सुजुकी अभिक्रिया

From Vigyanwiki
सुजुकी अभिक्रिया
Named after अकीर सुजुकी
Reaction type युग्मन अभिक्रिया
Identifiers
RSC ontology ID RXNO:0000140

सुज़ुकी अभिक्रिया एक कार्बनिक अभिक्रिया है, जिसे क्रॉस-युग्मन अभिक्रिया के रूप में वर्गीकृत किया गया है, जहां युग्मन भागीदार एक बोरोनिक अम्ल और ऑर्गेनोहैलाइड हैं और उत्प्रेरक एक पैलेडियम (0) जटिल है।[1][2][3] यह पहली बार 1979 में अकीरा सुज़ुकी द्वारा प्रकाशित किया गया था, और उन्होंने कार्बनिक संश्लेषण में पैलेडियम-उत्प्रेरित क्रॉस-युग्मन की खोज और विकास में उनके योगदान के लिए रिचर्ड एफ. हेक और ई-इची नेगिशी के साथ रसायन विज्ञान में 2010 का नोबेल पुरस्कार साझा किया था।[4] इस अभिक्रिया को सुज़ुकी-मियौरा अभिक्रिया या केवल सुज़ुकी युग्मन के रूप में भी जाना जाता है। यह व्यापक रूप से पॉलीओलेफ़िन, स्टाइरीन और प्रतिस्थापित बाइफिनाइल को संश्लेषित करने के लिए उपयोग किया जाता है। प्रगति और सुजुकी अभिक्रिया के विकास का वर्णन करते हुए कई समीक्षाएं प्रकाशित की गई हैं।[5][6][7] सुजुकी अभिक्रिया के लिए सामान्य योजना नीचे दिखाई गई है, जहां एक पैलेडियम उत्प्रेरक और एक क्षार का उपयोग करके एक ऑर्गनोबोरोन वर्ग (R2-BY2) के साथ एक हैलाइड (R1-X) को जोड़कर एक कार्बन-कार्बन एकल बंधन का निर्माण किया जाता है।

सुजुकी अभिक्रिया की सामान्य योजना

अभिक्रिया क्रियाविधि

सुजुकी अभिक्रिया की अभिक्रिया क्रियाविधि को पैलेडियम उत्प्रेरक के दृष्टिकोण से सबसे अच्छी तरह से देखा जाता है। उत्प्रेरक चक्र का प्रारम्भ एक सक्रिय Pd0 उत्प्रेरक वर्ग,A के गठन से होता है। यह ऑर्गनोपैलेडियम मध्यवर्ती B बनाने के लिए हैलाइड अभिकर्मक 1 में पैलेडियम के ऑक्सीकृत योग में भाग लेता है। क्षार के साथ अभिक्रिया (विपर्यय) मध्यवर्ती C देता है, जो ट्रांसमेटलेशन के माध्यम से[8] बोरॉन-एटी जटिल D (क्षार के साथ बोरोनिक अम्ल अभिकर्मक 2 की अभिक्रिया द्वारा उत्पादित) के साथ क्षणिक ऑर्गोपैलेडियम वर्ग E बनाता है। अपचायक निष्कासन चरण से वांछित उत्पाद 3 का निर्माण होता है और मूल पैलेडियम उत्प्रेरक A को पुनर्स्थापित करता है जो उत्प्रेरक चक्र को पूरा करता है।

Reaciton Mechanism of Suzuki reaction.png

ट्राईएल्काइलबोरेन (BR3) और एल्कोक्साइड (−OR) की अभिक्रिया की स्थिति में क्षार को पहले एक ट्राईएल्काइल बोरेट (R3B-OR) बनाने के लिए माना जाता था इस वर्ग को अधिक नाभिकरागी (न्यूक्लियोफिलिक) माना जा सकता है और फिर ट्रांसमेटलेशन चरण में मौजूद पैलेडियम जटिल के प्रति अधिक अभिक्रियाशील हो सकता है।[9][10][11] डक और सहकर्मियों ने सुज़ुकी युग्मन के लिए अभिक्रिया क्रियाविधि में क्षार की भूमिका की जांच की और उन्होंने पाया कि क्षार की तीन भूमिकाएँ हैं- पैलेडियम जटिल का निर्माण [ArPd(OR)L2], ट्राईएल्काइल बोरेट का निर्माण और पैलेडियम जटिल के साथ एल्कोक्साइड की अभिक्रिया से अपचायक निष्कासन चरण का त्वरण।[9]

ऑक्सीकृत योग

अधिकतर स्थितियों में ऑक्सीकृत योग उत्प्रेरक चक्र का दर निर्धारित करने वाला चरण है।[12] इस चरण के दौरान, पैलेडियम उत्प्रेरक को पैलेडियम (0) से पैलेडियम (II) में ऑक्सीकृत किया जाता है। उत्प्रेरक रूप से सक्रिय पैलेडियम वर्ग A को एरिल हैलाइड क्रियाधार 1 के साथ मिलकर एक ऑर्गेनोपैलेडियम जटिल B प्राप्त होता है। जैसा कि नीचे दिए गए आरेख में देखा गया है, ऑक्सीकृत योग चरण कार्बन-हैलोजन बंधन को तोड़ता है जहां पैलेडियम अब दोनों हैलोजन (X) साथ ही साथ R1 समूह से बंधा हुआ है।

सुजुकी कपलिंग में ऑक्सीडेटिव एडिशन स्टेप।

ऐलिलिक और बेंजिलिक हैलाइड्स के साथ त्रिविम रसायन का व्युत्क्रम देते हुए, ऑक्सीकृत योग विनाइल हैलाइड्स के साथ त्रिविम रसायन के अवरोधन के साथ आगे बढ़ता है।[13] ऑक्सीकृत योग प्रारम्भ में सीस-पैलेडियम जटिल बनाता है, जो तेजी से ट्रांस-जटिल में समावयव हो जाता है।[14]

