गैरपैरामीट्रिक प्रतिगमन

From Vigyanwiki

गैरपैरामीट्रिक प्रतिगमन, प्रतिगमन विश्लेषण की श्रेणी है जिसमें भविष्यवक्ता को पूर्व निर्धारित रूप से नहीं लेता है किंतु डेटा से प्राप्त जानकारी के अनुसार निर्मित होता है। अर्थात्, भविष्यवक्ताओं और आश्रित चर के मध्य संबंध के लिए कोई पैरामीट्रिक रूप नहीं माना जाता है। गैर-पैरामीट्रिक प्रतिगमन के लिए पैरामीट्रिक मॉडल पर आधारित प्रतिगमन की तुलना में बड़े नमूना आकार की आवश्यकता होती है क्योंकि डेटा को मॉडल संरचना के साथ-साथ मॉडल अनुमान भी प्रदान करना चाहिए।

परिभाषा

गैरपैरामीट्रिक प्रतिगमन में, हमारे पास यादृच्छिक चर और हैं और निम्नलिखित संबंध मानते हैं:

जहाँ कुछ नियतात्मक फलन है। रैखिक प्रतिगमन गैरपैरामीट्रिक प्रतिगमन का प्रतिबंधित स्थिति होती है जहां को एफ़िन माना जाता है।

कुछ लेखक योगात्मक ध्वनि की धीमी सशक्त धारणा का उपयोग करते हैं:

जहां यादृच्छिक चर 'ध्वनि शब्द' है, जिसका माध्य 0 होता है।

इस धारणा के बिना कि कार्यों के विशिष्ट पैरामीट्रिक वर्ग से संबंधित है, के लिए निष्पक्ष अनुमान प्राप्त करना असंभव होता है, चूंकि अधिकांश अनुमानक उपयुक्त परिस्थितियों में सुसंगत हैं।

सामान्य प्रयोजन गैरपैरामीट्रिक प्रतिगमन कलन विधि की सूची

यह प्रतिगमन के लिए गैर-पैरामीट्रिक मॉडल की गैर-विस्तृत सूची है।


उदाहरण

गॉसियन प्रक्रिया प्रतिगमन या क्रिगिंग

गॉसियन प्रक्रिया प्रतिगमन में, जिसे क्रिगिंग के रूप में भी जाना जाता है, प्रतिगमन वक्र के लिए गॉसियन को पूर्व माना जाता है। त्रुटियों को बहुभिन्नरूपी सामान्य वितरण माना जाता है और प्रतिगमन वक्र का अनुमान इसके पश्च विधा से लगाया जाता है। गॉसियन पूर्व अज्ञात हाइपरपैरामीटर पर निर्भर हो सकता है, जिसका अनुमान सामान्यतः अनुभवजन्य बेज़ के माध्यम से लगाया जाता है।

हाइपरपैरामीटर सामान्यतः पूर्व सहप्रसरण मूल निर्दिष्ट करते हैं। यदि मूल को डेटा से गैर-पैरामीट्रिक रूप से भी अनुमान लगाया जाना चाहिए, तब महत्वपूर्ण निस्पंदन का उपयोग किया जा सकता है।

समरेखण विभाजन की व्याख्या गॉसियन प्रक्रिया प्रतिगमन के पश्च विधा के रूप में की जाती है।

मूल प्रतिगमन

गॉसियन मूल स्मूथ का उपयोग करके गैर-पैरामीट्रिक प्रतिगमन के साथ छोटे डेटा समुच्चय (काले बिंदु) पर फिट होने वाले वक्र (लाल रेखा) का उदाहरण । गुलाबी छायांकित क्षेत्र एक्स के दिए गए मान के लिए वाई का अनुमान प्राप्त करने के लिए क्रियान्वित मूल फलन को दर्शाया जाता है। मूल फलन लक्ष्य बिंदु के लिए अनुमान तैयार करने में प्रत्येक डेटा बिंदु को दिए गए वजन को परिभाषित करता है।

मूल प्रतिगमन डेटा बिंदुओं के स्थानों को मूल फलन के साथ जोड़कर डेटा बिंदुओं के सीमित समुच्चय से निरंतर निर्भर चर का अनुमान लगाता है - लगभग बोलते हुए, मूल फलन निर्दिष्ट करता है कि डेटा बिंदुओं के प्रभाव को "धुंधला" कैसे किया जाए जिससे उनके मान हो सकें आस-पास के स्थानों के लिए मूल्य की भविष्यवाणी करने के लिए उपयोग किया जाता है।

प्रतिगमन ट्रीस

निर्णय ट्री शिक्षण एल्गोरिदम को डेटा से निर्भर चर की पूर्वकथन करना सीखने के लिए क्रियान्वित किया जा सकता है।[2] यद्यपि मूल वर्गीकरण और प्रतिगमन ट्री (कार्ट) सूत्रीकरण केवल अविभाज्य डेटा की भविष्यवाणी करने के लिए क्रियान्वित किया गया था, रुपरेखा का उपयोग समय श्रृंखला सहित बहुभिन्नरूपी डेटा की भविष्यवाणी करने के लिए किया जा सकता है।[3]


यह भी देखें

संदर्भ

  1. Statistical and neural network techniques for nonparametric regression by Vladimir Cherkassky, Filip Mulier https://link.springer.com/chapter/10.1007/978-1-4612-2660-4_39
  2. Breiman, Leo; Friedman, J. H.; Olshen, R. A.; Stone, C. J. (1984). Classification and regression trees. Monterey, CA: Wadsworth & Brooks/Cole Advanced Books & Software. ISBN 978-0-412-04841-8.
  3. Segal, M.R. (1992). "Tree-structured methods for longitudinal data". Journal of the American Statistical Association. American Statistical Association, Taylor & Francis. 87 (418): 407–418. doi:10.2307/2290271. JSTOR 2290271.


अग्रिम पठन


बाहरी संबंध