ह्यपसोमीटर (उच्चतामापी)
ह्यपसोमीटर (उच्चतामापी) ऊंचाई या ऊंचाई को मापने के लिए एक उपकरण है। दो भिन्न सिद्धांतों का उपयोग किया जा सकता है: त्रिकोणमिति और वायुमंडलीय दाब।
व्युत्पत्ति
अंग्रेजी शब्द ह्यपसोमीटर प्राचीन यूनानी शब्द ὕψος (हुप्सोस, "ऊंचाई") और μέτρον (मेट्रॉन, "माप") से उत्पन्न हुआ है।
स्केल ह्यपसोमीटर (पैमाना उच्चतामापी)
एक साधारण पैमाना ह्यपसोमीटर को शासक के आधार पर किसी इमारत या पेड़ की ऊंचाई मापने और वस्तु के शीर्ष को मापने की अनुमति देता है, जब वस्तु से पर्यवेक्षक की दूरी ज्ञात होती है। आधुनिक ह्यपसोमीटर वस्तुओं के ऊपर और नीचे की दूरी को मापने के लिए लेजर रेंजफाइंडर और क्लेनामिटर के संयोजन का उपयोग करते हैं, और ऊंचाई की गणना करने के लिए पर्यवेक्षक से प्रत्येक तक की रेखाओं के बीच के कोण का उपयोग करते हैं।
इस तरह के पैमाना ह्यपसोमीटर का एक उदाहरण यहां चित्रित किया गया है और इसमें साइटिंग ट्यूब, निश्चित क्षैतिज पैमाना और संलग्न प्लंब लाइन के साथ एक समायोज्य ऊर्ध्वाधर पैमाना सम्मिलित है। इस तरह के पैमाना ह्यपसोमीटर के संचालन का सिद्धांत ज्यामिति में समान त्रिकोणों के विचार पर आधारित है। सबसे पहले, समायोज्य लंबवत पैमाने उपयुक्त ऊंचाई पर सेट किया गया है। फिर जैसा कि उदाहरण में चरण 1 में है, उस वस्तु के शीर्ष पर एक दृश्य लिया जाता है जिसकी ऊंचाई निर्धारित की जानी है, और क्षैतिज पैमाने पर रीडिंग दर्ज की जाती है, h'। इस मान से गणना अंततः ऊंचाई h देगी, पर्यवेक्षक की आंख-रेखा से वस्तु के शीर्ष तक जिसकी ऊंचाई निर्धारित की जानी है। इसी तरह, उदाहरण के चरण 2 में, जिस वस्तु की ऊंचाई निर्धारित की जानी है, उसके आधार पर एक दृष्टि ली जाती है, और क्षैतिज पैमाने पर रीडिंग d' दर्ज की जाती है। इस मान से गणना अंततः वस्तु के आधार से प्रेक्षक की आंख की रेखा तक की दूरी बताएगी। अंत में, पर्यवेक्षक से वस्तु तक की दूरी x को मापने की आवश्यकता है।
चरण 1 में सम्मिलित ज्यामिति को देखते हुए रेखाचित्र a: दो समकोण त्रिभुज, पीले रंग में समान छोटे कोणों के साथ यहां दिखाए गए हैं। रेखाचित्र b में आगे, हम देखते हैं कि दो त्रिकोणों में समान कोण हैं - प्रत्येक में समकोण है, वही छोटा कोण पीले रंग में दिखाया गया है, और वही बड़ा कोण नारंगी में दिखाया गया है। इसलिए रेखाचित्र c में, हम देखते हैं कि समरूप त्रिभुजों के सिद्धांत का उपयोग करते हुए, यह देखते हुए कि प्रत्येक त्रिभुज में समान कोण हैं, भुजाएँ समानुपात में होंगी: x वस्तु की दूरी x' के अनुपात में, ह्यपसोमीटर के ऊर्ध्वाधर पैमाने पर सेट की गई ऊँचाई, और h' के प्रेक्षक की नेत्र-रेखा के ऊपर वस्तु की ऊँचाई का ह्यपसोमीटर के क्षैतिज पैमाने से पाठ्यांक के अनुपात में है।
दिया गया है कि टैन (छोटा पीला कोण) = विपरीत भुजा / आसन्न भुजा, इसलिए टैन (छोटा पीला कोण) = h / x = h' / x'। इसलिए h = h'x / x'
इसी तरह, चरण 2 में सम्मिलित ज्यामिति का परिणाम रेखाचित्र d में होता है: दो समकोण त्रिभुज। रेखाचित्र e में आगे, हम देखते हैं कि दो त्रिकोणों में फिर से समान कोण होते हैं - प्रत्येक में समकोण होता है, वही छोटा कोण पीले रंग में दिखाया जाता है, और वही बड़ा कोण नारंगी में दिखाया जाता है। इसलिए रेखाचित्र f में, हम देखते हैं कि समरूप त्रिभुजों के सिद्धांत का उपयोग करते हुए, यह देखते हुए कि प्रत्येक त्रिभुज के समान कोण हैं, भुजाएँ समानुपात में होंगी: x के अनुपात में वस्तु की दूरी x', ह्यपसोमीटर के ऊर्ध्वाधर पैमाने पर सेट की गई ऊँचाई, और d' के प्रेक्षक की नेत्र-रेखा के नीचे वस्तु की गहराई, ह्यपसोमीटर के क्षैतिज पैमाने से पठन के अनुपात में है।
दिया गया है कि टैन (छोटा कोण) = विपरीत भुजा / आसन्न भुजा, इसलिए टैन (छोटा कोण) = d / x = d' / x'। इसलिए d = d'x / x'
इस प्रकार वस्तु की कुल ऊंचाई x (d' + h') / x' है
प्रेशर ह्यपसोमीटर (दाब उच्चतामापी)
आरेखण (दाएं) में दिखाया गया दाब ह्यपसोमीटर इस सिद्धांत को नियोजित करता है कि बैरोमीटर के दाब को कम करके तरल के क्वथनांक को कम किया जाता है, और बैरोमीटर का दाब अवलोकन बिंदु की ऊंचाई के साथ बदलता रहता है।
उपकरण में एक बेलनाकार बर्तन होता है जिसमें तरल, सामान्यतः पानी, उबला हुआ होता है, जो एक जैकेट वाले स्तंभ से घिरा हुआ है, जिसमें बाहरी विभाजन में वाष्प फैलता है, जबकि केंद्रीय एक में थर्मामीटर रखा जाता है। अवलोकित क्वथनांक से स्टेशन की ऊंचाई निकालने के लिए, क्वथनांक और दाब के बीच मौजूद संबंध को जानना आवश्यक है, और साथ ही वातावरण के दाब और ऊंचाई के बीच संबंध को भी जानना आवश्यक है।
यह भी देखें
- लंबाई, दूरी, या श्रेणी मापने वाले उपकरणों की सूची
- फ्रांसिस्को जोस डी कैलदास
संदर्भ
- public domain: Chisholm, Hugh, ed. (1911). "Hypsometer". Encyclopædia Britannica (in English). Vol. 14 (11th ed.). Cambridge University Press. p. 209. This article incorporates text from a publication now in the