T-J मॉडल
ठोस-अवस्था भौतिकी में, T-J मॉडल पहली बार 1977 में जोज़ेफ स्पालेक द्वारा हबर्ड मॉडल से लिया गया मॉडल है।[1] मोट इंसुलेटर (अवरोधक) के एंटीफेरोमैग्नेटिज्म (प्रतिलौह चुंबकत्व) गुणों की व्याख्या करने के लिए[2] और इस सामग्री में इलेक्ट्रॉन-इलेक्ट्रॉन प्रतिकर्षण की बल के बारे में प्रायोगिक परिणामों को ध्यान में रखते हुए।[3] मॉडल सामग्री को गांठों (साइटों) में परमाणुओं के साथ जालक मॉडल (भौतिकी) के रूप में मानता है, जैसे मूल हबर्ड मॉडल में और केवल एक या दो बाहरी इलेक्ट्रॉन उनके बीच चलते हैं (आंतरिक इलेक्ट्रॉनों पर विचार नहीं किया जाता है)। यह अंतर यह मानने में है कि इलेक्ट्रॉनों को मजबूत सहसंबद्ध सामग्री होने का अनुमान है | दृढ़ता से सहसंबद्ध, इसका अर्थ है कि इलेक्ट्रॉन पारस्परिक कूलम्ब के नियम के लिए बहुत अच्छा हैं, और इसलिए दूसरे इलेक्ट्रॉन द्वारा पहले से ही अधिकार कर ली गई जालक की स्थान पर पकड़ करने से बचने के लिए अधिक विवश हैं। आधारभूत हबर्ड मॉडल में, U के साथ संकेतित प्रतिकर्षण छोटा और अशक्त भी हो सकता है, और इलेक्ट्रॉन एक स्थान से दूसरी स्थान पर जाने के लिए स्वतंत्र होते हैं (उछाल, स्थानांतरण या सुरंग के रूप में t द्वारा पैरामीट्रिज्ड)। t-j मॉडल में, U के स्थान पर, पैरामीटर j है, इसलिए अनुपात t/U नाम का फ़ंक्शन (गणित) है |
इलेक्ट्रॉनों के बीच मजबूत युग्मन की परिकल्पना में डोपिंग (अपमिश्रण) प्रतिलौह चुम्कत्व में उच्च तापमान अतिचालकता को समझाने के लिए संभावित मॉडल के रूप में इसका उपयोग किया जाता है।[4][5]
हैमिल्टनियन
क्वांटम भौतिकी प्रणाली के मॉडल सामान्यतौर पर हैमिल्टनियन (क्वांटम यांत्रिकी) संचालक (भौतिकी) पर आधारित होते हैं। , उस प्रणाली की कुल ऊर्जा के अनुरूप, गतिज ऊर्जा और संभावित ऊर्जा दोनों सहित होता है।
t-j हैमिल्टनियन से प्राप्त किया जा सकता है स्क्रिफ्फर-वुल्फ परिवर्तन का उपयोग करते हुए हबर्ड मॉडल का, परिवर्तन जनरेटर के साथ t/U पर निर्भर करता है और इलेक्ट्रॉनों के लिए जालक की स्थान पर दोगुना अधिकार करने की संभावना को छोड़कर होता है,[6] जिसके परिणामस्वरूप:[7]
जहां t में शब्द गतिज ऊर्जा से मेल खाता है और हबर्ड मॉडल में एक के बराबर है। दूसरा एक दूसरे क्रम में संभावित ऊर्जा का अनुमान है, क्योंकि यह हबर्ड मॉडल का अनुमान है जो सीमा U >> t में t की शक्ति में विकसित हुआ है। उच्च क्रम में शर्तें जोड़ी जा सकती हैं।[1]
पैरामीटर हैं:
- निकटतम-पास के स्थान i और j का योग है, सभी स्थानों के लिए, सामान्यतौर पर द्वि-आयामी वर्ग जालक पर,
- c†
iσ, c
iσ साइट i पर फ़र्मोनिक निर्माण और विनाश संचालक हैं, - σ स्पिन ध्रुवीकरण है,
- t दृढ बंधन दूसरा परिमाणीकरण है,
- j = 4t2/U, j प्रतिलौह चुंबकत्व विनिमय अन्योन्य क्रिया है|
- U के स्थान पर कूलम्ब का नियम है, जिसे U >> T के लिए शर्त को पूरा करना चाहिए,
- ni= Σc††
iσc
iσ स्थान पर कण संख्या है और अधिकतम 1 हो सकता है, जिससे कि दुगनी अधिकार वर्जित हो (हबर्ड मॉडल में संभव है), - Si और Sj स्पिन (भौतिकी) स्थान I और j पर गणितीय सूत्रीकरण है।
- h. c. हर्मिटियन संलग्न के लिए खड़ा है|
यदि ni= 1, जब मूल अवस्था में, प्रति जालक के स्थान (आधा भरने) में सिर्फ एक इलेक्ट्रॉन होता है, तो मॉडल क्वांटम हाइजेनबर्ग मॉडल को कम कर देता है और मूल अवस्था एक ढांकता हुआ प्रतिलौह चुम्कत्व (मोट इंसुलेटर) को पुन: प्रस्तुत करता है।[8] अगले-निकटतम-पास के स्थान और कणों की कुल संख्या के कार्य में मूल स्थिति निर्धारित करने की रासायनिक क्षमता को देखते हुए मॉडल को और बढ़ाया जा सकता है:[9][10]
जहां ⟨...⟩ और ⟨⟨...⟩⟩ होपिंग समाकलित के लिए दो अलग-अलग मानों के साथ क्रमशः निकटतम और अगले-निकटतम पास को दर्शाता है (t1 और t2) और μ रासायनिक क्षमता है।
संदर्भ
- ↑ 1.0 1.1 Chao, K. A.; Spałek, J.; Oleś, A. M. (1978-10-01). "हबर्ड मॉडल का विहित गड़बड़ी विस्तार". Physical Review B. 18 (7): 3453–3464. Bibcode:1978PhRvB..18.3453C. doi:10.1103/PhysRevB.18.3453.
