हार्मोनिक मैप

From Vigyanwiki

अंतर ज्यामिति के गणितीय क्षेत्र में, रीमैनियन कई गुना के बीच निर्बाध मैप को हार्मोनिक कार्य जाता है यदि इसके समन्वय प्रतिनिधि निश्चित अरेखीय आंशिक विभेदक समीकरण को संतुष्ट करते हैं। मानचित्रण के लिए यह आंशिक अवकल समीकरण प्रकार्यात्मक के यूलर-लैग्रेंज समीकरण के रूप में भी उत्पन्न होता है जिसे डाइरिचलेट ऊर्जा कहा जाता है। इस प्रकार, हार्मोनिक मानचित्रों के सिद्धांत में रिमेंनियन ज्यामिति में जियोडेसिक इकाई-गति जियोडेसिक्स के सिद्धांत और हार्मोनिक कार्यों के सिद्धांत दोनों सम्मिलित हैं।

अनौपचारिक रूप से, मानचित्रण की डिरिचलेट ऊर्जा f रिमेंनियन मैनिफोल्ड से M रिमेंनियन मैनिफोल्ड के लिए N को कुल राशि के रूप में माना जा सकता है f खिंचता है M इसके प्रत्येक तत्व को बिंदु पर आवंटित करने में N. उदाहरण के लिए, बिना फैला हुआ रबर बैंड और सुचारू पत्थर दोनों को स्वाभाविक रूप से रीमैनियन मैनिफोल्ड्स के रूप में देखा जा सकता है। पत्थर पर रबर बैंड को खींचने के किसी भी विधि को इन मैनिफोल्ड के बीच मैपिंग के रूप में देखा जा सकता है, और इसमें सम्मिलित कुल तनाव को डिरिचलेट ऊर्जा द्वारा दर्शाया जाता है। इस तरह के मानचित्रण की सामंजस्यता का अर्थ है कि दिए गए खिंचाव को शारीरिक रूप से विकृत करने के किसी भी काल्पनिक विधि को देखते हुए, विरूपण प्रारंभ होने पर तनाव (जब समय के कार्य के रूप में माना जाता है) का पहला व्युत्पन्न शून्य के समान होता है।

हार्मोनिक मानचित्रों का सिद्धांत 1964 में जेम्स एल्स और जोसेफ एच. सैम्पसन द्वारा प्रारंभ किया गया था, जिन्होंने दिखाया था कि कुछ ज्यामितीय संदर्भों में, इच्छानुसार नक्शे हार्मोनिक मानचित्रों में होमोटॉपी हो सकते हैं।[1] उनका काम रिचर्ड एस. हैमिल्टन के रिक्की प्रवाह पर प्रारंभिक काम के लिए प्रेरणा था। ज्यामितीय विश्लेषण के क्षेत्र में सबसे व्यापक रूप से अध्ययन किए गए विषयों में हार्मोनिक मानचित्र और संबंधित हार्मोनिक मानचित्र ताप प्रवाह स्वयं में और हैं।

जोनाथन सैक्स और करेन उहलेनबेक के कारण हार्मोनिक मानचित्रों के अनुक्रमों की बुलबुले की खोज,[2] विशेष रूप से प्रभावशाली रहा है, क्योंकि उनका विश्लेषण कई अन्य ज्यामितीय संदर्भों के लिए अनुकूलित किया गया है। विशेष रूप से, यांग-मिल्स क्षेत्रों के बबलिंग की उहलेनबेक की समानांतर खोज साइमन डोनाल्डसन के चार-आयामी मैनिफोल्ड्स पर काम में महत्वपूर्ण है, और मिखाइल लियोनिदोविच ग्रोमोव की स्यूडोहोलोमॉर्फिक वक्र के बुलबुले की बाद की खोज सहानुभूतिपूर्ण ज्यामिति और क्वांटम कोहोलॉजी के अनुप्रयोगों में महत्वपूर्ण है। हार्मोनिक मानचित्रों के नियमितता सिद्धांत का अध्ययन करने के लिए रिचर्ड स्कोन और उहलेनबेक द्वारा उपयोग की जाने वाली विधि इसी तरह ज्यामितीय विश्लेषण में कई विश्लेषणात्मक विधि के विकास की प्रेरणा रही हैं।[3]

