लोरेन्ट्स रूपांतरण: Difference between revisions
No edit summary |
No edit summary |
||
Line 220: | Line 220: | ||
{{Further|यूक्लिडियन वेक्टर|वेक्टर प्रक्षेपण}} | {{Further|यूक्लिडियन वेक्टर|वेक्टर प्रक्षेपण}} | ||
[[File:Lorentz boost any direction standard configuration.svg|upright=1.75|thumb|फ्रेम में | [[File:Lorentz boost any direction standard configuration.svg|upright=1.75|thumb|फ्रेम में पर्यवेक्षक {{math|''F''}} देखता है {{math|''F''′}} वेग से चलना {{math|'''v'''}}, जबकि {{math|''F''′}} देखता है {{math|''F''}} वेग से चलना {{math|−'''v'''}}. {{According to whom|The coordinate axes of each frame are still parallel|date=November 2020}} और ऑर्थोगोनल। प्रत्येक फ्रेम में मापी गई स्थिति सदिश सापेक्ष वेग सदिश के समानांतर और लंबवत घटकों में विभाजित होती है {{math|'''v'''}}.<br />बायां: मानक कॉन्फ़िगरेशन। दाएँ: उलटा विन्यास।]]सदिशों के उपयोग से स्थिति और वेगों को स्वेच्छानुसार दिशाओं में अभिव्यक्त करने की अनुमति मिलती है। किसी भी दिशा में एकल बूस्ट पूर्ण सापेक्ष [[वेग वेक्टर|वेग {{math|'''v'''}} सदिश]] पर निर्भर करता हैI {{math|0 ≤ ''v'' < ''c''}} परिमाण के साथ {{math|1={{abs|'''v'''}} = ''v''}} जो {{math|''c''}} के बराबर या अधिक नहीं हो सकता है। | ||
सापेक्ष गति की दिशा के समानांतर केवल समय और निर्देशांक परिवर्तित होते है, जबकि वे निर्देशांक लंबवत नहीं होते हैं। इसे ध्यान में रखते हुए, स्थानिक स्थिति सदिश {{math|'''v'''}} को विभाजित करें I {{math|'''r'''}} में मापा गया {{math|''F''}}, और {{math|'''r'''′}} में मापा गया {{math|''F′''}}, प्रत्येक को लंबवत (⊥) और समानांतर (‖ ) घटकों में विभाजित करें: | सापेक्ष गति की दिशा के समानांतर केवल समय और निर्देशांक परिवर्तित होते है, जबकि वे निर्देशांक लंबवत नहीं होते हैं। इसे ध्यान में रखते हुए, स्थानिक स्थिति सदिश {{math|'''v'''}} को विभाजित करें I {{math|'''r'''}} में मापा गया {{math|''F''}}, और {{math|'''r'''′}} में मापा गया {{math|''F′''}}, प्रत्येक को लंबवत (⊥) और समानांतर (‖ ) घटकों में विभाजित करें: | ||
Line 275: | Line 275: | ||
{{Further|फंक्शन का अंतर|वेग जोड़ने का सूत्र}} | {{Further|फंक्शन का अंतर|वेग जोड़ने का सूत्र}} | ||
[[File:Lorentz transformation of velocity including velocity addition.svg|upright=1.75|thumb|वेगों का परिवर्तन परिभाषा वेग जोड़ सूत्र प्रदान करता है {{math|⊕}}, वेगों के योग के क्रम को दर्शाने के लिए सदिशों के क्रम को चुना जाता है; | [[File:Lorentz transformation of velocity including velocity addition.svg|upright=1.75|thumb|वेगों का परिवर्तन परिभाषा वेग जोड़ सूत्र प्रदान करता है {{math|⊕}}, वेगों के योग के क्रम को दर्शाने के लिए सदिशों के क्रम को चुना जाता है; {{math|'''v'''}} (F' के सापेक्ष F' का वेग) तब {{math|'''u'''′}} (F' के सापेक्ष X का वेग) प्राप्त करने के लिए {{math|'''u''' {{=}} '''v''' ⊕ '''u'''′}} (F के सापेक्ष X का वेग)।]]समन्वय वेग और लोरेंत्ज़ कारक को परिभाषित करना | ||
:<math>\mathbf{u} = \frac{d\mathbf{r}}{dt} \,,\quad \mathbf{u}' = \frac{d\mathbf{r}'}{dt'} \,,\quad \gamma_\mathbf{v} = \frac{1}{\sqrt{1-\dfrac{\mathbf{v}\cdot\mathbf{v}}{c^2}}}</math> | :<math>\mathbf{u} = \frac{d\mathbf{r}}{dt} \,,\quad \mathbf{u}' = \frac{d\mathbf{r}'}{dt'} \,,\quad \gamma_\mathbf{v} = \frac{1}{\sqrt{1-\dfrac{\mathbf{v}\cdot\mathbf{v}}{c^2}}}</math> | ||
Line 644: | Line 644: | ||
==== विद्युत चुम्बकीय क्षेत्र का परिवर्तन ==== | ==== विद्युत चुम्बकीय क्षेत्र का परिवर्तन ==== | ||