पीडी ऑक्सीडेटिव अतिरिक्त उत्पाद का सीआईएस-ट्रांस आइसोमेराइजेशन

सुज़ुकी युग्मन ऑर्गनोबोरोन अभिकर्मक या हैलाइड दोनों के लिए द्वि आबंध पर विन्यास की अवधारण के साथ होता है।[15] हालाँकि, उस समावयवन, सीस या ट्रांस का विन्यास ऑक्सीकृत योग चरण में पैलेडियम जटिल के सीस-से-ट्रांस समावयवन द्वारा निर्धारित किया जाता है, जहां ट्रांस पैलेडियम जटिल प्रमुख रूप है। जब ऑर्गनोबोरोन एक समावयवन से जुड़ा होता है और इसे एक एल्केनाइल हैलाइड से जोड़ा जाता है, तो उत्पाद एक डाइईन होता है जैसा कि नीचे दिखाया गया है।

Suzuki Double Bond Three.png

ट्रांसमेटलेशन

ट्रांसमेटेलेशन एक कार्बधात्विक अभिक्रिया है जहां संलग्नी (लिगेंड) एक वर्ग से दूसरे में स्थानांतरित होते हैं। सुज़ुकी युग्मन की स्थिति में लिगेंड्स को ऑर्गेनोबोरोन वर्ग D से पैलेडियम (II) जटिल सी में स्थानांतरित किया जाता है, जहां पहले चरण में जोड़े गए क्षार को नए पैलेडियम (II) जटिल E देने के लिए ऑर्गोबोरोन प्रजातियों पर R2 प्रतिस्थापी के साथ आदान-प्रदान किया जाता है। सुज़ुकी युग्मन के लिए ट्रांसमेटलेशन की सटीक प्रणाली की खोज की जानी बाकी है। ऑर्गेनोबोरोन यौगिक क्षार की अनुपस्थिति में ट्रांसमेटलेशन से नहीं गुजरते हैं और इसलिए यह व्यापक रूप से माना जाता है कि क्षार की भूमिका ऑर्गोबोरोन यौगिक को सक्रिय करने के साथ-साथ ऑक्सीकृत योग उत्पाद R1-Pdll-X (B) से R1-Pdll-OtBu मध्यवर्ती (C) के निर्माण को सुविधा प्रदान करती है।[12]

सुजुकी अभिक्रिया में ट्रांसमेटलेशन।

अपचायक निष्कासन

अंतिम चरण अपचायक निष्कासन चरण है जहां पैलेडियम (II) जटिल (E) उत्पाद (3) को हटा देता है और पैलेडियम (0) उत्प्रेरक (A) को पुन: उत्पन्न करता है। ड्यूटेरियम लेबलिंग का उपयोग करते हुए, रिडग्वे et al. ने त्रिविम रसायन के अवरोधन के साथ अपचायक निष्कासन प्रक्रिया को दिखाया है।[16]

सुजुकी अभिक्रिया के उत्प्रेरक चक्र में रिडक्टिव एलिमिनेशन स्टेप।

सुज़ुकी अभिक्रिया में लिगेंड एक महत्वपूर्ण भूमिका निभाता है। प्रायः, सुजुकी अभिक्रिया में फॉस्फीन लिगेंड का उपयोग किया जाता है। फॉस्फीन लिगेंड जटिल के धातु केंद्र में इलेक्ट्रॉन घनत्व बढ़ाता है और इसलिए ऑक्सीकृत योग चरण में मदद करता है। इसके अलावा, फॉस्फीन लिगेंड के प्रतिस्थापन की भारीता अपचायक निष्कासन चरण में मदद करती है। हालांकि, सुजुकी अभिक्रिया स्थितियों के तहत फॉस्फीन लिगेंड की अस्थिरता के कारण, हाल ही में इस क्रॉस युग्मन में एन-विषमचक्रीय कार्बीन लिगेंड का उपयोग किया गया है।[17] एन-विषमचक्रीय कार्बीन फॉस्फीन लिगेंड की तुलना में अधिक इलेक्ट्रॉन समृद्ध और अधिक भारी हैं। इसलिए, एन-विषमचक्रीय कार्बीन लिगेंड के त्रिविमी और इलेक्ट्रॉनिक दोनों कारक सक्रिय Pd(0) उत्प्रेरक को स्थिर करने में मदद करते हैं।[18]

