न्यूनतम चरण

From Vigyanwiki

नियंत्रण सिद्धांत और संकेत प्रसंस्करण में, एक रेखीय, समय-अपरिवर्तनीय प्रणाली को न्यूनतम-चरण कहा जाता है यदि प्रणाली और इसका प्रतिलोम कारणात्मक और स्थिर हैं।[1][2]

सबसे सामान्य कारण एलटीआई स्थानांतरण फलन को विशिष्ट रूप से ऑल-पास और न्यूनतम-चरण प्रणाली की एक श्रृंखला में सम्मिलित किया जा सकता है। प्रणाली फलन तब दो भागों का उत्पाद है, और समय डोमेन में, प्रणाली की प्रतिक्रिया दो-भाग की प्रतिक्रियाओं का दृढ़ संकल्प है। एक न्यूनतम चरण और एक सामान्य हस्तांतरण समारोह के बीच का अंतर यह है कि एक न्यूनतम चरण प्रणाली में एस-प्लेन प्रतिनिधित्व के बाएं आधे हिस्से में इसके स्थानांतरण समारोह के सभी ध्रुव और शून्य होते हैं। (असतत समय में, जेड-प्लेन के यूनिट वृत्त के अंदर क्रमशः)। चूंकि प्रणाली फलन को उलटने से पोल शून्य में बदल जाते हैं और इसके विपरीत, और दाहिनी ओर (एस-प्लेन काल्पनिक रेखा) या कॉम्प्लेक्स प्लेन के बाहर (जेड-प्लेन यूनिट वृत्त) के पोल अस्थिर प्रणाली की ओर ले जाते हैं, केवल का वर्ग न्यूनतम चरण प्रणाली उलटा के तहत बंद है। सहजता से, एक सामान्य कारण प्रणाली का न्यूनतम चरण भाग न्यूनतम समूह विलंब के साथ अपनी आयाम प्रतिक्रिया को लागू करता है, जबकि इसके सभी-पास भाग मूल प्रणाली फलन के अनुरूप होने के लिए अकेले अपने चरण प्रतिक्रिया को सही करता है।

ध्रुवों और शून्यों के संदर्भ में विश्लेषण केवल अंतरण फलनों के मामले में सटीक है जिसे बहुपदों के अनुपात के रूप में व्यक्त किया जा सकता है। निरंतर समय के मामले में, ऐसी प्रणालियाँ पारंपरिक, आदर्शीकृत एलसीआर नेटवर्क के नेटवर्क में परिवर्तित हो जाती हैं। असतत समय में, वे इसके अलावा, गुणन और इकाई विलंब का उपयोग करके आसानी से अनुमानों में अनुवाद करते हैं। यह दिखाया जा सकता है कि दोनों ही मामलों में, बढ़ते क्रम के साथ तर्कसंगत रूप के प्रणाली कार्य का उपयोग किसी अन्य प्रणाली कार्य को कुशलतापूर्वक अनुमानित करने के लिए किया जा सकता है; इस प्रकार यहां तक ​​कि प्रणाली कार्य में एक तर्कसंगत रूप की कमी है, और इसलिए ध्रुवों और/या शून्यों की अनंतता को व्यवहार में किसी भी अन्य के रूप में कुशलता से कार्यान्वित किया जा सकता है।

कार्य-कारण, स्थिर प्रणालियों के संदर्भ में, हम सैद्धांतिक रूप से यह चुनने के लिए स्वतंत्र होंगे कि क्या सिस्टम फ़ंक्शन के शून्य स्थिर सीमा के बाहर हैं (दाईं ओर या बाहर) यदि बंद करने की स्थिति कोई समस्या नहीं थी। हालाँकि, व्युत्क्रमण का बड़ा व्यावहारिक महत्व है, ठीक वैसे ही जैसे सैद्धांतिक रूप से पूर्ण गुणनखंड अपने आप में होते हैं। (सीएफ एक अन्य महत्वपूर्ण उदाहरण के रूप में वर्णक्रमीय सममित / एंटीसिमेट्रिक अपघटन, उदाहरण के लिए हिल्बर्ट ट्रांसफॉर्म तकनीक।) कई भौतिक प्रणालियाँ भी स्वाभाविक रूप से न्यूनतम चरण प्रतिक्रिया की ओर प्रवृत्त होती हैं और कभी-कभी उसी बाधा का पालन करने वाली अन्य भौतिक प्रणालियों का उपयोग करके व्युत्क्रमण किया जाना है।

