65537-गॉन
Regular 65537-gon | |
---|---|
![]() A regular 65537-gon | |
प्रकार | Regular polygon |
किनारेs और कोने | 65537 |
स्लीपी सिंबल | {65537} |
कॉक्सेटर-डाइनकिन आरेख एस | ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
समरूपता समूह | Dihedral (D65537), order 2×65537 |
आंतरिक कोण (डिग्री) | ≈179.994 507° |
गुण | Convex, cyclic, equilateral, isogonal, isotoxal |
ज्यामिति में, 65537-गॉन 65,537 (216 + 1) भुजाओं वाला बहुभुज है। किसी भी गैर-स्व-प्रतिच्छेदी 65537-गॉन के आंतरिक कोणों का योग 11796300° है।
नियमित 65537-गॉन
नियमित 65537-गॉन (t = किनारे की लंबाई के साथ) का क्षेत्रफल है।
संपूर्ण नियमित 65537-गॉन वृत्त से दृष्टिगोचर नहीं होता है, और इसकी परिधि परिबद्ध वृत्त से लगभग 15 भागों प्रति बिलियन से भिन्न है।
निर्माण
रचनात्मक बहुभुज होने के लिए नियमित 65537-गॉन (सभी पक्षों के समान और सभी कोण समान) रुचि का है: अर्थात, इसे दिशा सूचक यंत्र और अचिह्नित सीधा किनारा का उपयोग करके बनाया जा सकता है। ऐसा इसलिए है क्योंकि 65,537 फर्मेट प्राइम है, जो 22n + 1 (इस स्थिति में n = 4) के रूप में है। इस प्रकार, मान और हैं 32768- डिग्री बीजगणितीय संख्याएं हैं, और किसी भी रचनात्मक संख्या के जैसे, उन्हें वर्गमूल के रूप में लिखा जा सकता है और उच्च-क्रम की जड़ों के रूप में नहीं है।
यद्यपि यह 1801 तक कार्ल फ्रेडरिक गॉस को ज्ञात था कि नियमित 65537-गॉन रचनात्मक था, नियमित 65537-गॉन का प्रथम स्पष्ट निर्माण जोहान गुस्ताव हेमीज़ (1894) द्वारा दिया गया था। निर्माण अधिक जटिल है; हेमीज़ ने 200 पन्नों की पांडुलिपि को पूर्ण करने में 10 वर्ष लगाए।[1] अन्य विधि में अधिकतम 1332 कार्लाइल हलकों का उपयोग सम्मिलित है, और इस विधि के प्रथम चरण नीचे चित्रित किए गए हैं। यह विधि व्यावहारिक समस्याओं का सामना करती है, क्योंकि इनमें से कार्लाइल वृत्त द्विघात समीकरण x2 + x − 16384 = 0 (16384 214 है) का समाधान करता है।[2]
समरूपता
नियमित 65537-गॉन में Dih65537 सममिति, क्रम 131074 में समरूपता है। चूँकि 65,537 अभाज्य संख्या है, द्वितल सममिति वाला उपसमूह Dih1, और 2 चक्रीय समूह समरूपता: Z65537, और Z1 है।
65537-ग्राम
65537-ग्राम, 65,537-भुजाओं वाला तारा बहुभुज है। जैसा कि 65,537 प्रमुख है, सभी पूर्णांकों 2 ≤ n ≤ 32768 के रूप में श्लाफली प्रतीकों {65537/n} द्वारा उत्पन्न 32,767 नियमित रूप हैं।
यह भी देखें
- वृत्त
- समान भुजाओं वाला त्रिकोण
- पंचकोण
- हेप्टाडेकागन (17-पक्ष)
- 257-गॉन
संदर्भ
- ↑ Johann Gustav Hermes (1894). "Über die Teilung des Kreises in 65537 gleiche Teile". Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse (in Deutsch). Göttingen. 3: 170–186.
- ↑ DeTemple, Duane W. (Feb 1991). "कार्लाइल सर्किल और बहुभुज निर्माण की लेमोइन सादगी" (PDF). The American Mathematical Monthly. 98 (2): 97–208. doi:10.2307/2323939. JSTOR 2323939. Archived from the original (PDF) on 2015-12-21. Retrieved 6 November 2011.
ग्रन्थसूची
- Weisstein, Eric W. "65537-gon". MathWorld.
- Robert Dixon Mathographics. New York: Dover, p. 53, 1991.
- Benjamin Bold, Famous Problems of Geometry and How to Solve Them New York: Dover, p. 70, 1982. ISBN 978-0486242972
- H. S. M. Coxeter Introduction to Geometry, 2nd ed. New York: Wiley, 1969. Chapter 2, Regular polygons
- Leonard Eugene Dickson Constructions with Ruler and Compasses; Regular Polygons Ch. 8 in Monographs on Topics of Modern Mathematics
- Relevant to the Elementary Field (Ed. J. W. A. Young). New York: Dover, pp. 352–386, 1955.
बाहरी संबंध
- 65537-gon mathematik-olympiaden.de (German), with images of the documentation HERMES; retrieved on July 9, 2018
- Wikibooks 65573-Eck (German) Approximate construction of the first side in two main steps
- 65537-gon, exact construction for the 1st side, using the Quadratrix of Hippias and GeoGebra as additional aids, with brief description (German)