लाभ

अन्य समान अभिक्रियाओं पर सुज़ुकी युग्मन के लाभों में सामान्य बोरोनिक अम्ल की उपलब्धता, मंद अभिक्रिया की स्थिति और इसकी कम विषाक्त प्रकृति सम्मिलित है। बोरोनिक अम्ल आर्गेनोटिन और ऑर्गेनोजिंक यौगिकों की तुलना में पर्यावरण के लिए कम विषैले और सुरक्षित होते हैं। अभिक्रिया मिश्रण से अकार्बनिक उपोत्पादों को हटाना आसान है। इसके अलावा, यह अभिक्रिया बेहतर है क्योंकि इसमें अपेक्षाकृत सस्ते और आसानी से तैयार किए गए अभिकर्मकों का उपयोग किया जाता है। पानी को विलायक के रूप में इस्तेमाल करने में सक्षम होना।[19] इस अभिक्रिया को विभिन्न प्रकार के पानी में घुलनशील अभिकर्मकों के साथ उपयोग करने के लिए अधिक किफायती, पर्यावरण के अनुकूल और व्यावहारिक बनाता है। सुज़ुकी युग्मन के लिए विभिन्न प्रकार के अभिकर्मकों का उपयोग किया जा सकता है, उदाहरण के लिए, एरील- या विनाइल-बोरोनिक अम्ल और एरील- या विनाइल-हैलाइड्स। कार्य ने एल्काइल ब्रोमाइड्स को सम्मिलित करने के लिए अभिक्रिया के दायरे को भी बढ़ा दिया है।[20] सुज़ुकी युग्मन अभिक्रिया के लिए कई अलग-अलग प्रकार के हैलाइड्स संभव होने के अलावा, अभिक्रिया स्यूडोहैलाइड्स जैसे ट्राईफिलेट्स (ओटीएफ) के साथ भी काम करता है, जो हैलाइड्स के प्रतिस्थापन के रूप में होता है। हैलाइड या स्यूडोहैलाइड के साथ युग्मन भागीदार के लिए सापेक्ष अभिक्रियाशील है- R2–I > R2–OTf > R2–Br >> R2–Cl। बोरोनिक अम्ल के स्थान पर बोरोनिक एस्टर और ऑर्गेनोट्रिफ्लोरोबोरेट लवण का उपयोग किया जा सकता है। उत्प्रेरक पैलेडियम नैनोमटेरियल-आधारित उत्प्रेरक भी हो सकता है। [21] एक नवीन ऑर्गनोफॉस्फीन लिगेंड (SPhos) के साथ, 0.001 mol% तक नीचे लोड होने वाले उत्प्रेरक की सूचना दी गई है।[21] इन अग्रिमों और प्रक्रिया के समग्र सुनम्यता ने रासायनिक संश्लेषण के लिए सुज़ुकी युग्मन को व्यापक रूप से स्वीकार कर लिया है।

अनुप्रयोग

औद्योगिक अनुप्रयोग

सुज़ुकी युग्मन अभिक्रिया मापनीय है और औषधियों या सूक्ष्म रसायनों के लिए मध्यवर्ती के संश्लेषण में उपयोग के लिए लागत प्रभावी है।[22] सुज़ुकी की अभिक्रिया एक बार उत्प्रेरक के उच्च स्तर और बोरोनिक अम्ल की सीमित उपलब्धता के कारण सीमित थी। हैलाइड्स के प्रतिस्थापन भी पाए गए, साथ ही हैलाइड्स या स्यूडोहैलाइड के लिए युग्मन भागीदारों की संख्या में वृद्धि हुई। CI-1034 जैसे कई महत्वपूर्ण कार्बनिक यौगिकों के संश्लेषण में बढ़ी हुई अभिक्रियाएं की गई हैं, जिसमें ट्राइफिलेट और बोरोनिक अम्ल युग्मन भागीदारों का उपयोग किया गया था, जो 95% उत्पादन के साथ 80 किलोग्राम पैमाने पर चलाया गया था।[23]

एक अन्य उदाहरण 3-पाइरिडाइलबोरेन और 1-ब्रोमो-3-(मिथाइलसल्फोनील) बेंजीन का युग्मन है जो एक मध्यवर्ती का निर्माण करता है जिसका उपयोग संभावित केंद्रीय तंत्रिका तंत्र अभिकर्मक के संश्लेषण में किया जाता था। 92.5% उत्पादन में मध्यवर्ती उत्पादित (278 किलोग्राम) बनाने के लिए युग्मन अभिक्रिया।[15][22]

CNS Intermediate Synthesis Suzuki.png

सुजुकी सीसी अभिक्रिया के लिए विषम उत्प्रेरक के विकास में महत्वपूर्ण प्रयास किए गए हैं, जो औद्योगिक प्रक्रिया में प्रदर्शन लाभ (क्रियाधार से उत्प्रेरक पृथक्करण को समाप्त करने) से प्रेरित है, और हाल ही में एक Pd एकल परमाणु विषम उत्प्रेरक को बेहतर प्रदर्शन करने के लिए दिखाया गया है। उद्योग स्वतः निर्धारित सजातीय Pd(PPh3)4 उत्प्रेरक।[24]

संश्लेषित अनुप्रयोग

सुज़ुकी युग्मन का उपयोग प्रायः जटिल यौगिकों के संश्लेषण में किया जाता है।[25][26] सुज़ुकी युग्मन का उपयोग सिट्रोनेलल व्युत्पन्न पर कैपरेट्रीन के संश्लेषण के लिए किया गया है, एक प्राकृतिक उत्पाद जो ल्यूकेमिया के खिलाफ अत्यधिक सक्रिय है।[27]

विविधताएं

धातु उत्प्रेरक

पैलेडियम (विशेष रूप से निकिल) के अलावा अन्य धातुओं के विभिन्न उत्प्रेरक उपयोगों को विकसित किया गया है।[28] पैलेडियम (विशेष रूप से निकिल) के अलावा अन्य धातुओं के विभिन्न उत्प्रेरक उपयोगों को विकसित किया गया है।[29] भले ही अभिक्रिया के लिए निकिल उत्प्रेरक की अधिक मात्रा की आवश्यकता थी, लगभग 5 मोल%, निकिल उतना महंगा या पैलेडियम जितना कीमती धातु नहीं है। निकिल उत्प्रेरित सुज़ुकी युग्मन अभिक्रिया ने कई यौगिकों को भी अनुमति दी जो निकिल-उत्प्रेरित प्रणाली की तुलना में पैलेडियम उत्प्रेरित प्रणाली के लिए काम नहीं करते थे या खराब काम करते थे।[28] निकिल उत्प्रेरकों के उपयोग ने इलेक्ट्रॉनरागी के लिए अनुमति दी है जो मूल सुज़ुकी युग्मन के लिए पैलेडियम का उपयोग करना चुनौतीपूर्ण साबित हुआ, जिसमें फिनॉल, एरील ईथर, एस्टर, फॉस्फेट और फ्लोराइड जैसे सबस्ट्रेट्स सम्मिलित हैं।[28]