अंतर्दृष्टि नीचे दी गई है कि इस प्रणाली को न्यूनतम चरण क्यों कहा जाता है, और मूल विचार तब भी क्यों लागू होता है जब सिस्टम फ़ंक्शन को एक तर्कसंगत रूप में नहीं डाला जा सकता है जिसे कार्यान्वित किया जा सकता है।

व्युत्क्रम प्रणाली

एक प्रणाली व्युत्क्रम है अगर हम इसके आउटपुट से इसके इनपुट को विशिष्ट रूप से निर्धारित कर सकते हैं। यानी, हम एक प्रणाली पा सकते हैं ऐसे कि अगर हम आवेदन करते हैं के बाद , हम पहचान प्रणाली प्राप्त करते हैं (परिमित-आयामी एनालॉग के लिए व्युत्क्रम मैट्रिक्स देखें)। अर्थात्,

लगता है कि प्रणाली का इनपुट है और आउटपुट देता है .
व्युत्क्रम प्रणाली लागू करना को निम्नलिखित देता है

तो हम देखते हैं कि व्युत्क्रम प्रणाली हमें आउटपुट से विशिष्ट रूप से इनपुट निर्धारित करने की अनुमति देती है

असतत समय उदाहरण

मान लीजिए कि सिस्टम एक असतत-समय, रैखिक, समय-अपरिवर्तनीय (एलटीआई) प्रणाली है जो Z में n के लिए आवेग प्रतिक्रिया द्वारा वर्णित है। इसके अतिरिक्त, मान लें कि में एक आवेग प्रतिक्रिया है। दो एलटीआई सिस्टम का कैस्केड एक कुण्डलीकरण है। इस स्थिति में, उपरोक्त संबंध निम्नलिखित है:

जहां क्रोनकर डेल्टा या असतत समय के मामले में पहचान प्रणाली है। (कनवल्शन ऑपरेशन की क्रमविनिमेयता के कारण और के क्रम को बदलने की अनुमति है।) ध्यान दें कि यह उलटा सिस्टम अद्वितीय होने की आवश्यकता नहीं है।

न्यूनतम चरण प्रणाली

जब हम कार्य-कारण और स्थिरता की बाधाओं को लागू करते हैं, तो व्युत्क्रम प्रणाली अद्वितीय होता है; और प्रणाली और इसके व्युत्क्रम को न्यूनतम चरण कहा जाता है। असतत-समय के मामले में कार्य-कारण और स्थिरता की कमी निम्नलिखित है (समय-अपरिवर्तनीय प्रणालियों के लिए जहां h प्रणाली की आवेग प्रतिक्रिया है):

कारणता

और
स्थिरता
और
निरंतर समय मामले के लिए समान स्थितियों के लिए स्थिरता पर लेख देखें।

आवृत्ति विश्लेषण

असतत-समय आवृत्ति विश्लेषण

असतत-समय के मामले के लिए आवृत्ति विश्लेषण करना कुछ अंतर्दृष्टि प्रदान करेगा। समय-क्षेत्र समीकरण निम्न है:

Z-ट्रांसफॉर्म लागू करने से जेड-डोमेन में निम्नलिखित संबंध मिलता है
इससे हमें यह पता चलता है
सरलता के लिए, हम केवल परिमेय अंतरण फलन H(z) की स्थिति पर विचार करते हैं। करणीयता और स्थिरता का अर्थ है कि H(z) के सभी ध्रुवों को इकाई चक्र के अंदर सख्ती से होना चाहिए (स्थिरता देखें)। मान लेना
जहाँ A(z) और D(z) z में बहुपद हैं। करणीयता और स्थिरता का मतलब है कि ध्रुव - D(z) का वर्ग - यूनिट वृत के अंदर सख्ती से होनी चाहिए। हम भी जानते हैं
तो, कारणता और स्थिरता के लिए इसका मतलब है कि इसकी ध्रुव (जटिल विश्लेषण) - की वर्ग A(z) - यूनिट वृत्त के अंदर होना चाहिए। इन दो बाधाओं का अर्थ है कि न्यूनतम चरण प्रणाली के शून्य और ध्रुव दोनों को यूनिट वृत्त के अंदर सख्ती से होना चाहिए।

