प्रतीकात्मक एकीकरण

From Vigyanwiki

गणना में, प्रतीकात्मक एकीकरण किसी दिए गए फलन (गणित) f(x) के प्रतिपक्षी, या अनिश्चित अभिन्न के लिए एक सूत्र खोजने की समस्या है, अर्थात एक भिन्न कार्य को खोजने के लिए f(x) ऐसा कि

यह भी बताया गया है


चर्चा

सांकेतिक शब्द का उपयोग इस समस्या को संख्यात्मक एकीकरण से अलग करने के लिए किया जाता है, जहां F के सामान्य सूत्र के अतिरिक्त किसी विशेष इनपुट या इनपुट के सेट पर F का मान मांगा जाता है।

डिजिटल कंप्यूटर के समय से बहुत पहले दोनों समस्याओं को व्यावहारिक और सैद्धांतिक महत्व के रूप में रखा गया था, किन्तु अब उन्हें आम तौर पर कंप्यूटर विज्ञान का डोमेन माना जाता है, क्योंकि वर्तमान में व्यक्तिगत उदाहरणों से निपटने के लिए कंप्यूटर का सबसे अधिक उपयोग किया जाता है।

व्यंजक का व्युत्पन्न ढूँढना एक सीधी प्रक्रिया है जिसके लिए कलन विधि बनाना आसान है। अभिन्न खोजने का उल्टा प्रश्न कहीं अधिक कठिन है। कई व्यंजक जो अपेक्षाकृत सरल होते हैं उनमें ऐसे समाकलन नहीं होते जिन्हें बंद रूप व्यंजक में व्यक्त किया जा सके। अधिक विवरण के लिए एंटीडेरिवेटिव और गैरप्राथमिक इंटीग्रल देखें।

[[रिस्क लोगारित्म]] नामक एक प्रक्रिया उपस्थित है जो यह निर्धारित करने में सक्षम है कि क्या प्राथमिक फलन का अभिन्न अंग (चार अंकगणित का उपयोग करके फलन संरचना और संयोजनों के माध्यम से घातीय कार्यों, लघुगणक, गुणांक और nth जड़ों की एक परिमित संख्या से निर्मित फलन) प्राथमिक है और अगर है तो उसे वापस कर दें। अपने मूल रूप में, Risch एल्गोरिथम प्रत्यक्ष कार्यान्वयन के लिए उपयुक्त नहीं था, और इसके पूर्ण कार्यान्वयन में लंबा समय लगा। यह विशुद्ध रूप से पारलौकिक कार्यों के स्थितियों में पहली बार रिड्यूस (कंप्यूटर बीजगणित प्रणाली) में लागू किया गया था; विशुद्ध रूप से बीजगणितीय कार्यों के स्थितियों को हल किया गया था और जेम्स एच। डेवनपोर्ट द्वारा रिड्यूस में लागू किया गया था; सामान्य स्थितिय मैनुअल ब्रोंस्टीन द्वारा हल किया गया था, जिन्होंने लगभग सभी को स्वयंसिद्ध (कंप्यूटर बीजगणित प्रणाली) में लागू किया था, चूंकि आज तक Risch एल्गोरिथ्म का कोई कार्यान्वयन नहीं है जो इसमें सभी विशेष स्थितियों और शाखाओं से निपट सकता है।[1][2]

चूंकि , Risch एल्गोरिथम केवल अनिश्चित इंटीग्रल पर लागू होता है, जबकि भौतिकविदों, सैद्धांतिक रसायनज्ञों और इंजीनियरों के लिए रुचि के अधिकांश इंटीग्रल निश्चित इंटीग्रल होते हैं जो अधिकांशतः लाप्लास रूपांतरण, फूरियर रूपांतरण और मध्य परिवर्तन से संबंधित होते हैं। एक सामान्य एल्गोरिथ्म की कमी, कंप्यूटर बीजगणित प्रणालियों के डेवलपर्स ने पैटर्न-मिलान और विशेष कार्यों के शोषण, विशेष रूप से अपूर्ण गामा फलन के आधार पर हेयुरिस्टिक (कंप्यूटर विज्ञान) को लागू किया है।[3] यद्यपि यह दृष्टिकोण एल्गोरिथम के अतिरिक्त अनुमानी है, फिर भी व्यावहारिक इंजीनियरिंग अनुप्रयोगों द्वारा सामना किए जाने वाले कई निश्चित इंटीग्रल को हल करने के लिए यह एक प्रभावी विधि है। मैसीमा जैसी पिछली प्रणालियों में एक लुक-अप तालिका के भीतर विशेष कार्यों से संबंधित कुछ निश्चित समाकलन थे। चूंकि यह विशेष विधि, इसके मापदंडों, चर परिवर्तन, पैटर्न मिलान और अन्य जोड़-तोड़ के संबंध में विशेष कार्यों के भेदभाव को सम्मलित करते हुए, मेपल (सॉफ्टवेयर) के डेवलपर्स द्वारा अग्रणी थी।[4] सिस्टम और फिर बाद में मेथेमेटिका , एक्सिओम (कंप्यूटर बीजगणित प्रणाली), एमयूपीएडी और अन्य प्रणालियों द्वारा अनुकरण किया गया।

हालिया अग्रिम

प्रतीकात्मक एकीकरण के शास्त्रीय दृष्टिकोण में मुख्य समस्या यह है कि, यदि किसी फलन को बंद-रूप अभिव्यक्ति में दर्शाया गया है, तो, सामान्यतः , इसके प्रतिपक्षी का समान प्रतिनिधित्व नहीं होता है। दूसरे शब्दों में, कार्यों का वर्ग जिसे बंद रूप में प्रदर्शित किया जा सकता है, प्रतिपक्षी के अनुसार बंद (गणित) नहीं है।