निकल सुजुकी 1

निकिल उत्प्रेरित क्रॉस-युग्मन की जांच जारी रही और इन पहले उदाहरणों के दिखाए जाने के बाद अभिक्रिया का दायरा बढ़ा और शोध में रुचि बढ़ी। मियौरा और इनाडा ने 2000 में रिपोर्ट दी कि क्रॉस-युग्मन के लिए एक सस्ता निकिल उत्प्रेरक का उपयोग किया जा सकता है, पहले इस्तेमाल किए जाने वाले अधिक महंगे लिगेंड के बजाय ट्राइफेनिलफॉस्फीन (PPh3) का उपयोग किया जा सकता है।[30] हालांकि, निकिल-उत्प्रेरित क्रॉस-युग्मन के लिए अभी भी उच्च उत्प्रेरक भार (3-10%) की आवश्यकता होती है, अतिरिक्त लिगेंड (1-5 समतुल्य) की आवश्यकता होती है और हवा और नमी के प्रति संवेदनशील रहता है।[28] हान और सहकर्मियों की प्रगति ने कम मात्रा में निकिल उत्प्रेरक (<1 mol%) और लिगेंड के अतिरिक्त समकक्षों का उपयोग करके एक विधि विकसित करके उस समस्या का समाधान करने का प्रयास किया है।[31]

निकल सुजुकी 2

2011 में वू और सहकर्मियों द्वारा यह भी बताया गया था कि एरिल क्लोराइड के क्रॉस-युग्मन के लिए एक अत्यधिक सक्रिय निकिल उत्प्रेरक का उपयोग किया जा सकता है, जिसके लिए केवल 0.01-0.1 mol% निकिल उत्प्रेरक की आवश्यकता होती है। उन्होंने यह भी दिखाया कि उत्प्रेरक को उत्प्रेरक गतिविधि में लगभग बिना किसी हानि के छह बार तक पुनर्नवीनीकरण किया जा सकता है।[32] उत्प्रेरक पुनर्चक्रण योग्य था क्योंकि यह फॉस्फीन निकिल सूक्ष्मकण उत्प्रेरक (G3DenP-Ni) था जो डेंड्रिमर्स से बनाया गया था।

निकल सुजुकी 3

पैलेडियम और निकिल-उत्प्रेरित सुजुकी युग्मन अभिक्रियाओं दोनों पर लाभ और हानि लागू होती है। Pd और Ni उत्प्रेरक प्रणाली के अलावा, सुजुकी युग्मन अभिक्रिया में आयरन और कॉपर[33]जैसे सस्ते और गैर-विषैले धातु स्रोतों का उपयोग किया गया है। बेडफोर्ड अनुसंधान समूह[34] और नाकामुरा अनुसंधान समूह[35] ने लौह उत्प्रेरित सुजुकी युग्मन अभिक्रिया की पद्धति विकसित करने पर बड़े पैमाने पर काम किया है। रूथेनियम एक अन्य धातु स्रोत है जिसका उपयोग सुज़ुकी युग्मन अभिक्रिया में किया गया है।[36]

एमाइड युग्मन

निकिल उत्प्रेरण एमाइड्स से C-C बंध का निर्माण कर सकता है। संश्लेषण के रूप में एमाइड्स की स्वाभाविक रूप से निष्क्रिय प्रकृति के बावजूद, C-C बंध तैयार करने के लिए निम्नलिखित पद्धति का उपयोग किया जा सकता है। युग्मन प्रक्रिया असंख्य कार्यात्मक समूहों की हल्की और सहिष्णु है, जिनमें सम्मिलित हैं- ऐमीन, कीटोन, विषमचक्रीय, अम्लीय प्रोटॉन वाले समूह। इस तकनीक का उपयोग जैवसक्रिय अणुओं को तैयार करने और निपुण अनुक्रमिक क्रॉस-युग्मन के माध्यम से नियंत्रित तरीके से विषम चक्रों को एकजुट करने के लिए भी किया जा सकता है।अभिक्रिया योजना की एक सामान्य समीक्षा नीचे दी गई है।[37]फ्रेमलेस

ट्युबुलिन बंधन यौगिक (प्रसाररोधी अभिक्रिया) का संश्लेषण ट्राइमेथोक्सीमाइड और विषमचक्रीय पिनाकोलेटोबोरोन युग्मन भागीदार का उपयोग करके ग्राम पैमाने पर किया गया था।[37]केंद्र

ऑर्गनोबोरेन्स

एरिल बोरोनिक अम्ल अन्य ऑर्गेनोबोरेन की तुलना में तुलनात्मक रूप से सस्ते होते हैं और एरिल बोरोनिक अम्ल की एक विस्तृत विविधता व्यावसायिक रूप से उपलब्ध है। इसलिए, सुज़ुकी अभिक्रिया में ऑर्गोबोरेन भागीदार के रूप में इसका व्यापक रूप से उपयोग किया गया है। एरिलट्राईफ्लोरोबोरेट लवण ऑर्गेनोबोरेन का एक अन्य वर्ग है जो प्रायः उपयोग किया जाता है क्योंकि वे एरिल बोरोनिक अम्ल की तुलना में प्रोटोडेबोरोनेशन से कम प्रवृत्त होते हैं। उन्हें संश्लेषित करना आसान है और आसानी से शुद्ध किया जा सकता है।[38] पोटेशियम हाइड्रोजन फ्लोराइड के साथ उपचार करके बोरोनिक अम्ल से एरिलट्राईफ्लोरोबोरेट लवण का निर्माण किया जा सकता है, जिसे बाद में सुज़ुकी युग्मन अभिक्रिया में इस्तेमाल किया जा सकता है।[39]