[[File:Lorentz boost electric charge.svg|upright=1.75|thumb|लोरेंत्ज़ | [[File:Lorentz boost electric charge.svg|upright=1.75|thumb|लोरेंत्ज़ विद्युत आवेश को बूस्ट देता है, आवेश एक या दूसरे फ्रेम में स्थिर रहता है।]] | ||
{{main|विद्युत चुम्बकीय टेंसर}} | {{main|विद्युत चुम्बकीय टेंसर}} | ||
{{Further|क्लासिक विद्युत चुंबकत्व और विशेष सापेक्षता}} | {{Further|क्लासिक विद्युत चुंबकत्व और विशेष सापेक्षता}} | ||
Line 663: | Line 663: | ||
\end{bmatrix} \text{(SI units, signature }(+,-,-,-)\text{)}. | \end{bmatrix} \text{(SI units, signature }(+,-,-,-)\text{)}. | ||
</math> | </math> | ||
एसआई इकाइयों की सापेक्षता में, गौसियन इकाइयों को | एसआई इकाइयों की सापेक्षता में, गौसियन इकाइयों को प्रायः एसआई इकाइयों से अधिक पसंद किया जाता है, यहां तक कि उन पाठों में भी जिनकी इकाइयों की मुख्य पसंद एसआई इकाइयां हैं, क्योंकि इसमें विद्युत क्षेत्र {{math|'''E'''}} और चुंबकीय प्रेरण {{math|'''B'''}} में वही इकाइयाँ होती हैं जो [[विद्युत चुम्बकीय टेंसर]] की उपस्थिति को और अधिक प्राकृतिक बनाती हैं।<ref>{{harvnb|Jackson|1999}}</ref> {{math|''x''}}-दिशा में लोरेंत्ज़ बूस्ट पर विचार करें।<ref>{{harvnb|Misner|Thorne|Wheeler|1973}}</ref> | ||
<math display="block"> | <math display="block"> | ||
{\Lambda^\mu}_\nu = \begin{bmatrix} | {\Lambda^\mu}_\nu = \begin{bmatrix} | ||
Line 683: | Line 683: | ||
सामान्य परिवर्तन कानून {{EquationNote|(T3)}} हो जाता है | सामान्य परिवर्तन कानून {{EquationNote|(T3)}} हो जाता है | ||
<math display="block">F^{\mu'\nu'} = {\Lambda^{\mu'}}_\mu {\Lambda^{\nu'}}_\nu F^{\mu\nu}.</math> | <math display="block">F^{\mu'\nu'} = {\Lambda^{\mu'}}_\mu {\Lambda^{\nu'}}_\nu F^{\mu\nu}.</math> | ||
चुंबकीय क्षेत्र के लिए | चुंबकीय क्षेत्र के लिए प्राप्त करता है | ||
<math display="block">\begin{align} | <math display="block">\begin{align} | ||
B_{x'} &= F^{2'3'} | B_{x'} &= F^{2'3'} | ||
Line 736: | Line 736: | ||
\mathbf{B}_{\bot'} &= \gamma \left( \mathbf{B}_\bot - \boldsymbol{\beta} \times \mathbf{E}_\bot \right) = \gamma \left( \mathbf{B} - \boldsymbol{\beta} \times \mathbf{E} \right)_\bot, | \mathbf{B}_{\bot'} &= \gamma \left( \mathbf{B}_\bot - \boldsymbol{\beta} \times \mathbf{E}_\bot \right) = \gamma \left( \mathbf{B} - \boldsymbol{\beta} \times \mathbf{E} \right)_\bot, | ||
\end{align}</math> | \end{align}</math> | ||
और मीट्रिक हस्ताक्षर से स्वतंत्र हैं। SI इकाइयों के लिए, स्थानापन्न करें {{math|''E'' → {{frac|''E''|''c''}}}}. {{harvtxt| | और मीट्रिक हस्ताक्षर से स्वतंत्र हैं। SI इकाइयों के लिए, स्थानापन्न करें {{math|''E'' → {{frac|''E''|''c''}}}}. {{harvtxt|मिस्नर|थोरने|व्हीलर|1973}} इस अंतिम रूप को इस रूप में देखें {{math|3 + 1}} टेन्सर एक्सप्रेशन द्वारा दर्शाए गए ज्यामितीय दृश्य के विपरीत देखें I | ||
<math display="block">F^{\mu'\nu'} = {\Lambda^{\mu'}}_\mu {\Lambda^{\nu'}}_\nu F^{\mu\nu},</math> | <math display="block">F^{\mu'\nu'} = {\Lambda^{\mu'}}_\mu {\Lambda^{\nu'}}_\nu F^{\mu\nu},</math> | ||
और सरली से | और सरली से बिंदु बनाएं जिसके साथ परिणाम प्राप्त करना मुश्किल हो {{math|3 + 1}} दृश्य प्राप्त और समझा जा सकता है। केवल वे वस्तुएँ जिनमें अच्छी प्रकार से परिभाषित लोरेंत्ज़ परिवर्तन गुण हैं और ज्यामितीय वस्तुएँ हैं। ज्यामितीय दृश्य में, विद्युत चुम्बकीय क्षेत्र दो अन्योन्याश्रित, लेकिन अंतरिक्ष और समय में विभक्त-विभक्त, 3-सदिश क्षेत्रों के विपरीत अंतरिक्ष-समय में एक छह-आयामी ज्यामितीय वस्तु है। मैदान {{math|'''E'''}} और {{math|'''B'''}} में अच्छी प्रकार से परिभाषित लोरेंत्ज़ परिवर्तन गुण नहीं हैं। गणितीय आधार समीकरण {{EquationNote|(T1)}} और {{EquationNote|(T2)}} कि तुरंत उपज {{EquationNote|(T3)}} हैं I यह ध्यान रखना चाहिए कि प्राइमेड और अनप्राइमेड टेंसर स्पेसटाइम में ही घटना को संदर्भित करते हैं। इस प्रकार दिक्-काल निर्भरता के साथ पूर्ण समीकरण है I | ||
