K-सममित अनुक्रम

From Vigyanwiki

गणित और सैद्धांतिक कंप्यूटर विज्ञान में, k-सममित अनुक्रम रैखिक पुनरावृत्ति समीकरणों को संतुष्ट करने वाला अनुक्रम है जो पूर्णांकों के आधार-k निरूपण को परावर्तित करता हैं। k-सममित अनुक्रमों का वर्ग स्वचालित अनुक्रम के वर्ग को अनंत आकार के अक्षरों में सामान्यीकृत करता है|

परिभाषा

k-सममित अनुक्रमों के कई लक्षण उपस्थित हैं, जो सभी समतुल्य हैं। कुछ सामान्य लक्षण इस प्रकार हैं। प्रत्येक के लिए, हम R' को क्रमविनिमेय नोथेरियन वलय के रूप में लेते हैं और हम R को R' युक्त वलय (गणित) के रूप में लेते हैं।

k-कर्नेल

माना k ≥ 2. अनुक्रम का k-कर्नेल अनुवर्ती का समुच्चय है

क्रम (R′, k)-सममित है (प्रायः केवल "k-सममित" तक छोटा किया जाता है) यदि -के द्वारा उत्पन्न मापांक k(s) परिमित रूप से उत्पन्न R′-मापांक (गणित) है।[1] विशेष स्थितियों में जब , क्रम है -सममित यदि परिमित-आयामी सदिश समष्टि में समाहित है।

रैखिक संयोजन

एक अनुक्रम s(n) k-सममित है यदि सभी e के लिए पूर्णांक E उपस्थित है सभी ej > E और 0 ≤ rj ≤ kej − 1, s(k) के sejn+rj) का प्रत्येक अनुवर्ती निर्मित करता हैं R'-रैखिक संयोजन के रूप में व्यक्त किया जा सकता है, जहां cij एक पूर्णांक है, fij ≤ E, और 0 ≤ bij ≤ kfij - 1होता हैं।[2]

वैकल्पिक रूप से, अनुक्रम s(n) k-सममित है यदि कोई पूर्णांक r और अनुवर्ती s1(n), ..., sr(n) उपस्थित हैं जैसे की, सभी 1 ≤ i ≤ r और 0 ≤ a ≤ k − 1 के लिए, प्रत्येक अनुक्रम si(kn + a) k-कर्नेल Kk(s) अनुवर्ती si(n) का R′-रैखिक संयोजन है।[2]


प्रारूपिक श्रेणी

माना x0, ..., xk − 1 k अरूपांतरित चर का समुच्चय बनाया और τ को श्रृंखला xa0 ... Xae − 1पर कुछ प्राकृतिक संख्या n भेजने वाला मानचित्र बनाते हैं, जहां x का आधार-k प्रतिनिधित्व श्रृंखला ae−1...a0 है। तब एक अनुक्रम s(n) k-सममित होता है यदि और केवल यदि प्रारूपिक श्रेणी है - परिमेय होती हैं।[3]


ऑटोमेटा-सैद्धांतिक

k-सममित अनुक्रम की प्रारूपिक श्रेणी शुट्ज़ेनबर्गर की आव्यूह मशीन के समान ऑटोमेटन लक्षण वर्णन की तरफ ले जाती है।[4][5]


इतिहास

k-सममित अनुक्रमों की धारणा की जांच सबसे पहले अल्लोचे और शैलिट द्वारा पत्रों की एक जोड़ी में की गई थी।[6] इससे पहले, बर्स्टेल और रयूटेनॉयर ने परिमेय श्रृंखला के सिद्धांत का अध्ययन किया था, जो कि k-नियमित अनुक्रमों से निकटता से संबंधित है।[7]


उदाहरण

रूलर अनुक्रम

माना का 2-अभिन्नकल्प मूल्यांकन होता हैं | रूलर अनुक्रम (OEISA007814) -सममित, और -कर्नेल है

द्वारा उत्पन्न द्वि-आयामी सदिश समष्टि में समाहित है और निरंतर क्रम होता हैं। ये आधार अवयव पुनरावृत्ति संबंधों की तरफ ले जाते हैं

जो, प्रारंभिक स्थितियों और के साथ, अनुक्रम को विशिष्ट रूप से निर्धारित ककरता हैं।[8]


थ्यु-मोर्स अनुक्रम

थ्यू-मोर्स अनुक्रम t(n) (OEISA010060) रूपवाद 0 → 01, 1 → 10 का निश्चित बिंदु (गणित) है। यह ज्ञात है कि थ्यू-मोर्स अनुक्रम 2-स्वचालित है। इस प्रकार, यह भी 2-सममित है, और इसका भी 2-कर्नेल है