निरंतर-समय आवृत्ति विश्लेषण

निरंतर-समय के मामले का विश्लेषण एक समान तरीके से आगे बढ़ता है सिवाय इसके कि हम आवृत्ति विश्लेषण के लिए लाप्लास रूपांतरण का उपयोग करते हैं। समय-डोमेन समीकरण निम्नलिखित है।

जहां डायराक डेल्टा फलन है। डायराक डेल्टा फ़ंक्शन निरंतर-समय के मामले में पहचान ऑपरेटर है क्योंकि किसी भी सिग्नल x(t) के साथ स्थानांतरण गुण की वजह से।
लाप्लास रूपांतरण लागू करने से s-प्लेन में निम्न संबंध मिलता है।
इससे हमें यह पता चलता है
फिर से, सरलता के लिए, हम केवल एक परिमेय स्थानांतरण फलन H(s) के मामले पर विचार करते हैं। कार्य-कारण और स्थिरता का अर्थ है कि H(s) के सभी ध्रुव बाएँ-आधे s-विमान के भीतर सख्ती से होने चाहिए (स्थिरता देखें)। मान लीजिए


जहां A(s) और D(s) में बहुपद हैं s. कार्य-कारण और स्थिरता का अर्थ है कि ध्रुव (जटिल विश्लेषण) - एक कार्य की वर्ग D(s) - बाएं-आधे s-प्लेन के अंदर होना चाहिए। हम यह भी जानते हैं

तो, कारणता और स्थिरता के लिए इसका मतलब है कि इसकी पोल (जटिल विश्लेषण) - की जड़ें A(s) - बाएं-आधे s-प्लेन के अंदर सख्ती से होना चाहिए। इन दो बाधाओं का अर्थ है कि न्यूनतम चरण प्रणाली के दोनों शून्य और ध्रुव बाएं-आधे s-प्लेन के अंदर कड़ाई से होना चाहिए।

चरण प्रतिक्रिया के परिमाण प्रतिक्रिया का संबंध

एक न्यूनतम-चरण प्रणाली, चाहे असतत-समय या निरंतर-समय, में एक अतिरिक्त उपयोगी संपत्ति होती है जो आवृत्ति प्रतिक्रिया के परिमाण का प्राकृतिक लघुगणक ("लाभ" जो dB के आनुपातिक है) में मापा जाता है, चरण से संबंधित है हिल्बर्ट रूपांतरण द्वारा आवृत्ति प्रतिक्रिया (रेडियन में मापा गया) का कोण। यही है, निरंतर-समय के मामले में, चलो

प्रणाली की जटिल आवृत्ति प्रतिक्रिया हो H(s). फिर, केवल न्यूनतम-चरण प्रणाली के लिए, चरण की प्रतिक्रिया H(s) द्वारा लाभ से संबंधित है
जहाँ हिल्बर्ट परिवर्तन को दर्शाता है, और, व्युत्क्रम,
अधिक कॉम्पैक्ट रूप से कहा गया है, चलो
जहाँ और एक वास्तविक चर के वास्तविक कार्य हैं। तब
और
हिल्बर्ट ट्रांसफ़ॉर्म ऑपरेटर को परिभाषित किया गया है
असतत-समय न्यूनतम-चरण प्रणालियों के लिए एक समान संगत संबंध भी सही है।

समय डोमेन में न्यूनतम चरण

समान परिमाण प्रतिक्रिया वाले सभी कारण और स्थिर प्रणालियों के लिए, न्यूनतम चरण प्रणाली में इसकी ऊर्जा आवेग प्रतिक्रिया की शुरुआत के पास केंद्रित होती है। यानी, यह निम्न फ़ंक्शन को कम करता है जिसे हम आवेग प्रतिक्रिया में ऊर्जा की देरी के रूप में सोच सकते हैं।

न्यूनतम समूह विलंब के रूप में न्यूनतम चरण

सभी कारणात्मक और स्थिर प्रणालियों के लिए जिनके पास समान परिमाण प्रतिक्रिया है, न्यूनतम चरण प्रणाली में न्यूनतम समूह विलंब होता है। निम्नलिखित सबूत न्यूनतम समूह विलंब के इस विचार को दर्शाता है।