<math display="block"> | <math display="block"> | ||
F^{\mu' \nu'}\left(x'\right) = | F^{\mu' \nu'}\left(x'\right) = | ||
Line 744: | Line 744: | ||
{\Lambda^{\mu'}}_\mu {\Lambda^{\nu'}}_\nu F^{\mu\nu}(x). | {\Lambda^{\mu'}}_\mu {\Lambda^{\nu'}}_\nu F^{\mu\nu}(x). | ||
</math> | </math> | ||
लंबाई के संकुचन का चार्ज घनत्व पर प्रभाव पड़ता है {{math|''ρ''}} और [[वर्तमान घनत्व]] {{math|'''J'''}}, और समय फैलाव का प्रभाव प्रवाह (वर्तमान) की दर पर प्रभाव पड़ता है, इसलिए चार्ज और वर्तमान वितरण को | लंबाई के संकुचन का चार्ज घनत्व पर प्रभाव पड़ता है I {{math|''ρ''}} और [[वर्तमान घनत्व]] {{math|'''J'''}}, और समय फैलाव का प्रभाव प्रवाह (वर्तमान) की दर पर प्रभाव पड़ता है, इसलिए चार्ज और वर्तमान वितरण को बूस्ट के अंतर्गत संबंधित प्रकार से बदलना चाहिए। यह पता चला है कि वे बिल्कुल अंतरिक्ष-समय और ऊर्जा-संवेग चार-सदिश की प्रकार रूपांतरित होते हैं, | ||
<math display="block">\begin{align} | <math display="block">\begin{align} | ||
\mathbf{j}' &= \mathbf{j} - \gamma\rho v\mathbf{n} + \left( \gamma - 1 \right)(\mathbf{j} \cdot \mathbf{n})\mathbf{n} \\ | \mathbf{j}' &= \mathbf{j} - \gamma\rho v\mathbf{n} + \left( \gamma - 1 \right)(\mathbf{j} \cdot \mathbf{n})\mathbf{n} \\ | ||
Line 751: | Line 751: | ||
या, सरल ज्यामितीय दृश्य में, | या, सरल ज्यामितीय दृश्य में, | ||
<math display="block">j^{\mu'} = {\Lambda^{\mu'}}_\mu j^\mu.</math> | <math display="block">j^{\mu'} = {\Lambda^{\mu'}}_\mu j^\mu.</math> | ||
चार्ज घनत्व चार-सदिश के समय घटक के रूप में परिवर्तित होता है। यह | चार्ज घनत्व चार-सदिश के समय घटक के रूप में परिवर्तित होता है। यह घूर्णी अदिश राशि है। वर्तमान घनत्व 3-सदिश है। | ||
[[मैक्सवेल समीकरण]] लोरेंत्ज़ परिवर्तनों के अंतर्गत अपरिवर्तनीय हैं। | [[मैक्सवेल समीकरण]] लोरेंत्ज़ परिवर्तनों के अंतर्गत अपरिवर्तनीय हैं। |
Revision as of 17:28, 12 March 2023
Part of a series on |
Spacetime |
---|
![]() |
भौतिकी में, लोरेंत्ज़ रूपांतरण रैखिक परिवर्तन का छह-पैरामीटर परिवार है I जो अंतरिक्ष समय में संदर्भ के फ्रेम से दूसरे फ्रेम में परिवर्तन का समन्वय करता है, और जो पूर्व के सापेक्ष निरंतर वेग पर चलता है। इसे संबंधित व्युत्क्रम परिवर्तन के ऋणात्मक वेग द्वारा परिचालित किया जाता है। परिवर्तनों का नाम डच भौतिक विज्ञानी हेंड्रिक लोरेंत्ज़ के नाम पर रखा गया है।
परिवर्तन का सामान्य रूप, वास्तविक स्थिरांक द्वारा पैरामीट्रिज्ड तक सीमित वेग का प्रतिनिधित्व करता है, x-दिशा, के रूप में व्यक्त किया जाता है I[1][2]
गति को व्यक्त करते हुए परिवर्तन का समकक्ष रूप है[3]
संदर्भ के प्रत्येक फ्रेम में, पर्यवेक्षक लंबाई को मापने के लिए स्थानीय समन्वय प्रणाली का उपयोग, और समय अंतराल को मापने के लिए घड़ी का उपयोग कर सकते है। घटना (सापेक्षता) कुछ ऐसी है, जो अंतरिक्ष में एक बिंदु पर पल में होती है, या अधिक औपचारिक रूप से स्पेसटाइम में बिंदु होता है। परिवर्तन घटना (सापेक्षता) के स्थान और समय के निर्देशांक को जोड़ते हैं, जैसा कि प्रत्येक फ्रेम में पर्यवेक्षक द्वारा मापा जाता है।[nb 1] वे न्यूटोनियन भौतिकी के गैलीलियन परिवर्तन को त्याग देते हैं, जो पूर्ण स्थान और समय को मानता है। गैलिलियन परिवर्तन प्रकाश की गति से बहुत कम सापेक्ष गति पर ही सन्निकटन होते है। लोरेन्ट्ज़ परिवर्तनों में कई विशेषताएं हैं जो गैलिलियन परिवर्तनों में प्रकट नहीं होती हैं। उदाहरण के लिए, वे इस तथ्य को प्रतिबिंबित करते हैं कि विभिन्न वेगो पर चलने वाले पर्यवेक्षक विभक्त-विभक्त लंबाई के संकुचन, समय के फैलाव और साथ में विभक्त-विभक्त सापेक्षता को माप सकते हैं, लेकिन सदैव ऐसा होता है कि सभी जड़त्वीय संदर्भ फ़्रेमों में प्रकाश की गति समान होती है। प्रकाश की गति का निश्चरता विशेष सापेक्षता के सिद्धांतों में से होता है।