मैनिफोल्ड्स के बीच मैपिंग की ज्यामिति

यहां स्यूडो-रीमैनियन मैनिफोल्ड के बीच निर्बाध मानचित्रण की ज्यामिति को स्थानीय निर्देशांक के माध्यम से और समकक्ष रूप से रैखिक बीजगणित के माध्यम से माना जाता है। ऐसा मानचित्रण पहले मौलिक रूप और दूसरे मौलिक रूप दोनों को परिभाषित करता है। लाप्लासियन (जिसे तनाव क्षेत्र भी कहा जाता है) को दूसरे मौलिक रूप के माध्यम से परिभाषित किया गया है, और इसका विलुप्त होना मानचित्र के हार्मोनिक होने की स्थिति है। छद्म-रीमैनियन मैनिफोल्ड्स की निर्धारण में संशोधन के बिना परिभाषाएँ विस्तारित होती हैं।

स्थानीय निर्देशांक

U को m का एक खुला उपसमुच्चय होने दें और V को n का एक खुला उपसमुच्चय होने दें। 1 और n के बीच प्रत्येक i और j के लिए, gij को U पर एक सहज वास्तविक-मूल्यवान फलन होने दें, जैसे कि U में प्रत्येक p के लिए, एक के पास m × m मैट्रिक्स [gij (p)] और सकारात्मक-निश्चित है . 1 और m के बीच प्रत्येक α और β के लिए, hαβ को V पर एक सहज वास्तविक-मूल्यवान कार्य होने दें, जैसे कि V में प्रत्येक q के लिए, n × n मैट्रिक्स[hαβ (q)] सममित और सकारात्मक-निश्चित है . प्रतिलोम आव्यूहों को [gij (p)] और [hαβ (q)] से निरूपित करें।

प्रत्येक के लिए i, j, k 1 और के बीच n और प्रत्येक α, β, γ 1 और के बीच m क्रिस्टोफेल प्रतीकों को परिभाषित करें Γ(g)kij : U → ℝ और Γ(h)γαβ : V → ℝ द्वारा[4]

एक सुचारू नक्शा दिया f से U को V, इसका दूसरा मूलभूत रूप प्रत्येक के लिए परिभाषित करता है i और j 1 और के बीच m और प्रत्येक के लिए α 1 और के बीच n वास्तविक-मूल्यवान कार्य ∇(df)αij पर U द्वारा[5]

इसका लाप्लासियन प्रत्येक के लिए परिभाषित करता है α 1 और के बीच n वास्तविक-मूल्यवान कार्य (∆f)α पर U द्वारा[6]


बंडल औपचारिकता

चलो (M, g) और (N, h) रीमैनियन कई गुना हो। M से N तक एक सुचारू मानचित्र f दिया गया है, कोई वेक्टर बंडल T *Mf *TN ऊपर M के एक खंड के रूप में इसके अंतर df पर विचार कर सकता है; इसका अर्थ यह है कि M में प्रत्येक p के लिए, स्पर्शरेखा रिक्त स्थान TpMTf(p)N के बीच एक रैखिक मानचित्र dfp है। [7] वेक्टर बंडलT *Mf *TN में M और N पर लेवी-सिविता कनेक्शन से प्रेरित एक कनेक्शन है।[7] तो कोई सहसंयोजक व्युत्पन्न ∇(df) ले सकता है, जो सदिश बंडल T *MT *Mf *TN ऊपर M का एक भाग है; कहने का तात्पर्य यह है कि M में प्रत्येक p के लिए, किसी के पास स्पर्शरेखा रिक्त स्थान TpM × TpMTf(p)N का एक द्विरेखीय नक्शा (∇(df))p होता है।[8] इस खंड को f के हेसियन के रूप में जाना जाता है।

g का उपयोग करके, f के लेपलासीन पर पहुंचने के लिए f के हेसियन का पता लगाया जा सकता है, जो बंडल f *TN ऊपर M; का एक भाग है; यह कहता है कि f का लैपलेशियन प्रत्येक p को M में स्पर्शरेखा स्थान Tf(p)N का एक तत्व प्रदान करता है।[9] ट्रेस संचालिका की परिभाषा के अनुसार, लैपलासीन को इस रूप में लिखा जा सकता है