Aryltrifluoroborate salt Suzuki reaction.png

विलायक विविधताएं

सुज़ुकी युग्मन अभिक्रिया अन्य युग्मन अभिक्रिया से इस अर्थ में अलग है कि इसे द्‍विप्रावस्थिक कार्बनिक-जल,[40] केवल जल,[19] या बिना विलायक के चलाया जा सकता है।[41] इसने युग्मन अभिक्रियाओं के क्षेत्र में वृद्धि की, क्योंकि विभिन्न प्रकार के जल में घुलनशील क्षार, उत्प्रेरक प्रणाली और अभिकर्मकों का उपयोग कार्बनिक विलायक में उनकी घुलनशीलता पर चिंता किए बिना किया जा सकता है। विलायक प्रणाली के रूप में जल का उपयोग आर्थिक और सुरक्षा लाभों के कारण भी आकर्षक है। सुज़ुकी युग्मन के लिए विलायक प्रणाली में प्रायः टॉलूइन,[42] टीएचएफ,[43] डाइऑक्साइन,[43]और डीएमएफ[44] का उपयोग किया जाता है। सबसे अधिक उपयोग किए जाने वाले क्षार K2CO3,[40]KOtBu,[45] Cs2CO3,[46] K3PO4,[47] NaOH,[48] और NEt3 हैं।[49]

यह भी देखें

  • चान-लैम युग्मन।
  • हेकअभिक्रिया।
  • हियामा युग्मन।
  • कुमादा युग्मन।
  • नेगीशी युग्मन।
  • पेटासिस अभिक्रिया।
  • सोनोगाशिरा युग्मन।
  • स्टिल अभिक्रिया.
  • कार्बनिक अभिक्रियाओं की सूची.

