नाइट्राइड

From Vigyanwiki

रसायन विज्ञान में, नाइट्राइड नाइट्रोजन का एक अकार्बनिक रसायन यौगिक है। नाइट्राइड आयन, एन3- आयन, बहुत मायावी है लेकिन नाइट्राइड के यौगिक असंख्य हैं, हालांकि शायद ही कभी स्वाभाविक रूप से होते हैं। कुछ नाइट्राइड में खोज अनुप्रयोग होते हैं,[1] जैसे पहनने के लिए प्रतिरोधी कोटिंग्स (जैसे, टाइटेनियम नाइट्राइड, TiN), कठोर सिरेमिक सामग्री (जैसे, सिलिकॉन नाइट्राइड, Si3N4), और अर्धचालक (जैसे, गैलियम नाइट्राइड, GaN)। GaN-आधारित प्रकाश उत्सर्जक डायोड के विकास को 2014 के भौतिकी के नोबेल पुरस्कार से मान्यता मिली थी।[2] धातु नाइट्रिडो परिसर भी साधारण हैं।

अकार्बनिक धातु नाइट्राइड का रासायनिक संश्लेषण चुनौतीपूर्ण है क्योंकि नाइट्रोजन गैस (N2) कम तापमान पर बहुत अधिक प्रतिक्रियाशील नहीं होता है, लेकिन यह उच्च तापमान पर अधिक प्रतिक्रियाशील हो जाता है। इसलिए, कम तापमान पर नाइट्रोजन गैस की कम प्रतिक्रियाशीलता और N2 के एन्ट्रापी संचालित गठन के बीच संतुलन हासिल किया जाना चाहिए उच्च तापमान पर होता है।[3] हालांकि, नाइट्राइड के लिए सिंथेटिक तरीके अधिक परिष्कृत होते जा रहे हैं और सामग्री बढ़ती तकनीकी प्रासंगिकता की है।[4]

नाइट्राइड्स के उपयोग

करबैड ्स की तरह, नाइट्राइड्स प्रायः अपनी उच्च जाली ऊर्जा के कारण दुर्दम्य पदार्थ होते हैं, जो एन के प्रबल बंधन को दर्शाता है।"N3−" से धातु धनायनों के साथ। इस प्रकार, घन बोरान नाइट्राइड, टाइटेनियम नाइट्राइड और सिलिकॉन नाइट्राइड का उपयोग सामग्री और कठोर कोटिंग्स को काटने के रूप में किया जाता है। हेक्सागोनल बोरान नाइट्राइड, जो एक स्तरित संरचना को अपनाता है, मोलिब्डेनम डाइसल्फ़ाइड के समान एक उपयोगी उच्च तापमान स्नेहक है। नाइट्राइड यौगिकों में प्रायः बड़े ऊर्जा अंतराल होते हैं, इस प्रकार नाइट्राइड सामान्यतः इंसुलेटर (बिजली) या वाइड-बैंडगैप सेमीकंडक्टर होते हैं; उदाहरणों में बोरॉन नाइट्राइड और सिलिकॉन नाइट्राइड सम्मिलित हैं। एलईडी में नीली रोशनी उत्सर्जित करने के लिए वाइड-बैंड गैप मटेरियल गैलियम नाइट्राइड बहु मूल्य है।[5][6] कुछ आक्साइड की तरह, नाइट्राइड हाइड्रोजन को अवशोषित कर सकते हैं और हाइड्रोजन भंडारण के संदर्भ में चर्चा की गई है, उदा। लिथियम नाइट्राइड

उदाहरण

यौगिकों के ऐसे विविध समूह का वर्गीकरण कुछ मनमाना है। यौगिक जहां नाइट्रोजन निर्दिष्ट नहीं है -3 ऑक्सीकरण राज्य सम्मिलित नहीं है, जैसे नाइट्रोजन ट्राइक्लोराइड जहां ऑक्सीकरण राज्य +3 है; न ही अमोनिया और इसके कई जैविक डेरिवेटिव हैं।

एस-ब्लॉक तत्वों के नाइट्राइड्स

केवल एक क्षार धातु नाइट्राइड स्थिर है, बैंगनी-लाल लिथियम नाइट्राइड (Li3N), जो तब बनता है जब लिथियम वातावरण में जलता है N2.[7] सोडियम नाइट्राइड और पोटेशियम नाइट्राइड उत्पन्न किया गया है, लेकिन प्रयोगशाला जिज्ञासा बनी हुई है। क्षारीय मृदा धातुओं के नाइट्राइड जिनका सूत्र होता है M3N2 हालांकि असंख्य हैं। उदाहरणों में सम्मिलित हैं बेरिलियम नाइट्राइड (Be3N2), मैग्नीशियम नाइट्राइड (Mg3N2), कैल्शियम नाइट्राइड (Ca3N2), और स्ट्रोंटियम नाइट्राइड (Sr3N2). इलेक्ट्रोपोसिटिव धातुओं (ली, जेडएन, और क्षारीय पृथ्वी धातुओं सहित) के नाइट्राइड हवा में नमी सहित पानी के संपर्क में आसानी से हाइड्रोलाइज होते हैं:

Mg3N2 + 6 H2O → 3 Mg(OH)2 + 2 NH3

पी-ब्लॉक तत्वों के नाइट्राइड

बोरॉन नाइट्राइड कई रूपों (बहुरूपता (सामग्री विज्ञान)) के रूप में उपस्थित है। सिलिकॉन नाइट्राइड और फॉस्फोरस के नाइट्राइड भी ज्ञात हैं, लेकिन केवल पहला व्यावसायिक रूप से महत्वपूर्ण है। एल्यूमीनियम नाइट्राइड, गैलियम नाइट्राइड और इंडियम नाइट्राइड के नाइट्राइड हीरे की तरह वुर्टज़ाइट (क्रिस्टल संरचना) को अपनाते हैं जिसमें प्रत्येक परमाणु टेट्राहेड्रल साइट्स पर कब्जा कर लेता है। उदाहरण के लिए, एल्यूमीनियम नाइट्राइड में, प्रत्येक एल्यूमीनियम परमाणु में टेट्राहेड्रॉन के कोनों पर चार पड़ोसी नाइट्रोजन परमाणु होते हैं और इसी तरह प्रत्येक नाइट्रोजन परमाणु में टेट्राहेड्रॉन के कोनों पर चार नजदीकी एल्यूमीनियम परमाणु होते हैं। यह संरचना हेक्सागोनल डायमंड (लोन्सडलऐते) की तरह है जहां प्रत्येक कार्बन परमाणु एक टेट्राहेड्रल साइट पर कब्जा कर लेता है (हालांकि वर्टजाइट टेट्राहेड्रा के सापेक्ष अभिविन्यास में सफलेरिट और हीरे से भिन्न होता है)। थैलियम नाइट्राइड | थैलियम (आई) नाइट्राइड (Tl3N) जाना जाता है, लेकिन थैलियम (III) नाइट्राइड (TlN) नहीं है।

संक्रमण धातु नाइट्राइड

समूह 3 तत्व धातुओं के लिए, ScN और yttrium/YN नाइट्राइड दोनों ज्ञात हैं। समूह 4 तत्व, समूह 5 तत्व, और समूह 6 तत्व संक्रमण धातु (टाइटेनियम, वैनेडियम और क्रोमियम समूह) सभी नाइट्राइड बनाते हैं।[8] वे दुर्दम्य हैं, उच्च गलनांक के साथ और रासायनिक रूप से स्थिर हैं। प्रतिनिधि टाइटेनियम नाइट्राइड है। ये सामग्रियां प्रायः रॉकसॉल्ट क्रिस्टल संरचना को अपनाती हैं।[9]

समूह 7 तत्व और समूह 8 तत्व संक्रमण धातुओं के नाइट्राइड नाइट्रोजन-खराब होते हैं, और ऊंचे तापमान पर आसानी से विघटित हो जाते हैं। उदाहरण के लिए, आयरन नाइट्राइड, Fe2N 200 डिग्री सेल्सियस पर विघटित होता है। कभी-कभी इन सामग्रियों को अंतरालीय दोष नाइट्राइड कहा जाता है। प्लेटिनम नाइट्राइड और ऑस्मियम नाइट्राइड हो सकते हैं N2 इकाइयां, और इस तरह नाइट्राइड्स नहीं कहा जाना चाहिए।[10][11]

समूह 11 तत्व और समूह 12 तत्व से भारी सदस्यों के नाइट्राइड कॉपर नाइट्राइड की तुलना में कम स्थिर होते हैं, Cu3N और जिंक नाइट्राइड (Zn3N2): सूखी चांदी नाइट्राइड (Ag3N) एक संपर्क विस्फोटक है जो जरा सा स्पर्श, यहाँ तक कि पानी की बूंद गिरने से भी फट सकता है।[12]

लैंथेनाइड्स और एक्टिनाइड्स के नाइट्राइड्स

लैंथेनाइड्स और एक्टिनाइड्स की नाइट्राइड युक्त प्रजातियां वैज्ञानिक रुचि की हैं क्योंकि वे बंधन की सहसंयोजकता निर्धारित करने के लिए एक उपयोगी संभाल प्रदान कर सकती हैं। क्वांटम रासायनिक विश्लेषण के साथ-साथ परमाणु चुंबकीय अनुनाद (NMR) स्पेक्ट्रोस्कोपी का उपयोग प्रायः यह निर्धारित करने के लिए किया जाता है कि किस धातु नाइट्राइड बांड चरित्र में आयनिक या सहसंयोजक हैं। एक उदाहरण, एक यूरेनियम नाइट्राइड, उच्चतम ज्ञात नाइट्रोजन-15 रासायनिक बदलाव है।[13]