जहाँ e1, ..., em ,TpM का कोई gp-ऑर्थोनॉर्मल आधार है ॥

डिरिचलेट ऊर्जा और इसकी भिन्नता सूत्र

स्थानीय निर्देशांक के दृष्टिकोण से, जैसा कि ऊपर दिया गया है, मैपिंग f का ऊर्जा घनत्व U पर दिया गया वास्तविक-मूल्यवान कार्य है[10]

वैकल्पिक रूप से, बंडल औपचारिकता में, M और N पर रिमेंनियन मेट्रिक्स T *Mf *TN पर एक बंडल मीट्रिक प्रेरित करते हैं, और इसलिए ऊर्जा घनत्व को सुचारू कार्य के रूप में परिभाषित किया जा सकता है। 1/2 | df |2 पर M.[11] यह भी संभव है कि ऊर्जा घनत्व को पहले मौलिक रूप के g ट्रेस द्वारा (आधा) दिया जा रहा है।[12] दृष्टिकोण के अतिरिक्त , ऊर्जा घनत्व e(f) M पर कार्य है जो सुचारू और गैर-ऋणात्मक है। यदि M उन्मुख है और M सघन है, f की डिरिचलेट ऊर्जा परिभाषित किया जाता है

जहाँ g ,g द्वारा प्रेरित M पर आयतन रूप है।.[13] चूंकि किसी भी गैर-ऋणात्मक मापने योग्य कार्य में अच्छी तरह से परिभाषित लेबेसेग अभिन्न अंग है, यह प्रतिबंध लगाने के लिए आवश्यक नहीं है कि M कॉम्पैक्ट है; चूँकि , तब डिरिचलेट ऊर्जा अनंत हो सकती है।

डिरिचलेट ऊर्जा के लिए भिन्नता सूत्र डिरिचलेट ऊर्जा E(f) व्युत्पत्ति की गणना करते हैं क्योंकि मैपिंग f विकृत है। इसके लिए, मानचित्रों के एक-पैरामीटर वर्ग पर विचार करें fs : MN f0 = f के साथ जिसके लिए M का एक प्रीकंपैक्ट ओपन सेट K उपस्थित है जैसे कि fs|MK = f|MK सभी s;के लिए मानता है कि पैरामीट्रिज्ड वर्ग इस मायने में सुचारू है कि संबंधित मानचित्र (−ε, ε) × MN द्वारा दिए गए (s, p) ↦ fs(p) सुचारू है।

  • पहला भिन्नता सूत्र कहता है कि[14]
सीमा के साथ कई गुना के लिए संस्करण भी है।[15]
  • दूसरा भिन्नता सूत्र भी है।[16]

प्रथम भिन्नता सूत्र के कारण, लाप्लासियन का f को डिरिचलेट ऊर्जा की प्रवणता के रूप में सोचा जा सकता है; तदनुसार, हार्मोनिक नक्शा डिरिचलेट ऊर्जा का महत्वपूर्ण बिंदु है।[17] यह औपचारिक रूप से वैश्विक विश्लेषण और बनच कई गुना की भाषा में किया जा सकता है।

हार्मोनिक मानचित्रों के उदाहरण

होने देना (M, g) और (N, h) सुचारू रीमैनियन मैनिफोल्ड्स बनें अंकन gstan का उपयोग यूक्लिडियन अंतरिक्ष पर मानक रिमेंनियन मीट्रिक को संदर्भित करने के लिए किया जाता है।