संदर्भ

  1. Miyaura, Norio; Yamada, Kinji; Suzuki, Akira (1979). "1-एल्केनिल या 1-एल्किनिल हैलाइड्स के साथ 1-एल्केनिलबोरेन्स की पैलेडियम-उत्प्रेरित प्रतिक्रिया द्वारा एक नया स्टीरियोस्पेसिफिक क्रॉस-कपलिंग". Tetrahedron Letters. 20 (36): 3437–3440. doi:10.1016/S0040-4039(01)95429-2. hdl:2115/44006.
  2. Miyaura, Norio; Suzuki, Akira (1979). "पैलेडियम उत्प्रेरक की उपस्थिति में ऐरिल हैलाइड के साथ एल्क-1-एनिलबोरेन्स की अभिक्रिया द्वारा ऐरिलेटेड (ई)-ऐल्कीन का त्रिविम चयनी संश्लेषण". Chem. Comm. (19): 866–867. doi:10.1039/C39790000866.
  3. Miyaura, Norio; Suzuki, Akira (1995). "ऑर्गनोबोरोन यौगिकों के पैलेडियम-उत्प्रेरित क्रॉस-युग्मन प्रतिक्रियाएं". Chemical Reviews. 95 (7): 2457–2483. CiteSeerX 10.1.1.735.7660. doi:10.1021/cr00039a007.
  4. Nobelprize.org. "रसायन विज्ञान में नोबेल पुरस्कार 2010". Nobel Prize Foundation. Retrieved 2013-10-25.
  5. Suzuki, Akira (1991). "कार्बनिक हलाइड्स के साथ ऑर्गेनोबोरोन डेरिवेटिव की क्रॉस-कपलिंग प्रतिक्रिया के माध्यम से सिंथेटिक अध्ययन". Pure Appl. Chem. 63 (3): 419–422. doi:10.1351/pac199163030419.
  6. Miyaura, Norio; Suzuki, Akira (1979). "ऑर्गनोबोरोन यौगिकों के पैलेडियम-उत्प्रेरित क्रॉस-युग्मन प्रतिक्रियाएं". Chemical Reviews. 95 (7): 2457–2483. CiteSeerX 10.1.1.735.7660. doi:10.1021/cr00039a007.(Review)
  7. Suzuki, Akira (1999). "ऑर्गेनिक इलेक्ट्रोफाइल्स के साथ ऑर्गेनोबोरोन डेरिवेटिव्स की क्रॉस-कपलिंग प्रतिक्रियाओं में हालिया प्रगति, 1995-1998". Journal of Organometallic Chemistry. 576 (1–2): 147–168. doi:10.1016/S0022-328X(98)01055-9.
  8. Matos, K.; Soderquist, J. A. (1998). "सुजुकी-मियाउरा कपलिंग में अल्काइलबोरेन्स: स्टीरियोकेमिकल और मैकेनिस्टिक स्टडीज". J. Org. Chem. 63 (3): 461–470. doi:10.1021/jo971681s. PMID 11672034.
  9. 9.0 9.1 Amatore, Christian; Jutand, Anny; Le Duc, Gaëtan (18 February 2011). "पैलेडियम-उत्प्रेरित सुजुकी-मियाउरा प्रतिक्रियाओं में ट्रांसमेटलेशन / रिडक्टिव एलिमिनेशन के लिए काइनेटिक डेटा: बेस के रूप में उपयोग किए जाने वाले हाइड्रॉक्साइड आयनों की अप्रत्याशित ट्रिपल भूमिका". Chemistry: A European Journal. 17 (8): 2492–2503. doi:10.1002/chem.201001911. PMID 21319240.
  10. Smith, George B.; Dezeny, George C.; Hughes, David L.; King, Anthony O.; Verhoeven, Thomas R. (1 December 1994). "सुजुकी क्रॉस-युग्मन प्रतिक्रिया का यंत्रवत अध्ययन". The Journal of Organic Chemistry. 59 (26): 8151–8156. doi:10.1021/jo00105a036.
  11. Matos, Karl; Soderquist, John A. (1 February 1998). "सुजुकी-मियाउरा कपलिंग में अल्काइलबोरेन्स: स्टीरियोकेमिकल और मैकेनिस्टिक स्टडीज". The Journal of Organic Chemistry. 63 (3): 461–470. doi:10.1021/jo971681s. PMID 11672034.
  12. 12.0 12.1 Kurti, Laszlo (2005). कार्बनिक संश्लेषण में नामित प्रतिक्रियाओं के सामरिक अनुप्रयोग. Elsevier Academic Press. ISBN 978-0124297852.
  13. Stille, John K.; Lau, Kreisler S. Y. (1977). "समूह 8 संक्रमण-धातु परिसरों में कार्बनिक हैलाइडों के ऑक्सीडेटिव जोड़ के तंत्र". Accounts of Chemical Research. 10 (12): 434–442. doi:10.1021/ar50120a002.
  14. Casado, Arturo L.; Espinet, Pablo (1998). "RX से Pd(PPh3)4 और \PdRX(PPh3)2 के सिस-टू-ट्रांसआइसोमेराइजेशन के तंत्र के ऑक्सीडेटिव जोड़ के परिणामस्वरूप कॉन्फ़िगरेशन पर] कॉम्प्लेक्स (R = aryl, X = halide)†". Organometallics. 17 (5): 954–959. doi:10.1021/om9709502.
  15. 15.0 15.1 उन्नत कार्बनिक रसायन. Springer. 2007. pp. 739–747.
  16. Ridgway, Brian H.; Woerpel, K. A. (1998). "सुजुकी कपलिंग रिएक्शन में अल्काइलबोरेन का पैलेडियम में ट्रांसमेटेशन स्टीरियोकेमिस्ट्री के प्रतिधारण के साथ आगे बढ़ता है". The Journal of Organic Chemistry. 63 (3): 458–460. doi:10.1021/jo970803d. PMID 11672033.
  17. "संश्लेषण का विज्ञान: सर्वोत्तम तरीके। सर्वोत्तम परिणाम - थिएम रसायन विज्ञान". science-of-synthesis.thieme.com. Retrieved 2021-04-14.
  18. Hopkinson, Matthew N.; Richter, Christian; Schedler, Michael; Glorius, Frank (June 2014). "एन-विषमचक्रीय कार्बेनेस का एक सिंहावलोकन". Nature (in English). 510 (7506): 485–496. Bibcode:2014Natur.510..485H. doi:10.1038/nature13384. ISSN 1476-4687. PMID 24965649. S2CID 672379.
  19. 19.0 19.1 Casalnuovo, Albert L.; Calabrese (1990). "जलीय मीडिया में पैलेडियम-उत्प्रेरित क्षारीकरण". J. Am. Chem. Soc. 112 (11): 4324–4330. doi:10.1021/ja00167a032.