मान लीजिए हम एक शून्य पर विचार करते हैं (जटिल विश्लेषण) स्थानांतरण समारोह का . आइए इस शून्य को रखें (जटिल विश्लेषण) यूनिट वृत्त के अंदर () और देखें कि समूह विलंब कैसे प्रभावित होता है।

शून्य के बाद से (जटिल विश्लेषण) कारक योगदान देता है स्थानांतरण समारोह के लिए, इस शब्द द्वारा योगदान दिया गया चरण निम्नलिखित है।


समूह विलंब में निम्नलिखित योगदान देता है।

यूनिट सर्कल के बाहर शून्य को प्रतिबिंबित करने के लिए हर और अपरिवर्तनीय हैं, यानी, को से प्रतिस्थापित करते हैं। हालाँकि, यूनिट वृत्त के बाहर एक को प्रतिबिंबित करके, का परिमाण बढ़ाते हैं। इस प्रकार, होने यूनिट वृत्त के अंदर कारक द्वारा योगदान किए गए समूह विलंब को कम करता है . हम इस परिणाम को एक से अधिक शून्य (जटिल विश्लेषण) के सामान्य मामले में बढ़ा सकते हैं क्योंकि प्रपत्र के गुणात्मक कारकों का चरण योज्य है। शून्य के साथ स्थानांतरण फलन के लिए,
इसलिए, यूनिट वृत्त के अंदर सभी शून्य (जटिल विश्लेषण) के साथ एक न्यूनतम चरण प्रणाली समूह विलंब को कम करती है क्योंकि प्रत्येक व्यक्ति शून्य (जटिल विश्लेषण) के समूह विलंब को कम किया जाता है।

उपरोक्त कलन का चित्रण। एक ही लाभ प्रतिक्रिया के साथ ऊपर और नीचे के फिल्टर (बाईं ओर: निक्विस्ट आरेख, दाईं ओर: चरण प्रतिक्रियाएं), लेकिन शीर्ष पर फिल्टर के साथ चरण प्रतिक्रिया में सबसे छोटा आयाम है।

गैर-न्यूनतम चरण

सिस्टम जो कारण और स्थिर हैं जिनके व्युत्क्रम कारण और अस्थिर हैं, उन्हें गैर-न्यूनतम-चरण सिस्टम के रूप में जाना जाता है। किसी दिए गए गैर-न्यूनतम चरण प्रणाली में समकक्ष परिमाण प्रतिक्रिया के साथ न्यूनतम चरण प्रणाली की तुलना में अधिक चरण योगदान होगा।

अधिकतम चरण

एक अधिकतम-चरण प्रणाली न्यूनतम-चरण प्रणाली के विपरीत है। एक कारण और स्थिर एलटीआई प्रणाली एक अधिकतम-चरण प्रणाली है यदि इसका व्युत्क्रम कारणात्मक और अस्थिर है। अर्थात्,

  • डिस्क्रीट-टाइम प्रणाली के शून्य यूनिट वृत्त के बाहर हैं।
  • निरंतर-समय प्रणाली के शून्य जटिल तल के दाईं ओर हैं।

ऐसी प्रणाली को अधिकतम-चरण प्रणाली कहा जाता है क्योंकि इसमें प्रणाली के सेट का अधिकतम समूह विलंब होता है जिसकी समान परिमाण प्रतिक्रिया होती है। समान-परिमाण-प्रतिक्रिया प्रणालियों के इस सेट में, अधिकतम चरण प्रणाली में अधिकतम ऊर्जा विलंब होगा।

उदाहरण के लिए, स्थानांतरण कार्यों द्वारा वर्णित दो निरंतर-समय एलटीआई प्रणाली

समतुल्य परिमाण प्रतिक्रियाएं हैं; हालाँकि, दूसरी प्रणाली का चरण बदलाव में बहुत बड़ा योगदान है। इसलिए, इस सेट में, दूसरी प्रणाली अधिकतम-चरण प्रणाली है और पहली प्रणाली न्यूनतम-चरण प्रणाली है। इन प्रणालियों को प्रसिद्ध रूप से गैर-न्यूनतम-चरण प्रणालियों के रूप में भी जाना जाता है जो नियंत्रण में कई स्थिरता चिंताओं को उठाती हैं। इन प्रणालियों का एक हालिया समाधान पीएफसीडी विधि का उपयोग करके आरएचपी शून्य को एलएचपी में ले जा रहा है।[3]