  • हर पूरी तरह से जियोडेसिक नक्शा (M, g) → (N, h) हार्मोनिक है; यह उपरोक्त परिभाषाओं से सीधे अनुसरण करता है। विशेष स्थिति के रूप में:
    • किसी के लिए q में N, स्थिर नक्शा (M, g) → (N, h) मान है q हार्मोनिक है।
    • पहचान मानचित्र (M, g) → (M, g) हार्मोनिक है।
  • यदि f : MN तब विसर्जन (गणित) है f : (M, f *h) → (N, h) हार्मोनिक है यदि और केवल यदि f के सापेक्ष न्यूनतम सबमेनिफोल्ड है h. विशेष स्थिति के रूप में:
    • यदि f : ℝ → (N, h) स्थिर-गति विसर्जन है, तब f : (ℝ, gstan) → (N, h) हार्मोनिक है यदि और केवल यदि f जियोडेसिक विभेदक समीकरण को हल करता है।
याद रखें कि यदि M आयामी है, तो f की न्यूनतम f के जियोडेसिक होने के समान है , चूँकि इसका अर्थ यह नहीं है कि यह स्थिर-गति वाला पैरामीट्रिजेशन है, और इसलिए इसका अर्थ यह नहीं है की f जियोडेसिक विभेदक समीकरण को हल करता है।
  • एक सुचारू नक्शा f : (M, g) → (ℝn, gstan) हार्मोनिक है यदि और केवल यदि इसके प्रत्येक n घटक कार्य नक्शे के रूप में हार्मोनिक हैं (M, g) → (ℝ, gstan). यह लाप्लास-बेल्ट्रामी ऑपरेटर द्वारा प्रदान की गई सामंजस्य की धारणा के साथ मेल खाता है।
  • काहलर मैनिफोल्ड्स के बीच हर होलोमॉर्फिक नक्शा हार्मोनिक है।
  • रीमैनियन मैनिफोल्ड्स के बीच हर हार्मोनिक रूपवाद हार्मोनिक है।

हार्मोनिक मैप उष्णता प्रवाह

सुदृढ़ता

होने देना (M, g) और (N, h) सुचारू रीमैनियन मैनिफोल्ड्स बनें अंतराल (a, b) पर हार्मोनिक नक्शा गर्मी प्रवाह प्रत्येक t में (a, b) दो बार अलग-अलग नक्शा ft : MN इस तरह से असाइन करता है कि, M में p प्रत्येक के लिए , वो नक्शा (a, b) → N tft (p) अलग-अलग है, और t इसका व्युत्पन्न दिए गए मान पर इसका व्युत्पन्न, Tft (p)N में एक वेक्टर के रूप में,(∆ ft )p के समान है। इसे सामान्यतः संक्षिप्त किया जाता है:

ईल्स और सैम्पसन ने हार्मोनिक मैप उष्णता प्रवाह प्रस्तुत किया और निम्नलिखित मूलभूत गुणों को सिद्ध किया:

  • नियमितता। मानचित्र के रूप में कोई हार्मोनिक मानचित्र (a, b) × MN द्वारा दिए गए (t, p) ↦ ft (p).ताप प्रवाह सुचारू है

अब मान लीजिए M बंद कई गुना है और (N, h) भौगोलिक रूप से पूर्ण है।

  • अस्तित्व। M से N तक एक लगातार अलग-अलग मानचित्र f को देखते हुए, अंतराल (0, T) पर एक सकारात्मक संख्या T और एक हार्मोनिक नक्शा ताप प्रवाह ft उपस्थित है, जैसे कि C1 टोपोलॉजी में ft , f में परिवर्तित हो जाता है क्योंकि t 0 तक घट जाती है।[18]
  • विशिष्टता। { ft : 0 < t < T } और { f t : 0 < t < T } अस्तित्व प्रमेय के अनुसार दो हार्मोनिक मैप उष्णता प्रवाह हैं, फिरft = f t जहां 0 < t < min(T, T) है।

विशिष्टता प्रमेय के परिणामस्वरूप, प्रारंभिक डेटा f के साथ अधिकतम हार्मोनिक मानचित्र ताप प्रवाह उपस्थित है , जिसका अर्थ है कि किसी के पास हार्मोनिक मैप उष्णता प्रवाह{ ft : 0 < t < T } है अस्तित्व प्रमेय के कथन के रूप में, और यह विशिष्ट रूप से अतिरिक्त मानदंड के तहत परिभाषित किया गया है T इसका अधिकतम संभव मान लेता है, जो अनंत हो सकता है।

ईल्स और सैम्पसन की प्रमेय

ईल्स और सैम्पसन के 1964 के पेपर का प्राथमिक परिणाम निम्नलिखित है:[1]