अनुवर्ती और से मिलकर बनता है।

कैंटर संख्या

कैंटर संख्याओं का क्रम c(n) (OEISA005823) में वे संख्याएँ सम्मलित होती हैं जिनके टर्नरी अंक प्रणाली विस्तार में कोई 1s नहीं होता है। यह सीधे तरह से दिखाया जा सकता हैं

और इसलिए कैंटर संख्याओं का क्रम 2-सममित है। इसी प्रकार स्टेनली अनुक्रम

0, 1, 3, 4, 9, 10, 12, 13, 27, 28, 30, 31, 36, 37, 39, 40, ... (sequence A005836 in the OEIS)

उन संख्याओं की संख्या जिनके त्रिक विस्तार में कोई 2s नहीं है, वह भी 2-सममित है।[9]


संख्याओं को क्रमबद्ध करना

एल्गोरिदम(कलन विधि) के व्यापक अध्ययन के लिए k-सममितता की धारणा का कुछ अच्छे अनुप्रयोगमर्ज़ सॉर्ट एल्गोरिदम(कलन विधि) के विश्लेषण में पाया जाता है। n मानों की सूची को देखते हुए, मर्ज सॉर्ट एल्गोरिदम(कलन विधि) द्वारा की गई तुलनाओं की संख्या सॉर्टिंग संख्याएं हैं, जो पुनरावृत्ति संबंध द्वारा नियंत्रित होती हैं

परिणामस्वरूप, मर्ज सॉर्ट, T(n) के लिए पुनरावृत्ति संबंध द्वारा परिभाषित अनुक्रम, 2-सममित अनुक्रम का गठन करता है।[10]


अन्य अनुक्रम

यदि , एक पूर्णांक-मान बहुपद है तो प्रत्येक के लिए k-सममित है।

ग्लेशर-गोल्ड अनुक्रम 2-सममित है। स्टर्न-ब्रोकॉट अनुक्रम 2-सममित है।

अल्लोचे और शैलिट अपने पेपर में k-रेगुलर अनुक्रमों के कई अतिरिक्त उदाहरण देते हैं।[6]


गुण

k-नियमित अनुक्रम कई अच्छे गुण प्रदर्शित करते हैं।

  • प्रत्येक k-स्वचालित अनुक्रम k-सममित है।[11]
  • प्रत्येक k-सिंक्रोनाइज़्ड अनुक्रम k-सममित है।
  • k-सममित अनुक्रम सीमित रूप से कई मान लेता है यदि और केवल यदि यह k-स्वचालित है।[12] यह k-नियमित अनुक्रमों के वर्ग का k-स्वचालित अनुक्रमों के वर्ग का सामान्यीकरण होने का तात्कालिक परिणाम है।
  • k-सममित अनुक्रमों का वर्ग सिमा रूप से जोड़, सिमा रूप से गुणन और संवलन के अनुसार बंद है। k-नियमित अनुक्रमों का वर्ग भी अनुक्रम के प्रत्येक पद को पूर्णांक λ द्वारा मापने के अनुसार बंद किया जाता है।[12][13][14][15] विशेष रूप से, k-सममित घात श्रृंखला के समुच्चय का वलय बनाता है।[16]
  • यदि k-सममित है, तो सभी पूर्णांकों , के लिए k-स्वचालित है। यद्यपि की, परिवर्तन नहीं हो पता हैं।[17]
    • गुणात्मक रूप से स्वतंत्र k, l ≥ 2 के लिए, यदि कोई अनुक्रम k-सममित और l-सममित दोनों है, तो अनुक्रम रैखिक पुनरावृत्ति को संतुष्ट करता है।[18] यह उन अनुक्रमों के संबंध में कोबम के कारण परिणाम का सामान्यीकरण है जो k-स्वचालित और l-स्वचालित दोनों हैं।[19]
  • पूर्णांकों के k-सममित अनुक्रम का nवाँ पद n में अधिकतम बहुपद रूप से बढ़ता है।[20]
  • यदि क्षेत्र है और , फिर घातों का क्रम k-सममित है यदि और केवल यदि या इकाई के मूल है।[21]