  20. Kirchhoff, Jan H.; Netherton, Matthew R.; Hills, Ivory D.; Fu, Gregory C. (2002). "बोरोनिक एसिड: अल्काइल ब्रोमाइड्स के कमरे के तापमान सुजुकी प्रतिक्रियाओं में नए युग्मन भागीदार। उल्लेखनीय रूप से हल्की स्थितियों के तहत उत्पन्न ऑक्सीडेटिव-अतिरिक्त जोड़ का क्रिस्टलोग्राफिक लक्षण वर्णन". Journal of the American Chemical Society. 124 (46): 13662–3. doi:10.1021/ja0283899. PMID 12431081.
  21. Martin, R.; Buchwald, S. L. (2008). "पैलेडियम-उत्प्रेरित सुजुकी-मियाउरा क्रॉस-कपलिंग प्रतिक्रियाएं डायलकाइलबिरियल फॉस्फीन लिगैंड्स को नियोजित करती हैं". Accounts of Chemical Research. 41 (11): 1461–1473. doi:10.1021/ar800036s. PMC 2645945. PMID 18620434.
  22. 22.0 22.1 Rouhi, A. Maureen (6 September 2004). "सूक्ष्म रसायन". C&EN.
  23. Jacks1, Thomas E.; Belmont, Daniel T.; Briggs, Christopher A.; Horne, Nicole M.; Kanter, Gerald D.; Karrick, Greg L.; Krikke, James J.; McCabe, Richard J.; Mustakis; Nanninga, Thomas N. (1 March 2004). "एंडोटिलिन प्रतिपक्षी, सीआई-1034 के लिए एक स्केलेबल प्रक्रिया का विकास". Organic Process Research & Development. 8 (2): 201–212. doi:10.1021/op034104g.
  24. Chen, Zupeng; Vorobyeva, Evgeniya; Mitchell, Sharon; Fako, Edvin; Ortuño, Manuel A.; López, Núria; Collins, Sean M.; Midgley, Paul A.; Richard, Sylvia; Vilé, Gianvito; Pérez-Ramírez, Javier (2018). "सुजुकी युग्मन के लिए सजातीय प्रणालियों को पार करने वाला एक विषम एकल-परमाणु पैलेडियम उत्प्रेरक" (PDF). Nature Nanotechnology. 13 (8): 702–707. Bibcode:2018NatNa..13..702C. doi:10.1038/s41565-018-0167-2. hdl:2072/359786. PMID 29941887. S2CID 49415437.
  25. Balog, Aaron; Meng, Dongfang; Kamenecka, Ted; Bertinato, Peter; Su, Dai-Shi; Sorensen, Erik J.; Danishefsky, Samuel J. (1996). "(-) का कुल संश्लेषण - एपोथिलोन ए". Angewandte Chemie International Edition in English. 35 (2324): 2801–2803. doi:10.1002/anie.199628011.
  26. Liu, Junjia; Lotesta, Stephen D.; Sorensen, Erik J. (2011). "प्लुरोमुटिलिन के आणविक ढांचे का संक्षिप्त संश्लेषण". Chemical Communications. 47 (5): 1500–2. doi:10.1039/C0CC04077K. PMC 3156455. PMID 21079876.
  27. Vyvyan, J. R.; Peterson, Emily A.; Stephan, Mari L. (1999). "(+/−) - caparratriene . का एक समीचीन कुल संश्लेषण". Tetrahedron Letters. 40 (27): 4947–4949. doi:10.1016/S0040-4039(99)00865-5.
  28. 28.0 28.1 28.2 28.3 Han, Fu-She (1 January 2013). "संक्रमण-धातु-उत्प्रेरित सुजुकी-मियाउरा क्रॉस-कपलिंग प्रतिक्रियाएं: पैलेडियम से निकल उत्प्रेरक के लिए एक उल्लेखनीय प्रगति". Chemical Society Reviews. 42 (12): 5270–98. doi:10.1039/c3cs35521g. PMID 23460083.
  29. Percec, Virgil; Bae, Jin-Young; Hill, Dale (1995). "धातु उत्प्रेरित होमोकूप्लिंग और क्रॉस-युग्मन प्रतिक्रियाओं में एरिल मेसाइलेट्स। 2. सुज़ुकी-प्रकार निकेल-उत्प्रेरित क्रॉस-कपलिंग ऑफ़ एरिल एरेनसल्फ़ोनेट्स और एरिल मेसाइलेट्स एरिलबोरोनिक एसिड के साथ". Journal of Organic Chemistry. 60 (4): 1060–1065. doi:10.1021/jo00109a044.
  30. Inada, Kaoru; Norio Miyaura (2000). "NiCl2 / Triphenylphosphine परिसरों द्वारा उत्प्रेरित आर्यल क्लोराइड के साथ आर्यलबोरोनिक एसिड के क्रॉस-युग्मन प्रतिक्रिया के माध्यम से बायरिल्स का संश्लेषण". Tetrahedron. 56 (44): 8657–8660. doi:10.1016/S0040-4020(00)00814-0.
  31. Zhao, Yu-Long; Li, You; Li, Shui-Ming; Zhou, Yi-Guo; Sun, Feng-Yi; Gao, Lian-Xun; Han, Fu-She (1 June 2011). "एरिल हैलाइड्स के सुजुकी-मियाउरा युग्मन के लिए एक अत्यधिक व्यावहारिक और विश्वसनीय निकेल उत्प्रेरक". Advanced Synthesis & Catalysis. 353 (9): 1543–1550. doi:10.1002/adsc.201100101.
  32. Wu, Lei; Ling, Jie; Wu, Zong-Quan (1 June 2011). "एक अत्यधिक सक्रिय और पुन: प्रयोज्य उत्प्रेरक: सुजुकी युग्मन प्रतिक्रिया के लिए फॉस्फीन डेंड्रिमर-स्थिर निकेल नैनोपार्टिकल्स". Advanced Synthesis & Catalysis. 353 (9): 1452–1456. doi:10.1002/adsc.201100134.
  33. Yang, C.T.; Zhang, Zhen-Qi; Liu, Yu-Chen; Liu, Lei (2011). "प्राथमिक एल्काइल हैलाइड्स और स्यूडोहैलाइड्स के साथ ऑर्गेनोबोरोन यौगिकों की कॉपर-उत्प्रेरित क्रॉस-युग्मन प्रतिक्रिया". Angew. Chem. Int. Ed. 50 (17): 3904–3907. doi:10.1002/anie.201008007. PMID 21455914.