चलो (M, g) और (N, h) चिकने और बंद रिमेंनियन कई गुना हो, और मान लीजिए कि Template:गणित का अनुभागीय वक्रता सकारात्मक नहीं है। फिर f से M से N तक लगातार अलग-अलग होने वाले किसी भी मैप के लिए, मैक्सिमम हार्मोनिक मैप हीट फ्लो { ft : 0 <t <T } प्रारंभिक डेटा के साथ f है T = ∞, और जैसे ही t बढ़कर हो जाता है, मैप्स f't बाद में C टोपोलॉजी में एक हार्मोनिक मानचित्र में परिवर्तित हो जाता है।

विशेष रूप से, यह दर्शाता है कि, पर मान्यताओं के तहत (M, g) और (N, h), हर निरंतर नक्शा हार्मोनिक मानचित्र के समरूप है।[1] प्रत्येक होमोटॉपी वर्ग में हार्मोनिक मानचित्र का अस्तित्व, जो स्पष्ट रूप से मुखर हो रहा है, परिणाम का भाग है। एल्स और सैम्पसन के काम के तुरंत बाद, फिलिप हार्टमैन ने होमोटॉपी कक्षाओं के अंदर हार्मोनिक मानचित्रों की विशिष्टता का अध्ययन करने के लिए अपने विधि का विस्तार किया, साथ ही यह दिखाया कि ईल्स-सैम्पसन प्रमेय में अभिसरण शसक्त है, बिना किसी क्रम का चयन करने की आवश्यकता के[19] एल्स और सैम्पसन के परिणाम को रिचर्ड एस. हैमिल्टन द्वारा डिरिचलेट सीमा स्थिति की स्थापना के लिए अनुकूलित किया गया था, जब M इसके अतिरिक्त गैर-खाली सीमा के साथ कॉम्पैक्ट है।[20]

एकवचन और अशक्त समाधान

एल्स और सैम्पसन के काम के बाद कई वर्षों तक, यह स्पष्ट नहीं था कि अनुभागीय वक्रता की धारणा किस हद तक है (N, h) आवश्यक था। 1992 में कुंग-चिंग चांग, ​​वेई-यू डिंग और रगांग ये के काम के बाद, यह व्यापक रूप से स्वीकार किया जाता है कि हार्मोनिक नक्शा गर्मी प्रवाह के अस्तित्व का अधिकतम समय सामान्यतः अनंत होने की उम्मीद नहीं की जा सकती।[21] उनके परिणाम दृढ़ता से सुझाव देते हैं कि हार्मोनिक मानचित्र ताप प्रवाह दोनों के होने पर भी परिमित-समय के विस्फोट के साथ होता है (M, g) और (N, h) को इसके मानक मीट्रिक के साथ द्वि-आयामी क्षेत्र के रूप में लिया जाता है। चूंकि अण्डाकार और परवलयिक आंशिक अंतर समीकरण विशेष रूप से सुचारू होते हैं जब डोमेन दो आयाम होता है, चांग-डिंग-ये परिणाम को प्रवाह के सामान्य चरित्र का संकेत माना जाता है।

सैक्स और उहलेनबेक के मौलिक कार्यों पर आधारित, माइकल स्ट्रूवे ने उस स्थिति पर विचार किया जहां पर कोई ज्यामितीय धारणा नहीं थी (N, h) से बना। उस स्थिति में M द्वि-आयामी है, उन्होंने हार्मोनिक मैप उष्णता प्रवाह के अशक्त समाधान के लिए बिना नियम अस्तित्व और विशिष्टता की स्थापना की।[22] इसके अतिरिक्त , उन्होंने पाया कि उनके अशक्त समाधान बहुत से अंतरिक्ष-समय बिंदुओं से आसानी से दूर हो जाते हैं, जिस पर ऊर्जा घनत्व केंद्रित होता है। सूक्ष्म स्तरों पर, इन बिंदुओं के निकट प्रवाह को बुलबुले द्वारा प्रतिरूपित किया जाता है, अर्थात गोल 2-गोले से लक्ष्य में सहज हार्मोनिक नक्शा। वेइयु डिंग और गिरोह टीआई प्रेस एकवचन समय में ऊर्जा परिमाणीकरण को सिद्ध करने में सक्षम थे, जिसका अर्थ है कि स्ट्रूवे के अशक्त समाधान की डिरिचलेट ऊर्जा, विलक्षण समय पर, उस समय विलक्षणता के अनुरूप बुलबुले की कुल डिरिचलेट ऊर्जा के योग से कम हो जाती है। .[23]