ऐतिहासिक रूप से, परिवर्तन लोरेंत्ज़ और अन्य लोगों द्वारा यह समझाने के प्रयासों का परिणाम थे कि प्रकाश की गति को संदर्भ के फ्रेम से स्वतंत्र कैसे देखा गया था, और विद्युत चुंबकत्व के नियमों की समरूपता को समझने के लिए लोरेंत्ज़ परिवर्तन अल्बर्ट आइंस्टीन की विशेष सापेक्षता के अनुसार है, लेकिन यह पहले प्राप्त किया गया था।
लोरेंत्ज़ परिवर्तन रैखिक परिवर्तन है। इसमें अंतरिक्ष का घूर्णन सम्मलित हो सकता है; घूर्णन-मुक्त लोरेंत्ज़ परिवर्तन को लोरेंत्ज़ बूस्ट कहा जाता है। मिन्कोव्स्की अंतरिक्ष में - विशेष सापेक्षता में दिक्-काल का गणितीय मॉडल- लोरेंत्ज़ रूपांतरण किसी भी दो घटनाओं के मध्य दिक्-समय अंतराल को संरक्षित करता है। यह संपत्ति लोरेंत्ज़ परिवर्तन की परिभाषित संपत्ति है। वे केवल उन रूपांतरणों का वर्णन करते हैं जिनमें उद्गम स्थल पर दिक्-काल की घटना निश्चित रहती है। उन्हें मिन्कोव्स्की अंतरिक्ष के अतिशयोक्तिपूर्ण घूर्णन के रूप में माना जा सकता है। रूपांतरण का अधिक सामान्य सेट जिसमें अनुवाद भी सम्मलित है, पोंकारे समूह के रूप में जाना जाता है।
इतिहास
कई भौतिक विज्ञानी- जिनमें वोल्डेमर वोइगट, जॉर्ज फ्रांसिस फिट्ज़गेराल्ड,जोसेफ लारमोर और हेंड्रिक लोरेंत्ज़ सम्मलित हैं[4] स्वयं-1887 से इन समीकरणों द्वारा निहित भौतिकी पर चर्चा कर रहे थे।[5] 1889 के प्रारम्भ में, ओलिवर हीविसाइड ने मैक्सवेल के समीकरणों से दिखाया था कि आवेश के गोलाकार वितरण के निकट विद्युत क्षेत्र में गोलाकार समरूपता समाप्त हो जानी चाहिए, जब चार्ज चमकदार ईथर के सापेक्ष गति में हो। फिट्जगेराल्ड ने तब अनुमान लगाया कि हीविसाइड के विरूपण परिणाम को इंटरमॉलिक्युलर बलों के सिद्धांत पर लागू किया जा सकता है। कुछ महीने पश्चात् , फिट्जगेराल्ड ने अनुमान प्रकाशित किया कि माइकलसन-मॉर्ले प्रयोग के चौंकाने वाले परिणाम की व्याख्या करने के लिए गति में पिंडों को अनुबंधित किया जा रहा है। 1887 माइकलसन और मॉर्ले का एथर-विंड प्रयोग 1892 में, लोरेंत्ज़ ने स्वतंत्र रूप से उसी विचार को अधिक विस्तृत प्रकार से प्रस्तुत किया, जिसे पश्चात् फिट्ज़गेराल्ड-लोरेंत्ज़ संकुचन परिकल्पना कहा गया।[6] उनकी व्याख्या 1905 से पहले व्यापक रूप से जानी जाती थी।[7] लोरेंत्ज़ (1892-1904) और लार्मर (1897-1900), जो ल्यूमिनिफेरस एथर परिकल्पना को मानते थे, उन्होंने ने भी उस परिवर्तन की जाँच की जिसके अंतर्गत मैक्सवेल के समीकरण एथर से गतिशील फ्रेम में परिवर्तित होने पर अपरिवर्तनीय होते हैं। फिट्जगेराल्ड-लोरेंत्ज़ संकुचन परिकल्पना का विस्तार किया और पाया कि समय समन्वय को भी संशोधित किया जाना है। हेनरी पोनकारे ने घड़ी के तुल्यकालन के परिणाम के रूप में, स्थानीय समय के लिए भौतिक व्याख्या दी कि प्रकाश की गति गति करते हुए तख्ते में स्थिर है I [8] लरमोर को अपने समीकरणों में निहित महत्वपूर्ण समय फैलाव संपत्ति को समझने वाले पहले व्यक्ति होने का श्रेय दिया जाता है।[9] 1905 में, पोंकारे प्रथम पहचान थी कि परिवर्तन में समूह (गणित) के गुण होते हैं, और उन्होंने इसका नाम लोरेंत्ज़ के नाम पर रखा था।[10] उसी वर्ष अल्बर्ट आइंस्टीन ने प्रकाशित किया जिसे अब विशेष सापेक्षता कहा जाता है, सापेक्षता के सिद्धांत की मान्यताओं के अंतर्गत लोरेंत्ज़ परिवर्तन को प्राप्त करके और किसी भी जड़त्वीय संदर्भ फ्रेम में प्रकाश की गति की स्थिरता, और यंत्रवत एथर को अनावश्यक रूप से त्याग कर सापेक्षता कहा जाता है I[11]