- ↑ Anderson, P. W. (1959-07-01). "सुपरएक्सचेंज इंटरैक्शन के सिद्धांत के लिए नया दृष्टिकोण". Physical Review. 115 (1): 2–13. Bibcode:1959PhRv..115....2A. doi:10.1103/PhysRev.115.2.
- ↑ Nagaoka, Yosuke (1966-07-08). "फेरोमैग्नेटिज्म इन ए नैरो, ऑलमोस्ट हाफ-फिल्ड एस बैंड". Physical Review. 147 (1): 392–405. Bibcode:1966PhRv..147..392N. doi:10.1103/PhysRev.147.392.
- ↑ Spalek, Jozef (2007-06-28). "t-J model then and now: A personal perspective from the pioneering times". Acta Physica Polonica A. 111 (4): 409. arXiv:0706.4236. Bibcode:2007AcPPA.111..409S. doi:10.12693/APhysPolA.111.409. S2CID 53117123.
- ↑ Rømer, Astrid T.; Maier, Thomas A.; Kreisel, Andreas; Eremin, Ilya; Hirschfeld, P. J.; Andersen, Brian M. (2020-01-31). "कमजोर से मजबूत युग्मन के लिए द्वि-आयामी हबर्ड मॉडल में बाँधना". Physical Review Research. 2 (1): 013108. arXiv:1909.00627. Bibcode:2020PhRvR...2a3108R. doi:10.1103/PhysRevResearch.2.013108. S2CID 202540002.
- ↑ This is due using a projector quantum operator that project on the subspace where fermionic operators can not add an electron on a site already occupied (see next note)
- ↑ Eckle, Hans-Peter (2019). "8.8.1 From the Hubbard to the t–J model: non-half filled band case" (PDF). क्वांटम पदार्थ के मॉडल. Oxford University Press. ISBN 9780199678839.
- ↑ Izyumov, Yu. A.; Chashchin, N. I. (1998). "टीजे -वैरिएबल डेरिवेटिव के साथ समीकरणों के संदर्भ में मॉडल" (PDF). Condensed Matter Physics. 1 (1): 41–56. Bibcode:1998CMPh....1...41I. doi:10.5488/CMP.1.1.41. S2CID 11254082.
- ↑ Karchev, Naoum (1998). "Generalized CP1 model from the t1-t2-J model". Phys. Rev. B. 57 (17): 10913. arXiv:cond-mat/9706105. Bibcode:1998PhRvB..5710913K. doi:10.1103/PhysRevB.57.10913. S2CID 12865671.
- ↑ Yanagisawa, Takashi (2008-02-12). "Phase diagram of thet–U2Hamiltonian of the weak coupling Hubbard model". New Journal of Physics (in English). 10 (2): 023014. arXiv:0803.1739. Bibcode:2008NJPh...10b3014Y. doi:10.1088/1367-2630/10/2/023014. ISSN 1367-2630. S2CID 55405863.
अग्रिम पठन
- Fazekas, Patrik (1999). Lectures on Correlation and Magnetism. Series in Modern Condensed Matter Physics: Volume 5 (in English). Vol. 5. World Scientific. p. 199. doi:10.1142/2945. ISBN 978-981-4499-62-0.
- Spałek, Józef (2007). "t-J model then and now: A personal perspective from the pioneering times". Acta Phys. Pol. A. 111 (4): 409–424. arXiv:0706.4236. Bibcode:2007AcPPA.111..409S. doi:10.12693/APhysPolA.111.409. S2CID 53117123.
- Dr Mitchell, Electron interactions and the Hubbard model (in English), retrieved 2022-08-29