स्ट्रूवे बाद में अपने विधि को उच्च आयामों में अनुकूलित करने में सक्षम थे, इस स्थिति में कि डोमेन मैनिफोल्ड यूक्लिडियन अंतरिक्ष है;[24] उन्होंने और युन मेई चेन ने भी उच्च-आयामी बंद मैनिफोल्ड्स पर विचार किया।[25] उनके परिणाम निम्न आयामों की तुलना में कम प्राप्त हुए, केवल अशक्त समाधानों के अस्तित्व को सिद्ध करने में सक्षम होने के कारण जो खुले घने उपसमुच्चय पर सहज हैं।

बोचनर सूत्र और कठोरता

ईल्स और सैम्पसन के प्रमेय के प्रमाण में मुख्य कम्प्यूटेशनल बिंदु हार्मोनिक मानचित्र ताप प्रवाह की सेटिंग के लिए बोचनर के सूत्र का अनुकूलन है। { ft : 0 < t < T }. यह सूत्र कहता है[26]

यह हार्मोनिक मानचित्रों के विश्लेषण में भी रूचि रखता है। कल्पना करना f : MN हार्मोनिक है; किसी भी हार्मोनिक मानचित्र को निरंतर-इन-के रूप में देखा जा सकता है t हार्मोनिक मैप उष्णता प्रवाह का समाधान, और इसलिए उपरोक्त सूत्र से प्राप्त होता है[27]

यदि g रिक्की की वक्रता सकारात्मक है और h का अनुभागीय वक्रता सकारात्मक नहीं है, तो इसका तात्पर्य है कि e(f) अऋणात्मक है। यदि M बंद है, तो e(f) गुणा और भागों द्वारा एकल एकीकरण यह दर्शाता है कि e(f) स्थिर होना चाहिए, और इसलिए शून्य; इस तरह f स्वयं स्थिर होना चाहिए।[28] रिचर्ड स्कोएन और शिंग-तुंग यौ ने नोट किया कि इस तर्क को नॉनकॉम्पैक्ट M तक बढ़ाया जा सकता है यौ के प्रमेय का उपयोग करके यह दावा करते हुए कि गैर-ऋणात्मक सबहार्मोनिक कार्य जो L2-बाध्य स्थिर होना चाहिए।[29] संक्षेप में, इन परिणामों के अनुसार, किसी के पास है:

मान लें कि (M, g) और (N, h) सुचारू और पूर्ण रीमानियन कई गुना हो, और (N, h) {mvar|f}} M से N तक एक हार्मोनिक मानचित्र बनें। मान लीजिए कि g की रिक्की वक्रता सकारात्मक है और h की अनुभागीय वक्रता गैर-धनात्मक है।

  • अगर M और N दोनों बंद हैं तो f स्थिर होना चाहिए।
  • यदि N बंद है और f में परिमित डिरिचलेट ऊर्जा है, तो यह स्थिर होना चाहिए।

ईल्स-सैम्पसन प्रमेय के संयोजन में, यह दिखाता है (उदाहरण के लिए) कि यदि (M, g) सकारात्मक रिक्की वक्रता के साथ बंद रिमेंनियन मैनिफोल्ड है और (N, h) गैर-सकारात्मक अनुभागीय वक्रता के साथ बंद रिमेंनियन मैनिफोल्ड है, फिर प्रत्येक निरंतर मानचित्र से M को N स्थिरांक के लिए समरूप है।

