशील रूप से स्थानीयकरण योग्य ध्यान के साथ पुनर्प्राप्ति में बहुआयामी होलोग्राफिक साहचर्य स्मृति की विशेषताएं". IEEE Transactions on Neural Networks. 9 (3): 389–406. doi:10.1109/72.668882. ISSN 1045-9227.
- ↑ Sutherland, John G. (1 January 1990). "स्मृति, सीखने और अभिव्यक्ति का एक होलोग्राफिक मॉडल". International Journal of Neural Systems. 01 (3): 259–267. doi:10.1142/S0129065790000163.
अग्रिम पठन
- Gopalan, R. P.; Lee, G (2002). McKay, R. I.; Slaney, J. (eds.). Indexing of Image Databases Using Untrained 4D Holographic Memory Model. 15th Australian Joint Conference on Artificial Intelligence. Springer. pp. 237–248.
- Hendra, Y.; Gopalan, R. P.; Nair, M. G. (1999). A method for dynamic indexing of large image databases. IEEE SMC'99. Systems, Man, and Cybernetics.
- Khan, J. I. (August 1995). Attention Modulated Associative Computing and Content-Associative Search in Image Archive (PDF) (PhD thesis). University of Hawaii.
- Michel, H. E.; Awwal, A. A. S. (1999). Enhanced artificial neural networks using complex numbers. IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339. Vol. 1. Washington, DC, USA. pp. 456–461. doi:10.1109/IJCNN.1999.831538.
- Michel, H. E.; Kunjithapatham, S. (2002). "Processing Landsat TM data using complex-valued neural networks" (PDF). Proceedings of SPIE. International Society for Optical. Archived from the original (PDF) on 2017-09-11.
- Stoop, R.; Buchli, J.; Keller, G.; Steeb, W. H. (2003). "Stochastic resonance in pattern recognition by a holographic neuron model" (PDF). Physical Review E. 67.