लोरेंत्ज़ परिवर्तनों के समूह की व्युत्पत्ति
घटना (सापेक्षता) जो स्पेसटाइम में निश्चित बिंदु पर होती है, या अधिक सामान्यतः, स्पेसटाइम में ही बिंदु पर होती है। किसी भी जड़त्वीय फ्रेम में घटना को समय समन्वय सीटी और कार्टेशियन निर्देशांक x, y, z के समूह द्वारा निर्दिष्ट किया जाता है I उस फ्रेम में अंतरिक्ष में स्थिति निर्दिष्ट करने के लिए सदस्यताएँ व्यक्तिगत घटनाओं को लेबल करती हैं।
विशेष आपेक्षिकता (प्रकाश की गति का व्युत्क्रम) के आइंस्टीन के अभिधारणाओं से यह इस प्रकार है:
|
(D1) |
प्रकाश संकेतों a1 = (t1, x1, y1, z1) और a2 = (t2, x2, y2, z2) से जुड़ी घटनाओं के लिए सभी जड़त्वीय फ्रेम में बाईं ओर की मात्रा को घटनाओं के मध्य का स्पेसटाइम अंतराल कहा जाता है I किन्हीं दो घटनाओं के मध्य का अंतराल, अनिवार्य रूप से प्रकाश संकेतों द्वारा विभक्त नहीं किया गया है, जो वास्तव में अपरिवर्तनीय है, अर्थात, विभिन्न जड़त्वीय फ़्रेमों में पर्यवेक्षकों की सापेक्ष गति की स्थिति से स्वतंत्र है, जैसा कि लोरेंत्ज़ परिवर्तनों की व्युत्पत्ति अंतराल का व्युत्क्रम है। इस प्रकार रूपांतरण के पास यह गुण होना चाहिए :
|
(D2) |
जहाँ (ct, x, y, z) स्पेसटाइम निर्देशांक हैं, जिनका उपयोग घटनाओं को फ्रेम में परिभाषित करने के लिए किया जाता है, और दूसरे फ्रेम में निर्देशांक (ct′, x′, y′, z′) हैं। (D2) स्वेच्छानुसार होने पर संतुष्ट होता है I 4-टुपल b संख्याओं को ईवेंट a1 और a2.में जोड़ा जाता है I इस प्रकार के परिवर्तनों को स्पेसटाइम ट्रांसलेशन कहा जाता है और यहां इसके बारे में बात नहीं की जाती है। सरल समस्या की उत्पत्ति को संरक्षित करने वाला रैखिक समाधान सामान्य समस्या का भी समाधान करता है:
|
(D3) |
(सूत्र को संतुष्ट करने वाला समाधान स्वचालित रूप से दूसरे को भी संतुष्ट करता है; ध्रुवीकरण पहचान देखें)। सरल समस्या का समाधान शास्त्रीय समूहों के सिद्धांत में देखने का विषय है जो विभिन्न हस्ताक्षरों के बिलिनियर रूपों को संरक्षित करता है।[nb 2] (D3) में पहला समीकरण अधिक संक्षिप्त रूप में लिखा जा सकता है:
|
(D4) |
जहाँ (·, ·) सिग्नेचर के बिलिनियर(द्विघात रूप) रूप को संदर्भित करता है I (1, 3) पर R4 दाहिने हाथ की ओर सूत्र द्वारा उजागर (D3), दाईं ओर परिभाषित वैकल्पिक संकेतन को सापेक्षतावादी डॉट उत्पाद कहा जाता है। स्पेसटाइम को R4 गणितीय रूप में देखा जाता है I इस द्विरेखीय रूप से संपन्न मिन्कोव्स्की अंतरिक्ष के M रूप में जाना जाता है I लोरेंत्ज़ परिवर्तन इस प्रकार समूह का O(1, 3) तत्व है, लोरेंत्ज़ समूह या, उनके लिए जो अन्य मीट्रिक हस्ताक्षर पसंद करते हैं, O(3, 1) (जिसे लोरेंत्ज़ समूह भी कहा जाता है)।[nb 3]
|
(D5) |
(D3) जो वास्तव में द्विरेखीय रूप का संरक्षण है I जिसका अर्थ है (रैखिकता द्वारा Λ और प्रपत्र की द्विरेखीयता) कि (D2) संतुष्ट है। लोरेंत्ज़ समूह के तत्व घूर्णन समूह SO(3) हैं, और इसके पश्चात् इसे बढ़ाते और मिलाते हैं। यदि अंतरिक्ष-समय के अनुवादों को सम्मलित किया जाता है, तो विषम लोरेंत्ज़ समूह या पॉइनकेयर समूह प्राप्त होता है।
सामान्यता
प्राइमेड और अनप्राइमेड स्पेसटाइम निर्देशांक के मध्य संबंध लोरेंत्ज़ परिवर्तन हैं, फ्रेम में प्रत्येक समन्वय दूसरे फ्रेम में सभी निर्देशांकों का रैखिक कार्य है, और व्युत्क्रम कार्य व्युत्क्रम परिवर्तन हैं। फ़्रेम एक दूसरे के सापेक्ष कैसे चलते हैं, और वे एक दूसरे के सापेक्ष अंतरिक्ष में कैसे उन्मुख होते हैं, इस पर निर्भर करते हुए, अन्य पैरामीटर जो दिशा, गति और अभिविन्यास का वर्णन करते हैं, परिवर्तन समीकरणों में प्रवेश करते हैं।