आणविक नाइट्राइड

S4N4 एक प्रोटोटाइप बाइनरी आण्विक नाइट्राइड है।

कई धातुएं आणविक नाइट्रिडो कॉम्प्लेक्स बनाती हैं, जैसा कि विशेष लेख में चर्चा की गई है। मुख्य समूह तत्व कुछ आणविक नाइट्राइड भी बनाते हैं। विषैली गैस ((CN)2) और टेट्रासल्फर टेट्रानाइट्राइड (S4N4) आणविक बाइनरी (नाइट्रोजन से अलग एक तत्व युक्त) नाइट्राइड के दुर्लभ उदाहरण हैं। वे नॉनपोलर सॉल्वैंट्स में घुल जाते हैं। दोनों पोलीमराइजेशन से गुजरते हैं। S4N4 तत्वों के संबंध में भी अस्थिर है, लेकिन इतना कम है कि आइसोस्ट्रक्चरल Se4N4. गरम करना S4N4 एक बहुलक देता है, और विभिन्न प्रकार के आणविक सल्फर नाइट्राइड आयनों और धनायनों को भी जाना जाता है।

से संबंधित है लेकिन नाइट्राइड से अलग है पेर्निट्राइड डायटोमिक आयन (N2−2) और अब्द ट्रायटोमिक आयन (N3-).


संदर्भ

  1. Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8.
  2. "The Nobel Prize in Physics 2014". The Nobel Prize. Nobel Prize Outreach. Retrieved 13 January 2021.
  3. Sun, Wenhao; Bartel, Christopher J.; Arca, Elisabetta; Bauers, Sage R.; Matthews, Bethany; Orvañanos, Bernardo; Chen, Bor-Rong; Toney, Michael F.; Schelhas, Laura T.; Tumas, William; Tate, Janet; Zakutayev, Andriy; Lany, Stephan; Holder, Aaron M.; Ceder, Gerbrand (2019). "अकार्बनिक त्रिगुट धातु नाइट्राइड का नक्शा". Nature Materials (in English). 18 (7): 732–739. arXiv:1809.09202. doi:10.1038/s41563-019-0396-2. ISSN 1476-4660. PMID 31209391. S2CID 119461695.
  4. Greenaway, Ann L.; Melamed, Celeste L.; Tellekamp, M. Brooks; Woods-Robinson, Rachel; Toberer, Eric S.; Neilson, James R.; Tamboli, Adele C. (2021-07-26). "Ternary Nitride Materials: Fundamentals and Emerging Device Applications". Annual Review of Materials Research (in English). 51 (1): 591–618. arXiv:2010.08058. doi:10.1146/annurev-matsci-080819-012444. ISSN 1531-7331. S2CID 223953608.
  5. Oyama, S. T., ed. (1996). संक्रमण धातु कार्बाइड और नाइट्राइड की रसायन. Blackie Academic. ISBN 0-7514-0365-2.
  6. Pierson, H. O. (1996). दुर्दम्य कार्बाइड और नाइट्राइड की पुस्तिका. William Andrew. ISBN 0-8155-1392-5.
  7. Gregory, Duncan H. (2001). "एस-ब्लॉक तत्वों का नाइट्राइड रसायन". Coord. Chem. Rev. 215: 301–345. doi:10.1016/S0010-8545(01)00320-4.
  8. Mei, A. B.; Howe, B. M.; Zhang, C.; Sardela, M.; Eckstein, J. N.; Hultman, L.; Rockett, A.; Petrov, I.; Greene, J. E. (2013-10-18). "Physical properties of epitaxial ZrN/MgO(001) layers grown by reactive magnetron sputtering". Journal of Vacuum Science & Technology A. 31 (6): 061516. Bibcode:2013JVSTA..31f1516M. doi:10.1116/1.4825349. ISSN 0734-2101.
  9. Toth, Louis (2014-04-11). संक्रमण धातु कार्बाइड और नाइट्राइड (in English). Elsevier. ISBN 978-0-323-15722-3.
  10. Siller, L.; Peltekis, N.; Krishnamurthy, S.; Chao, Y.; Bull, S. J.; Hunt, M. R. C. (2005). "Gold film with gold nitride—A conductor but harder than gold" (PDF). Appl. Phys. Lett. 86 (22): 221912. Bibcode:2005ApPhL..86v1912S. doi:10.1063/1.1941471.
  11. Montoya, J. A.; Hernández, A. D.; Sanloup, C.; Gregoryanz, E.; Scandolo, S (2007). "OsN2: Crystal structure and electronic properties". Appl. Phys. Lett. 90 (1): 011909. Bibcode:2007ApPhL..90a1909M. doi:10.1063/1.2430631.
  12. Shanley, Edward S.; Ennis, John L. (1991). "सिल्वर नाइट्राइड का रसायन विज्ञान और मुक्त ऊर्जा निर्माण". Ind. Eng. Chem. Res. 30 (11): 2503. doi:10.1021/ie00059a023.
  13. Du, Jingzhen; Seed, John A.; Berryman, Victoria E. J.; Kaltsoyannis, Nikolas; Adams, Ralph W.; Lee, Daniel; Liddle, Stephen T. (2021). "Exceptional uranium(VI)-nitride triple bond covalency from 15N nuclear magnetic resonance spectroscopy and quantum chemical analysis". Nat. Commun. 12 (1): 5649. Bibcode:2021NatCo..12.5649D. doi:10.1038/s41467-021-25863-2. PMC 8463702. PMID 34561448.