एक सामान्य मानचित्र को हार्मोनिक मानचित्र में विकृत करने का सामान्य विचार, और फिर यह दर्शाता है कि ऐसा कोई भी हार्मोनिक मानचित्र स्वचालित रूप से अत्यधिक प्रतिबंधित वर्ग का होना चाहिए, कई अनुप्रयोगों को मिला है। उदाहरण के लिए, यम-टोंग सिउ ने बोचनर सूत्र का महत्वपूर्ण जटिल-विश्लेषणात्मक संस्करण पाया, जिसमें कहा गया है कि काहलर मैनिफोल्ड्स के बीच हार्मोनिक मानचित्र होलोमोर्फिक होना चाहिए, परंतु कि लक्ष्य मैनिफोल्ड में उचित ऋणात्मक वक्रता हो।[30] अनुप्रयोग के रूप में, हार्मोनिक मानचित्रों के लिए ईल्स-सैम्पसन अस्तित्व प्रमेय का उपयोग करके, वह यह दिखाने में सक्षम था कि यदि (M, g) और (N, h) चिकने और बंद काहलर कई गुना होते हैं, और यदि वक्रता होती है (N, h) उचित रूप से ऋणात्मक है, तो M और N बाइहोलोमॉर्फिक या एंटी-बिहोलोमॉर्फिक होना चाहिए यदि वे दूसरे के समरूप हैं; बिहोलोमोर्फिज्म (या एंटी-बिहोलोमोर्फिज्म) स्पष्ट रूप से हार्मोनिक मैप है जो होमोटॉपी द्वारा दिए गए प्रारंभिक डेटा के साथ हार्मोनिक मैप उष्णता प्रवाह की सीमा के रूप में निर्मित होता है। उसी दृष्टिकोण के वैकल्पिक सूत्रीकरण के द्वारा, सिउ ऋणात्मक वक्रता के प्रतिबंधित संदर्भ में, अभी भी अनसुलझे हॉज अनुमान के संस्करण को सिद्ध करने में सक्षम था।

केविन कॉरलेट ने सिउ के बोचनर फॉर्मूले का महत्वपूर्ण विस्तार पाया, और इसका उपयोग कुछ झूठ समूह में जाली के लिए नई अति कठोरता सिद्ध करने के लिए किया ।[31] इसके बाद, मिखाइल लियोनिदोविच ग्रोमोव और रिचर्ड स्कोएन ने अनुमति देने के लिए हार्मोनिक मानचित्रों के सिद्धांत का विस्तार किया (N, h) को मीट्रिक स्थान से बदलना है।[32] ईल्स-सैम्पसन प्रमेय के विस्तार के साथ सिउ-कॉर्लेट बोचनर सूत्र के विस्तार के साथ, वे जाली के लिए नई कठोरता प्रमेय सिद्ध करने में सक्षम थे।

समस्याएं और अनुप्रयोग

  • मैनिफोल्ड्स के बीच हार्मोनिक मानचित्रों पर अस्तित्व के परिणाम उनके रीमैन वक्रता टेन्सर के लिए परिणाम हैं।
  • एक बार अस्तित्व ज्ञात हो जाने के बाद, हार्मोनिक मानचित्र को स्पष्ट रूप से कैसे बनाया जा सकता है? (एक उपयोगी विधि ट्विस्टर सिद्धांत का उपयोग करती है।)
  • सैद्धांतिक भौतिकी में, क्वांटम क्षेत्र सिद्धांत जिसकी क्रिया (भौतिकी) डिरिचलेट ऊर्जा द्वारा दी जाती है, सिग्मा मॉडल के रूप में जाना जाता है। ऐसे सिद्धांत में, हार्मोनिक मानचित्र instatonsइंस्टा टन के अनुरूप होते हैं।
  • कम्प्यूटेशनल तरल गतिशीलता और कम्प्यूटेशनल भौतिकी के लिए ग्रिड पीढ़ी के विधि में मूल विचारों में से नियमित ग्रिड उत्पन्न करने के लिए अनुरूप या हार्मोनिक मानचित्रण का उपयोग करना था।

मीट्रिक रिक्त स्थान के बीच हार्मोनिक मानचित्र

दो मीट्रिक रिक्त स्थान के बीच कार्य u : MN के लिए अशक्त सेटिंग में ऊर्जा अभिन्न तैयार किया जा सकता है। इसके अतिरिक्त ऊर्जा एकीकृत प्रपत्र का एक कार्य है