  34. Bredford, R.B.; Hall, Mark A.; Hodges, George R.; Huwe, Michael; Wilkinson, Mark C. (2009). "बेंज़िल हैलाइड्स और 2-हैलोपाइरीडीन के साथ टेट्राएरिलबोरेट्स के सुजुकी कपलिंग के लिए सरल मिश्रित Fe-Zn उत्प्रेरक". Chem. Commun. (42): 6430–6432. doi:10.1039/B915945B. PMID 19841799. S2CID 40428708.
  35. Nakamura, M; Hashimoto, Toru; Kathriarachchi, Kalum K. A. D. S.; Zenmyo, Takeshi; Seike, Hirofumi; Nakamura, Masaharu (2012). "आयरन-उत्प्रेरित अल्काइल-अल्काइल सुजुकी-मियाउरा युग्मन". Angew. Chem. Int. Ed. 51 (35): 8834–883. doi:10.1002/anie.201202797. PMID 22848024.
  36. Na, Y; Park, Soyoung; Han, Soo Bong; Han, Hoon; Ko, Sangwon; Chang, Sukbok (2004). "रूथेनियम-उत्प्रेरित हेक-टाइप ओलेफिनेशन और सुजुकी युग्मन प्रतिक्रियाएं: उत्प्रेरक प्रजातियों की प्रकृति पर अध्ययन". J. Am. Chem. Soc. 126 (1): 250–258. doi:10.1021/ja038742q. PMID 14709090.
  37. 37.0 37.1 Weires, Nicholas A.; Baker, Emma L.; Garg, Neil K. (2015). "एमाइड्स का निकल-उत्प्रेरित सुजुकी-मियाउरा युग्मन". Nature Chemistry. 8 (1): 75–79. Bibcode:2016NatCh...8...75W. doi:10.1038/nchem.2388. PMID 26673267.
  38. Molander, Gary A.; Biolatto, Betina (2003). "पैलेडियम-उत्प्रेरित सुजुकी-मियाउरा पोटेशियम एरिल- और हेटेरोरिलट्रिफ्लोरोबोरेट्स की क्रॉस-युग्मन प्रतिक्रियाएं". J. Org. Chem. 68 (11): 4302–4314. doi:10.1021/jo0342368. PMID 12762730.
  39. Bates, Roderick (2012). संक्रमण धातुओं का उपयोग कर कार्बनिक संश्लेषण. Wiley. ISBN 978-1119978930.
  40. 40.0 40.1 Dolliver, Debra; Bhattarai, Bijay T.; Pandey, Arjun; Lanier, Megan L.; Bordelon, Amber S.; Adhikari, Sarju; Dinser, Jordan A.; Flowers, Patrick F.; Wills, Veronica S.; Schneider, Caroline L.; Shaughnessy, Kevin H.; Moore, Jane N.; Raders, Steven M.; Snowden, Timothy S.; McKim, Artie S.; Fronczek, Frank R. (2013). "स्टीरियोस्पेसिफिक सुजुकी, सोनोगाशिरा, और नेगीशी युग्मन प्रतिक्रियाएं एन-अल्कोक्सीमिडॉयल आयोडाइड्स और ब्रोमाइड्स". J. Org. Chem. 78 (8): 3676–3687. doi:10.1021/jo400179u. PMID 23534335.
  41. Asachenko, Andrey; Sorochkina, Kristina; Dzhevakov, Pavel; Topchiy, Maxim; Nechaev, Mikhail (2013). "सॉल्वेंट-मुक्त शर्तों के तहत सुजुकी-मियाउरा क्रॉस-कपलिंग". Adv. Synth. Catal. 355 (18): 3553–3557. doi:10.1002/adsc.201300741.
  42. Pan, Changduo; Liu, Zhang; Wu, Huayue; Din, Jinchang; Cheng, Jiang (2008). "पैलेडियम उत्प्रेरित लिगैंड-मुक्त सुजुकी क्रॉस-कपलिंग प्रतिक्रिया". Catalysis Communications. 9 (4): 321–323. doi:10.1016/j.catcom.2007.06.022.
  43. 43.0 43.1 Littke, Adam F.; Fu (2000). "सुज़ुकी क्रॉस-कपलिंग के लिए ऐरिल और विनाइल हैलाइड्स के साथ आर्यलबोरोनिक एसिड और माइल्ड परिस्थितियों में ट्राइफ्लेट्स के लिए बहुमुखी उत्प्रेरक". J. Am. Chem. Soc. 122 (17): 4020–4028. doi:10.1021/ja0002058.
  44. Hu, Ming-Gang; Wei, Song; Jian, Ai-Ai (2007). "अत्यधिक कुशल पीडी/सी-उत्प्रेरित सुजुकी युग्मन प्रतिक्रिया (पी-प्रतिस्थापित फिनाइल) बोरोनिक एसिड के साथ पी-(संयुक्त राष्ट्र) प्रतिस्थापित फेनिल हैलाइड". Chinese Journal of Chemistry. 25 (8): 1183–1186. doi:10.1002/cjoc.200790220.
  45. Saito, B; Fu (2007). "कमरे के तापमान पर अल्काइल-अल्काइल सुजुकी क्रॉस-कपलिंग्स ऑफ अनएक्टिवेटेड सेकेंडरी अल्काइल हैलाइड्स". J. Am. Chem. Soc. 129 (31): 9602–9603. doi:10.1021/ja074008l. PMC 2569998. PMID 17628067.
  46. Kingston, J.V.; Verkade, John G. (2007). "R2PNP(iBuNCH2CH2)3N का संश्लेषण और विशेषता: कुशल पीडी-असिस्टेड सुजुकी-मियाउरा क्रॉस-कपलिंग प्रतिक्रियाओं के लिए एक नया भारी इलेक्ट्रॉन-समृद्ध फॉस्फीन". J. Org. Chem. 72 (8): 2816–2822. doi:10.1021/jo062452l. PMID 17378611.
  47. Baillie, C; Zhang, Lixin; Xiao, Jianliang (2004). "फेरोसेनिल मोनोफॉस्फीन लिगैंड्स: एरिल क्लोराइड्स के सुजुकी-मियाउरा युग्मन में संश्लेषण और अनुप्रयोग". J. Org. Chem. 69 (22): 7779–7782. doi:10.1021/jo048963u. PMID 15498017.
  48. Han, J; Liu, Y; Guo, R (2009). "अत्यधिक स्थिर सोने के नैनोकणों का सुगम संश्लेषण और पानी में सुजुकी-मियाउरा क्रॉस-कपलिंग प्रतिक्रिया के लिए उनकी अप्रत्याशित उत्कृष्ट उत्प्रेरक गतिविधि". J. Am. Chem. Soc. 131 (6): 2060–2061. doi:10.1021/ja808935n. PMID 19170490.
  49. Lipshutz, B.H.; Petersen, Tue B.; Abela, Alexander R. (2008). "कमरे-तापमान सुजुकी-पानी में मियाउरा कपलिंग नॉनऑनिक एम्फीफाइल्स द्वारा सुगम किया गया†". Org. Lett. 10 (7): 1333–1336. doi:10.1021/ol702714y. PMID 18335944.