निरंतर वेग के साथ सापेक्ष गति का वर्णन करने वाले परिवर्तन और अंतरिक्ष समन्वय अक्षों को घूर्णन के बिना बूस्ट कहा जाता है, और फ्रेम के मध्य सापेक्ष वेग परिवर्तन का पैरामीटर कहा जाता है। अन्य मूल प्रकार का लोरेंत्ज़ परिवर्तन केवल स्थानिक निर्देशांक में घूर्णन है, ये बूस्ट जड़त्वीय परिवर्तन होते हैं, क्योंकि कोई सापेक्ष गति नहीं है, फ्रेम बस झुका हुआ है, और इस विषय में घूर्णन को परिभाषित करने वाली मात्राएँ परिवर्तन के पैरामीटर हैं (जैसे, अक्ष-कोण प्रतिनिधित्व, या यूलर कोण, आदि)। घूर्णन और बूस्ट का संयोजन सजातीय परिवर्तन है, जो मूल को पुनः मूल में परिवर्तित कर देता है।
पूर्ण लोरेंत्ज़ समूह O(3, 1) में विशेष परिवर्तन भी सम्मलित हैं जो न तो घूर्णन हैं और न ही बूस्ट, बल्कि मूल के माध्यम से विमान में प्रतिबिंब (गणित) होते है I इनमें से दो का चयन किया जा सकता है; पी-सममिति जिसमें सभी घटनाओं के स्थानिक निर्देशांक साइन में उलटे होते हैं और टी-समरूपता जिसमें प्रत्येक घटना के लिए समय निर्देशांक अपने साइन को उलट देता है।
बूस्ट को स्पेसटाइम में मात्र विस्थापन के साथ नहीं जोड़ा जाना चाहिए; इस विषय में, समन्वय प्रणाली स्थानांतरित हो जाती है और कोई सापेक्ष गति नहीं होती है। चूँकि, इन्हें विशेष सापेक्षता द्वारा समरूपता के रूप में भी गिना जाता है क्योंकि वे स्पेसटाइम अंतराल को अपरिवर्तित छोड़ देते हैं। बूस्ट के साथ घूर्णन का संयोजन, जिसके पश्चात् स्पेसटाइम में परिवर्तन होता है, अमानवीय लोरेंत्ज़ परिवर्तन है, जो पोंकारे समूह का तत्व है, जिसे अमानवीय लोरेंत्ज़ समूह भी कहा जाता है।
लोरेंत्ज़ का भौतिक सूत्रीकरण
समन्वय परिवर्तन
फ्रेम में स्थिर पर्यवेक्षक F निर्देशांक t, x, y, z के साथ घटनाओं को परिभाषित करता है, और फ्रेम F′ वेग से गति करता है, v के सापेक्ष F, और इस गति करते हुए फ्रेम में पर्यवेक्षक F′ निर्देशांकों t′, x′, y′, z′ का उपयोग करके घटनाओं को परिभाषित करता है I
प्रत्येक फ्रेम में समन्वय अक्ष ( x और x′ अक्ष समानांतर हैं, y और y′ अक्ष समानांतर हैं, और z और z′ कुल्हाड़ियाँ समानांतर हैं) समानांतर हैं, और परस्पर लंबवत हैं, सापेक्ष गति संपाती xx′ के साथ होती है। t = t′ = 0, दोनों समन्वय प्रणालियों की उत्पत्ति (x, y, z) = (x′, y′, z′) = (0, 0, 0) समान है I दूसरे शब्दों में, इस घटना में समय और स्थान संयोग हैं। यदि ये सभी धारण करते हैं, तो समन्वय प्रणाली को मानक विन्यास, या सिंक्रनाइज़ में कहा जाता है।
यदि कोई पर्यवेक्षक F घटना रिकॉर्ड करता है, उसके पश्चात् पर्यवेक्षक F′ उसी घटना को निर्देशांक t, x, y, z के साथ रिकॉर्ड करता है[12]
जहाँ v फ्रेम के मध्य सापेक्ष वेग x-दिशा में है, c प्रकाश की गति है, और
यहाँ, v परिवर्तन का पैरामीटर है, किसी दिए गए बूस्ट के लिए यह स्थिर संख्या है, लेकिन मूल्यों की निरंतर श्रेणी ले सकती है। यहां प्रयोग किए गए सेटअप में, धनात्मक सापेक्ष वेग v > 0, xx′ अक्षों की धनात्मक दिशाओं में गति है, शून्य सापेक्ष वेग v = 0 कोई सापेक्ष गति नहीं है, जबकि ऋणात्मक सापेक्ष वेग v < 0 कि ऋणात्मक दिशाओं में सापेक्ष गति xx′ है । सापेक्ष वेग v का परिमाण c के बराबर या उससे अधिक नहीं हो सकता , इसलिए केवल सबलूमिनल गति −c < v < c अनुमति दी जाती है। γ की संगत श्रेणी 1 ≤ γ < ∞ है I
यदि v इन सीमाओं के बाहर है तो परिवर्तनों को परिभाषित नहीं किया गया है। प्रकाश की गति से (v = c) γ अनंत है, और प्रकाश से तेज (v > c) है I γ सम्मिश्र संख्या है, जिनमें से प्रत्येक परिवर्तन को अभौतिक बनाता है। स्थान और समय निर्देशांक मापने योग्य मात्राएँ हैं और संख्यात्मक रूप से वास्तविक संख्याएँ होनी चाहिए।
सक्रिय परिवर्तन के रूप में, F' में पर्यवेक्षक परिवर्तन में −v के कारण xx′ अक्षों की नकारात्मक दिशाओं में "बढ़ाए जाने" के लिए घटना के निर्देशांक को नोटिस करता है। यह xx′ अक्षों की सकारात्मक दिशाओं में बढ़ाए गए समन्वय प्रणाली F' के समतुल्य प्रभाव है, जबकि घटना में परिवर्तन नहीं होता है और अन्य समन्वय प्रणाली में प्रतिनिधित्व किया जाता है, जो निष्क्रिय परिवर्तन है।