जिसमें με
x
M के प्रत्येक बिंदु से जुड़े माप (गणित) का वर्ग है।[33]

यह भी देखें

संदर्भ

Footnotes

  1. 1.0 1.1 1.2 Eells & Sampson 1964, Section 11A.
  2. Sacks & Uhlenbeck 1981.
  3. Schoen & Uhlenbeck 1982; Schoen & Uhlenbeck 1983.
  4. Aubin 1998, p.6; Hélein 2002, p.6; Jost 2017, p.489; Lin & Wang 2008, p.2.
  5. Aubin 1998, p.349; Eells & Lemaire 1978, p.9; Eells & Lemaire 1983, p.15; Hamilton 1975, p.4.
  6. Aubin 1998, Definition 10.2; Eells & Lemaire 1978, p.9; Eells & Lemaire 1983, p.15; Eells & Sampson 1964, Section 2B; Hamilton 1975, p.4; Lin & Wang 2008, p.3.
  7. Eells & Lemaire 1983, p.4.
  8. Eells & Lemaire 1978, p.8; Eells & Sampson 1964, Section 3B; Hamilton 1975, p.4.
  9. Eells & Lemaire 1978, p.9; Hamilton 1975, p.4; Jost 2017, p.494.
  10. Aubin 1998, Definition 10.1; Eells & Lemaire 1978, p.10; Eells & Lemaire 1983, p.13; Hélein 2002, p.7; Jost 2017, p.489; Lin & Wang 2008, p.1; Schoen & Yau 1997, p.1.
  11. Eells & Lemaire 1978, p.10; Eells & Lemaire 1983, p.13; Jost 2017, p.490-491.
  12. Aubin 1998, Definition 10.1; Eells & Lemaire 1978, p.10; Eells & Lemaire 1983, p.13; Eells & Sampson 1964, Section 1A; Jost 2017, p.490-491; Schoen & Yau 1997, p.1.
  13. Aubin 1998, Definition 10.1; Eells & Lemaire 1978, p.10; Eells & Lemaire 1983, p.13; Eells & Sampson 1964, Section 1A; Hélein 2002, p.7; Jost 2017, p.491; Lin & Wang 2008, p.1; Schoen & Yau 1997, p.2.
  14. Aubin 1998, Proposition 10.2; Eells & Lemaire 1978, p.11; Eells & Lemaire 1983, p.14; Eells & Sampson 1964, Section 2B; Jost 2017, Formula 9.1.13.
  15. Hamilton 1975, p.135.
  16. Eells & Lemaire 1978, p.10; Eells & Lemaire 1983, p.28; Lin & Wang 2008, Proposition 1.6.2.
  17. Aubin 1998, Definition 10.3; Eells & Lemaire 1978, p.11; Eells & Lemaire 1983, p.14.
  18. This means that, relative to any local coordinate charts, one has uniform convergence on compact sets of the functions and their first partial derivatives.
  19. Hartman 1967, Theorem B.
  20. Hamilton 1975, p.157-161.
  21. Chang, Ding & Ye 1992; Lin & Wang 2008, Section 6.3.
  22. Struwe 1985.
  23. Ding & Tian 1995.
  24. Struwe 1988.
  25. Chen & Struwe 1989.
  26. Eells & Sampson 1964, Section 8A; Hamilton 1975, p.128-130; Lin & Wang 2008, Lemma 5.3.3.
  27. Aubin 1998, Lemma 10.11; Eells & Sampson 1964, Section 3C; Jost 1997, Formula 5.1.18; Jost 2017, Formula 9.2.13; Lin & Wang 2008, Theorem 1.5.1.
  28. Aubin 1998, Corollary 10.12; Eells & Sampson 1964, Section 3C; Jost 1997, Theorem 5.1.2; Jost 2017, Corollary 9.2.3; Lin & Wang 2008, Proposition 1.5.2.
  29. Schoen & Yau 1976, p.336-337.
  30. Siu 1980.
  31. Corlette 1992.
  32. Gromov & Schoen 1992.
  33. Jost 1994, Definition 1.1.

Articles

Books and surveys


बाहरी संबंध