गैरपैरामीट्रिक प्रतिगमन
एक श्रृंखला का हिस्सा |
प्रतिगमन विश्लेषण |
---|
मॉडल |
अनुमान |
पार्श्वभूमि |
|
गैरपैरामीट्रिक प्रतिगमन, प्रतिगमन विश्लेषण की श्रेणी है जिसमें भविष्यवक्ता को पूर्व निर्धारित रूप से नहीं लेता है किंतु डेटा से प्राप्त जानकारी के अनुसार निर्मित होता है। अर्थात्, भविष्यवक्ताओं और आश्रित चर के मध्य संबंध के लिए कोई पैरामीट्रिक रूप नहीं माना जाता है। गैर-पैरामीट्रिक प्रतिगमन के लिए पैरामीट्रिक मॉडल पर आधारित प्रतिगमन की तुलना में बड़े नमूना आकार की आवश्यकता होती है क्योंकि डेटा को मॉडल संरचना के साथ-साथ मॉडल अनुमान भी प्रदान करना चाहिए।
परिभाषा
गैरपैरामीट्रिक प्रतिगमन में, हमारे पास यादृच्छिक चर और हैं और निम्नलिखित संबंध मानते हैं:
जहाँ कुछ नियतात्मक फलन है। रैखिक प्रतिगमन गैरपैरामीट्रिक प्रतिगमन का प्रतिबंधित स्थिति होती है जहां को एफ़िन माना जाता है।
कुछ लेखक योगात्मक ध्वनि की धीमी सशक्त धारणा का उपयोग करते हैं:
जहां यादृच्छिक चर 'ध्वनि शब्द' है, जिसका माध्य 0 होता है।
इस धारणा के बिना कि कार्यों के विशिष्ट पैरामीट्रिक वर्ग से संबंधित है, के लिए निष्पक्ष अनुमान प्राप्त करना असंभव होता है, चूंकि अधिकांश अनुमानक उपयुक्त परिस्थितियों में सुसंगत हैं।
सामान्य प्रयोजन गैरपैरामीट्रिक प्रतिगमन कलन विधि की सूची
यह प्रतिगमन के लिए गैर-पैरामीट्रिक मॉडल की गैर-विस्तृत सूची है।
- निकटतम निकटतम , निकटतम-निकटतम इंटरपोलेशन और के-निकटतम निकटतम एल्गोरिदम देखें
- प्रतिगमन ट्री
- मूल प्रतिगमन
- स्थानीय प्रतिगमन
- बहुभिन्नरूपी अनुकूली प्रतिगमन विभाजन
- विभाजन को समरेखण
- तंत्रिका - तंत्र [1]
उदाहरण
गॉसियन प्रक्रिया प्रतिगमन या क्रिगिंग
गॉसियन प्रक्रिया प्रतिगमन में, जिसे क्रिगिंग के रूप में भी जाना जाता है, प्रतिगमन वक्र के लिए गॉसियन को पूर्व माना जाता है। त्रुटियों को बहुभिन्नरूपी सामान्य वितरण माना जाता है और प्रतिगमन वक्र का अनुमान इसके पश्च विधा से लगाया जाता है। गॉसियन पूर्व अज्ञात हाइपरपैरामीटर पर निर्भर हो सकता है, जिसका अनुमान सामान्यतः अनुभवजन्य बेज़ के माध्यम से लगाया जाता है।
हाइपरपैरामीटर सामान्यतः पूर्व सहप्रसरण मूल निर्दिष्ट करते हैं। यदि मूल को डेटा से गैर-पैरामीट्रिक रूप से भी अनुमान लगाया जाना चाहिए, तब महत्वपूर्ण निस्पंदन का उपयोग किया जा सकता है।
समरेखण विभाजन की व्याख्या गॉसियन प्रक्रिया प्रतिगमन के पश्च विधा के रूप में की जाती है।
मूल प्रतिगमन
मूल प्रतिगमन डेटा बिंदुओं के स्थानों को मूल फलन के साथ जोड़कर डेटा बिंदुओं के सीमित समुच्चय से निरंतर निर्भर चर का अनुमान लगाता है - लगभग बोलते हुए, मूल फलन निर्दिष्ट करता है कि डेटा बिंदुओं के प्रभाव को "धुंधला" कैसे किया जाए जिससे उनके मान हो सकें आस-पास के स्थानों के लिए मूल्य की भविष्यवाणी करने के लिए उपयोग किया जाता है।
प्रतिगमन ट्रीस
निर्णय ट्री शिक्षण एल्गोरिदम को डेटा से निर्भर चर की पूर्वकथन करना सीखने के लिए क्रियान्वित किया जा सकता है।[2] यद्यपि मूल वर्गीकरण और प्रतिगमन ट्री (कार्ट) सूत्रीकरण केवल अविभाज्य डेटा की भविष्यवाणी करने के लिए क्रियान्वित किया गया था, रुपरेखा का उपयोग समय श्रृंखला सहित बहुभिन्नरूपी डेटा की भविष्यवाणी करने के लिए किया जा सकता है।[3]
यह भी देखें
- लैस्सो (सांख्यिकी)
- स्थानीय प्रतिगमन
- गैर-पैरामीट्रिक आँकड़े
- अर्धपैरामीट्रिक प्रतिगमन
- आइसोटोनिक प्रतिगमन
- बहुभिन्नरूपी अनुकूली प्रतिगमन विभाजन
संदर्भ
- ↑ Statistical and neural network techniques for nonparametric regression by Vladimir Cherkassky, Filip Mulier https://link.springer.com/chapter/10.1007/978-1-4612-2660-4_39
- ↑ Breiman, Leo; Friedman, J. H.; Olshen, R. A.; Stone, C. J. (1984). Classification and regression trees. Monterey, CA: Wadsworth & Brooks/Cole Advanced Books & Software. ISBN 978-0-412-04841-8.
- ↑ Segal, M.R. (1992). "Tree-structured methods for longitudinal data". Journal of the American Statistical Association. American Statistical Association, Taylor & Francis. 87 (418): 407–418. doi:10.2307/2290271. JSTOR 2290271.
अग्रिम पठन
- Bowman, A. W.; Azzalini, A. (1997). Applied Smoothing Techniques for Data Analysis. Oxford: Clarendon Press. ISBN 0-19-852396-3.
- Fan, J.; Gijbels, I. (1996). Local Polynomial Modelling and its Applications. Boca Raton: Chapman and Hall. ISBN 0-412-98321-4.
- Henderson, D. J.; Parmeter, C. F. (2015). Applied Nonparametric Econometrics. New York: Cambridge University Press. ISBN 978-1-107-01025-3.
- Li, Q.; Racine, J. (2007). Nonparametric Econometrics: Theory and Practice. Princeton: Princeton University Press. ISBN 978-0-691-12161-1.
- Pagan, A.; Ullah, A. (1999). Nonparametric Econometrics. New York: Cambridge University Press. ISBN 0-521-35564-8.
बाहरी संबंध
- HyperNiche, software for nonparametric multiplicative regression.
- Scale-adaptive nonparametric regression (with Matlab software).