व्युत्क्रम संबंध (t, x, y, z के अनुसार t′, x′, y′, z′) समीकरणों के मूल समूह को बीजगणितीय रूप से हल करके पाया जा सकता है। भौतिक सिद्धांतों का उपयोग करने का अधिक कुशल उपाय है। यहाँ F′ स्थिर फ्रेम है जबकि F गतिमान फ्रेम है। सापेक्षता के सिद्धांत के अनुसार, संदर्भ का कोई विशेषाधिकार प्राप्त ढांचा नहीं है, इसलिए से परिवर्तन F′ को F को बिल्कुल वैसा ही रूप लेना चाहिए जैसा कि परिवर्तनों से होता हैI F और F′ अंतर है कि है F वेग −v से चलता है, F′ (जैसे, सापेक्ष वेग का परिमाण समान है लेकिन विपरीत दिशा में है)। इस प्रकार यदि पर्यवेक्षक में F′ घटना नोट करता है, पुनः पर्यवेक्षक F उसी घटना को निर्देशांक के t′, x′, y′, z′ साथ नोट करता है,
और γ का मूल्य अपरिवर्तित होता है। इसके परिमाण को संरक्षित करते हुए, और प्राइमेड और अनप्राइमेड चर का आदान-प्रदान करते हुए सापेक्ष वेग की दिशा के विपरीत की यह चाल सदैव किसी भी दिशा में प्रत्येक बूस्ट के व्युत्क्रम परिवर्तन को जांचने के लिए लागू होती है।
कभी-कभी इसका उपयोग करना अधिक सुविधाजनक होता है, जैसे β = v/c (लोअरकेस बीटा) के अतिरिक्त v, जिससे
लोरेंत्ज़ परिवर्तनों को इस प्रकार से भी प्राप्त किया जा सकता है जो अतिशयोक्तिपूर्ण कार्यों का उपयोग करके 3D अंतरिक्ष में परिपत्र घूर्णन जैसा दिखता है। x दिशा में बूस्ट के लिए परिणाम हैं:
जहाँ ζ (लोअरकेस जीटा) पैरामीटर है जिसे बूस्ट कहा जाता है (कई अन्य प्रतीकों का उपयोग किया जाता है, जिनमें सम्मलित हैं θ, ϕ, φ, η, ψ, ξ). कार्तीय xy, yz, और zx विमानों में 3D अंतरिक्ष में स्थानिक निर्देशांक के घूर्णन के लिए समानता को देखते हुए, लोरेंत्ज़ बूस्ट को xt, yt, और zt कार्टेशियन-टाइम विमानों में 4d मिन्कोवस्की स्पेसटाइम निर्देशांक के अतिशयोक्तिपूर्ण घूर्णन के रूप में माना जा सकता है। पैरामीटर ζ घूर्णन का अतिशयोक्तिपूर्ण कोण है, जो वृत्ताकार घूर्णनों के लिए सामान्य कोण के समान है। इस परिवर्तन को मिन्कोव्स्की आरेख द्वारा चित्रित किया जा सकता है।
योग के अतिरिक्त अतिशयोक्तिपूर्ण कार्य समय के वर्गों के मध्य के अंतर से उत्पन्न होते हैं, और स्पेसटाइम अंतराल में स्थानिक निर्देशांक होते हैं। अतिशयोक्तिपूर्ण कार्यों के परिवर्तनों में x = 0 या ct = 0 ज्यामितीय महत्व को लेकर कल्पना की जा सकती है। परिणामों को स्क्वायर करना और घटाना, निरंतर समन्वय मूल्यों के अतिपरवलयिक वक्र ζ प्राप्त कर सकते हैं लेकिन भिन्न होते हैं, जो पहचान के अनुसार वक्रों को पैरामीट्रिज करता है I
व्युत्क्रम परिवर्तन निर्देशांक फ़्रेमों को स्विच करने के लिए प्राइमेड और अनप्राइमेड मात्राओं का आदान-प्रदान करके और बूस्ट ζ → −ζ को प्राप्त किया जाता है, क्योंकि यह सापेक्ष वेग को त्यागने के बराबर है। इसलिए,
जब स्तिथियों पर विचार करके व्युत्क्रम परिवर्तनों x′ = 0 और ct′ = 0 को समान रूप से देखा जा सकता है I
अब तक लोरेंत्ज़ परिवर्तनों को घटना पर लागू किया गया है। यदि दो घटनाएँ होती हैं, तो उनके मध्य स्थानिक विभक्ताव और समय अंतराल होता है। यह लोरेंत्ज़ परिवर्तनों के रैखिक परिवर्तन से अनुसरण करता है कि अंतरिक्ष और समय निर्देशांक के दो मूल्यों को चुना जा सकता है, लोरेंत्ज़ परिवर्तनों को प्रत्येक पर लागू किया जा सकता है, फिर अंतरों के लोरेंत्ज़ परिवर्तनों को प्राप्त करने के लिए घटाया जा सकता है;
स्थानिक बिंदुओं या समय के क्षणों के अतिरिक्त मतभेदों पर ये परिवर्तन कई कारणों से उपयोगी होते हैं:
- गणना और प्रयोगों में, यह दो बिंदुओं या समय अंतरालों के मध्य की लंबाई होती है जो मापी जाती है (जैसे, चलते वाहन की लंबाई, या एक स्थान से दूसरे स्थान तक यात्रा करने में लगने वाली समयावधि),
- अंतर को असीम रूप से छोटा करके और समीकरणों को विभाजित करके और त्वरण के परिवर्तन के लिए दोहराई जाने वाली प्रक्रिया को वेग के परिवर्तनों को सरलता से प्राप्त किया जा सकता है,