होलोनोमिक फ़ंक्शंस फ़ंक्शंस का एक बड़ा वर्ग है, जो एंटीडिरिवेशन के अनुसार बंद है और इंटीग्रेशन के कंप्यूटर और कैलकुलस के कई अन्य ऑपरेशनों में एल्गोरिथम कार्यान्वयन की अनुमति देता है।

अधिक सटीक रूप से, एक होलोनोमिक फलन बहुपद गुणांक वाले एक सजातीय रैखिक अंतर समीकरण का समाधान है। होलोनोमिक फ़ंक्शंस जोड़ और गुणा, व्युत्पत्ति और प्रतिपक्षी के अनुसार बंद हैं। उनमें बीजगणितीय कार्य, घातीय कार्य, लघुगणक, उन लोगों के , कोज्या , व्युत्क्रम त्रिकोणमितीय कार्य, व्युत्क्रम अतिपरवलयिक कार्य सम्मलित हैं। इनमें हवादार फ़ंक्शंस , त्रुटि फ़ंक्शंस , बेसेल फ़ंक्शंस और सभी हाइपरज्यामितीय फंक्शन जैसे सबसे सामान्य विशेष फंक्शन भी सम्मलित हैं।

होलोनोमिक कार्यों की एक मौलिक संपत्ति यह है कि उनकी टेलर श्रृंखला के गुणांक किसी भी बिंदु पर बहुपद गुणांक के साथ एक रैखिक पुनरावृत्ति संबंध को संतुष्ट करते हैं, और इस पुनरावृत्ति संबंध की गणना फलन को परिभाषित करने वाले अवकल समीकरण से की जा सकती है। इसके विपरीत एक शक्ति श्रृंखला के गुणांकों के बीच इस तरह के एक पुनरावृत्ति संबंध को देखते हुए, यह शक्ति श्रृंखला एक होलोनोमिक फलन को परिभाषित करती है जिसका अंतर समीकरण एल्गोरिथम से गणना किया जा सकता है। यह पुनरावृत्ति संबंध टेलर श्रृंखला की तेजी से गणना की अनुमति देता है, और इस प्रकार किसी भी बिंदु पर फलन के मूल्य को इच्छानुसार से छोटी प्रमाणित त्रुटि के साथ।

यह एल्गोरिथम को कैलकुलस के अधिकांश संचालन बनाता है, जब होलोनोमिक कार्यों तक सीमित होता है, जो उनके अंतर समीकरण और प्रारंभिक स्थितियों द्वारा दर्शाया जाता है। इसमें एंटीडेरिवेटिव और निश्चित इंटीग्रल की गणना सम्मलित है (यह एकीकरण के अंतराल के अंत बिंदु पर एंटीडेरिवेटिव का मूल्यांकन करने के बराबर है)। इसमें अनंत पर फलन के स्पर्शोन्मुख व्यवहार की गणना भी सम्मलित है, और इस प्रकार असीमित अंतराल पर निश्चित अभिन्न।

ये सभी ऑपरेशन मेपल (सॉफ्टवेयर) के लिए एल्गोलिब लाइब्रेरी में लागू किए गए हैं।[5] गणितीय कार्यों का गतिशील शब्दकोश भी देखें।[6]


उदाहरण

उदाहरण के लिए:

एक अनिश्चितकालीन अभिन्न के लिए एक प्रतीकात्मक परिणाम है (यहाँ C एकीकरण का एक स्थिरांक है),

एक निश्चित अभिन्न के लिए एक प्रतीकात्मक परिणाम है, और

समान निश्चित समाकल के लिए एक संख्यात्मक परिणाम है।

यह भी देखें

संदर्भ

  1. Bronstein, Manuel (September 5, 2003). "स्वयंसिद्ध की एकीकरण क्षमताओं पर मैनुएल ब्रोंस्टीन". groups.google.com. Retrieved 2023-02-10.
  2. "integration - Does there exist a complete implementation of the Risch algorithm?". MathOverflow (in English). Oct 15, 2020. Retrieved 2023-02-10.
  3. K.O Geddes, M.L. Glasser, R.A. Moore and T.C. Scott, Evaluation of Classes of Definite Integrals Involving Elementary Functions via Differentiation of Special Functions, AAECC (Applicable Algebra in Engineering, Communication and Computing), vol. 1, (1990), pp. 149–165, [1]
  4. K.O. Geddes and T.C. Scott, Recipes for Classes of Definite Integrals Involving Exponentials and Logarithms, Proceedings of the 1989 Computers and Mathematics conference, (held at MIT June 12, 1989), edited by E. Kaltofen and S.M. Watt, Springer-Verlag, New York, (1989), pp. 192–201. [2]
  5. http://algo.inria.fr/libraries/ algolib
  6. http://ddmf.msr-inria.inria.fr Dynamic Dictionary of Mathematical functions
  • Bronstein, Manuel (1997), Symbolic Integration 1 (transcendental functions) (2 ed.), Springer-Verlag, ISBN 3-540-60521-5
  • Moses, Joel (March 23–25, 1971), "Symbolic integration: the stormy decade", Proceedings of the Second ACM Symposium on Symbolic and Algebraic Manipulation, Los Angeles, California: 427–440


बाहरी संबंध