के-सममितता को सिद्ध और असिद्ध करना

एक पदानवेशी अनुक्रम दिया गया हैं इसे k-सममित नहीं माना जाता है, k-सममितता को साधारण तौर पर कर्नेल के अवयवों की गणना करके सीधे परिभाषा से सिद्ध किया जा सकता है और यह सिद्ध करना कि प्रपत्र के सभी अवयव साथ पर्याप्त रूप से बड़ा और के स्थान पर छोटे घातांक वाले कर्नेल अवयवों के रैखिक संयोजन के रूप में लिखा जा सकता है। यह साधारण तौर पर अभिकलनीय रूप से स्पस्ट है।

दूसरी ओर, पदानवेशी अनुक्रम की k-सममितता को अस्वीकार करना करता हैं, साधारण तौर पर -के कर्नेल में रैखिक रूप से स्वतंत्र उपसमुच्चय के उत्पादन करने की आवश्यकता होती है, जो साधारण तौर पर जटिल है। ऐसे प्रमाण का उदाहरण यहां दिया गया है।

माना की संख्या को बाइनरी विस्तार में निरूपित करते हैं। माना की संख्या को बाइनरी विस्तार में निरूपित करते हैं। क्रम 2-सममित दिखाया जा सकता है। यद्यपि की क्रम , निम्नलिखित तर्क के अनुसार, 2-सममित नहीं है। कल्पना किया की 2-सममित है। हम दावा करते हैं कि अवयव के लिए और के 2-कर्नेल का , पर रैखिक रूप से स्वतंत्र हैं। फलन पूर्णांकों पर विशेषण है, तो चलिए ऐसा सबसे छोटा पूर्णांक बनता हैं। 2-सममितता से , वहां और स्थिरांक ऐसा कि प्रत्येक के लिए हैं,

माना जिसके लिए न्यूनतम मान हो . फिर प्रत्येक के लिए ,

इस अभिव्यक्ति का मूल्यांकन पर , जहाँ और इसी तरह क्रमिक रूप से, हम बायीं ओर प्राप्त करते हैं

और दाहिनी ओर,

यह प्रत्येक पूर्णांक के लिए इसका अनुसरण करता है,

लेकिन के लिए, समीकरण का दाहिना भाग नगण्य है क्योंकि यह कुछ स्थिरांक के लिए प्रकार का है, जबकि बाईं ओर नहीं है, जैसा कि क्रमिक रूप , , और से प्लग इन करके जांचा जा सकता है इसलिए, 2-सममित नहीं है।[22]


टिप्पणियाँ

  1. Allouche and Shallit (1992), Definition 2.1.
  2. 2.0 2.1 Allouche & Shallit (1992), Theorem 2.2.
  3. Allouche & Shallit (1992), Theorem 4.3.
  4. Allouche & Shallit (1992), Theorem 4.4.
  5. Schützenberger, M.-P. (1961), "On the definition of a family of automata", Information and Control, 4 (2–3): 245–270, doi:10.1016/S0019-9958(61)80020-X.
  6. 6.0 6.1 Allouche & Shallit (1992, 2003).
  7. Berstel, Jean; Reutenauer, Christophe (1988). तर्कसंगत श्रृंखला और उनकी भाषाएँ. EATCS Monographs on Theoretical Computer Science. Vol. 12. Springer-Verlag. ISBN 978-3-642-73237-9.
  8. Allouche & Shallit (1992), Example 8.
  9. Allouche & Shallit (1992), Examples 3 and 26.
  10. Allouche & Shallit (1992), Example 28.
  11. Allouche & Shallit (1992), Theorem 2.3.
  12. 12.0 12.1 Allouche & Shallit (2003) p. 441.
  13. Allouche & Shallit (1992), Theorem 2.5.
  14. Allouche & Shallit (1992), Theorem 3.1.
  15. Allouche & Shallit (2003) p. 445.
  16. Allouche and Shallit (2003) p. 446.
  17. Allouche and Shallit (2003) p. 441.
  18. Bell, J. (2006). "नियमित अनुक्रमों के लिए कोबम के प्रमेय का सामान्यीकरण". Séminaire Lotharingien de Combinatoire. 54A.
  19. Cobham, A. (1969). "परिमित ऑटोमेटा द्वारा पहचाने जाने योग्य संख्याओं के सेट की आधार-निर्भरता पर". Math. Systems Theory. 3 (2): 186–192. doi:10.1007/BF01746527. S2CID 19792434.
  20. Allouche & Shallit (1992) Theorem 2.10.
  21. Allouche and Shallit (2003) p. 444.
  22. Allouche and Shallit (1993) p. 168–169.


संदर्भ