Template:A4 honeycombs

From Vigyanwiki

This honeycomb is one of seven unique uniform honeycombs[1] constructed by the Coxeter group. The symmetry can be multiplied by the symmetry of rings in the Coxeter–Dynkin diagrams:

A4 honeycombs
Pentagon
symmetry
Extended
symmetry
Extended
diagram
Extended
group
Honeycomb diagrams
a1 [3[5]] CDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel branch.png (None)
i2 [[3[5]]] CDel node c1.pngCDel split1.pngCDel nodeab c2.pngCDel 3ab.pngCDel branch c3.png ×2 CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel branch.png 1,CDel node.pngCDel split1.pngCDel nodes 11.pngCDel 3ab.pngCDel branch.png 2,CDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel branch 11.png 3,

CDel node 1.pngCDel split1.pngCDel nodes 11.pngCDel 3ab.pngCDel branch.png 4,CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel branch 11.png 5,CDel node.pngCDel split1.pngCDel nodes 11.pngCDel 3ab.pngCDel branch 11.png 6

r10 [5[3[5]]] CDel node c1.pngCDel split1.pngCDel nodeab c1.pngCDel 3ab.pngCDel branch c1.png ×10 CDel node 1.pngCDel split1.pngCDel nodes 11.pngCDel 3ab.pngCDel branch 11.png 7

References

  1. mathworld: Necklace, OEIS sequence A000029 8-1 cases, skipping one with zero marks