मिश्रित चरण

एक मिश्रित-चरण प्रणाली में इसके कुछ शून्य (जटिल विश्लेषण) यूनिट वृत्त के अंदर होते हैं और अन्य यूनिट वृत्त के बाहर होते हैं। इस प्रकार, इसका समूह विलंब न तो न्यूनतम या अधिकतम है, बल्कि कहीं न कहीं न्यूनतम और अधिकतम चरण समतुल्य प्रणाली के समूह विलंब के बीच है।

उदाहरण के लिए, ट्रांसफर फलन द्वारा वर्णित निरंतर-समय एलटीआई प्रणाली

स्थिर और कारण है; हालाँकि, इसमें जटिल तल के बाएँ और दाएँ दोनों ओर शून्य हैं। इसलिए, यह एक मिश्रित चरण प्रणाली है। इन प्रणालियों को सम्मिलित करने वाले स्थानांतरण कार्यों को नियंत्रित करने के लिए कुछ तरीके जैसे आंतरिक मॉडल नियंत्रक (IMC),[4] सामान्यीकृत स्मिथ के भविष्यवक्ता (जीएसपी)[5] और व्युत्पन्न (पीएफसीडी) के साथ समानांतर फीडफॉर्वर्ड नियंत्रण[6] प्रस्तावित हैं।

रैखिक चरण

एक रेखीय-चरण प्रणाली में लगातार समूह विलंब होता है। गैर-तुच्छ रैखिक चरण या लगभग रैखिक चरण प्रणाली भी मिश्रित चरण हैं।

यह भी देखें

  • ऑल-पास फिल्टर – एक विशेष गैर-न्यूनतम-चरण मामला।
  • क्रेमर्स-क्रोनिग संबंध – भौतिकी में न्यूनतम चरण प्रणाली

संदर्भ

  1. Hassibi, Babak; Kailath, Thomas; Sayed, Ali H. (2000). रैखिक अनुमान. Englewood Cliffs, N.J: Prentice Hall. p. 193. ISBN 0-13-022464-2.
  2. J. O. Smith III, Introduction to Digital Filters with Audio Applications (September 2007 Edition).
  3. Noury, K. (2019). "Analytical Statistical Study of Linear Parallel Feedforward Compensators for Nonminimum-Phase Systems". गैर-न्यूनतम चरण प्रणालियों के लिए रैखिक समानांतर फीडफॉरवर्ड कम्पेसाटर का विश्लेषणात्मक सांख्यिकीय अध्ययन. doi:10.1115/DSCC2019-9126. ISBN 978-0-7918-5914-8. S2CID 214446227.
  4. Morari, Manfred (2002). मजबूत प्रक्रिया नियंत्रण. PTR Prentice Hall. ISBN 0137821530. OCLC 263718708.
  5. Ramanathan, S.; Curl, R. L.; Kravaris, C. (1989). "क्वासरेशनल सिस्टम की गतिशीलता और नियंत्रण". AIChE Journal (in English). 35 (6): 1017–1028. doi:10.1002/aic.690350615. hdl:2027.42/37408. ISSN 1547-5905. S2CID 20116797.
  6. Noury, K. (2019). "Class of Stabilizing Parallel Feedforward Compensators for Nonminimum-Phase Systems". गैर-न्यूनतम चरण प्रणालियों के लिए समानांतर फीडफॉरवर्ड कम्पेसाटर को स्थिर करने की कक्षा. doi:10.1115/DSCC2019-9240. ISBN 978-0-7918-5914-8. S2CID 214440404.

अग्रिम पठन

  • Dimitris G. Manolakis, Vinay K. Ingle, Stephen M. Kogon : Statistical and Adaptive Signal Processing, pp. 54–56, McGraw-Hill, ISBN 0-07-040051-2
  • Boaz Porat : A Course in Digital Signal Processing, pp. 261–263, John Wiley and Sons, ISBN 0-471-14961-6