गणित में,K-फलन, जिसे सामान्यतः K(z) कहा जाता है, हाइपरफैक्टोरियल से जटिल संख्याओं का सामान्यीकरण है, जो गामा फलन के लिए फ़ैक्टोरियल के सामान्यीकरण के समान है।
परिभाषा
औपचारिक रूप से, K-फलन को इस प्रकार परिभाषित किया गया है
इसे संवृत रूप में भी दिया जा सकता है
जहाँ ζ′(z) रीमैन ज़ेटा फलन के व्युत्पन्न को दर्शाता है, ζ(a,z) हर्विट्ज़ ज़ेटा फलन को दर्शाता है और
पॉलीगामा फलन का उपयोग करने वाली और अभिव्यक्ति है [1]
या पॉलीगामा फलन के संतुलित सामान्यीकरण का उपयोग करता है :[2]
जहाँ A ग्लैशर स्थिरांक है।
गामा फलन के लिए बोहर-मोलेरुप प्रमेय के समान, लॉग के-फलन अद्वितीय (एक योगात्मक स्थिरांक तक) अंततः समीकरण का 2-उत्तल समाधान है जहाँ फॉरवर्ड डिफरेंस संचालक है।[3]
गुण
इसके α > 0 लिए यह दिखाया जा सकता है :
इसे किसी फलन f को परिभाषित करके दिखाया जा सकता है ऐसा है कि:
α प्रस्तुतीकरण के संबंध में अब इस पहचान को अलग करता है:
लघुगणक नियम प्रयुक्त करने पर हमें प्राप्त होता है
K-फलन की परिभाषा के अनुसार हम लिखते हैं
इसलिए
समायोजन α = 0 करने पर
K}-फलन गामा फलन और हमारे पास उपस्थित प्राकृतिक संख्या के लिए बार्न्स G-फलन से निकटता से संबंधित है
अधिक व्यावहारिक रूप से, कोई लिख सकता है
प्रथम मान हैं
- 1, 4, 108, 27648, 86400000, 4031078400000, 3319766398771200000, ... (sequence A002109 in the OEIS).
संदर्भ
बाहरी संबंध