- यदि समन्वय प्रणाली मानक विन्यास में नहीं है, और यदि दोनों पर्यवेक्षक किसी घटना पर सहमत हो सकते हैं I t0, x0, y0, z0 में F और t0′, x0′, y0′, z0′ में F′, तो वे उस घटना को उत्पत्ति के रूप में उपयोग कर सकते हैं, और अंतरिक्ष-समय समन्वय अंतर उनके निर्देशांक और इस उत्पत्ति के मध्य के अंतर हैं, उदाहरण के लिए, Δx = x − x0, Δx′ = x′ − x0′।
भौतिक प्रभाव
लोरेंत्ज़ परिवर्तनों की महत्वपूर्ण आवश्यकता प्रकाश की गति की निश्चितता है, जो उनकी व्युत्पत्ति में उपयोग किया जाता है, और स्वयं परिवर्तनों में निहित है। F के साथ प्रकाश की नाड़ी के लिए समीकरण x दिशा है x = ct, में फिर F′ लोरेंत्ज़ रूपांतरण देते हैं I x′ = ct′, और इसके विपरीत, किसी के लिए भी −c < v < c है I
प्रकाश की गति की तुलना में बहुत कम सापेक्ष गति के लिए, लोरेंत्ज़ परिवर्तन गैलीलियन परिवर्तन को कम करता है I
- एक साथ की सापेक्षता
- मान लीजिए दो घटनाएं x अक्ष के साथ-साथ घटित होती हैं , लेकिन (Δt = 0) में F अशून्य विस्थापन द्वारा विभक्त किया गया, Δx. में पुनः F′, हम पाते हैं , इसलिए गतिमान पर्यवेक्षक के अनुसार घटनाएँ अब एक साथ नहीं हैं।
- समय फैलाव
- मान लीजिए कि घड़ी विरामावस्था में है I यदि उस फ्रेम F में किसी बिंदु पर समय अंतराल मापा जाता है, जिससे Δx = 0, तो परिवर्तन F′ द्वारा Δt′ = γΔt इस अंतराल को देते हैं I इसके विपरीत, मान लीजिए कि विरामावस्था पर घड़ी F′ है, यदि उस फ्रेम में किसी बिंदु पर अंतराल मापा जाता है, जिससे Δx′ = 0, तो रूपांतरण इस अंतराल Δt = γΔt′ को F द्वारा देते हैं I γ उसकी अपनी घड़ी की टिक टिक के मध्य के समय अंतराल की तुलना में किसी भी प्रकार से, प्रत्येक पर्यवेक्षक गतिमान घड़ी की टिक के मध्य के समय अंतराल को कारक द्वारा लंबा होने के लिए मापता है।
लंबाई संकुचन
- मान लीजिए कि छड़ विरामावस्था F में है, लंबाई के साथ x अक्ष के साथ संरेखित Δx. में F′, छड़ वेग -v से चलती है, इसलिए इसकी लंबाई (Δt′ = 0) विपरीत सिरों पर माप दो साथ लेकर मापी जानी चाहिए। इसके अंतर्गत, व्युत्क्रम लोरेंत्ज़ परिवर्तन यह दर्शाता है I Δx = γΔx′ में F दो माप अब साथ नहीं हैं, लेकिन इससे कोई प्रभाव नहीं पड़ता क्योंकि रॉड विरामावस्था F पर है I इसलिए प्रत्येक प्रेक्षक गतिमान छड़ के अंतिम बिंदुओं के मध्य की दूरी को कारक द्वारा कम करने के लिए मापता है I अपने स्वयं के फ्रेम 1/γ में विरामावस्था से समान छड़ के अंत बिंदुओं की तुलना में लंबाई संकुचन लंबाई से संबंधित किसी भी ज्यामितीय मात्रा को प्रभावित करता है, इसलिए गतिमान पर्यवेक्षक के दृष्टिकोण से, क्षेत्र और आयतन भी गति की दिशा में सिकुड़ते हुए दिखाई देंगे।
सदिश परिवर्तन
![](https://upload.wikimedia.org/wikipedia/commons/thumb/8/89/Lorentz_boost_any_direction_standard_configuration.svg/langen-gb-530px-Lorentz_boost_any_direction_standard_configuration.svg.png)
बायां: मानक कॉन्फ़िगरेशन। दाएँ: उलटा विन्यास।
सदिशों के उपयोग से स्थिति और वेगों को स्वेच्छानुसार दिशाओं में अभिव्यक्त करने की अनुमति मिलती है। किसी भी दिशा में एकल बूस्ट पूर्ण सापेक्ष [[वेग वेक्टर|वेग v सदिश]] पर निर्भर करता हैI 0 ≤ v < c परिमाण के साथ |v| = v जो c के बराबर या अधिक नहीं हो सकता है।
सापेक्ष गति की दिशा के समानांतर केवल समय और निर्देशांक परिवर्तित होते है, जबकि वे निर्देशांक लंबवत नहीं होते हैं। इसे ध्यान में रखते हुए, स्थानिक स्थिति सदिश v को विभाजित करें I r में मापा गया F, और r′ में मापा गया F′, प्रत्येक को लंबवत (⊥) और समानांतर (‖ ) घटकों में विभाजित करें:
इकाई सदिश का परिचय n = v/v = β/β आपेक्षिक गति की दिशा में सापेक्ष वेग हैI v = vn परिमाण के साथ v और दिशा n, और सदिश प्रक्षेपण और रिजेक्शन क्रमशः देते हैं:
प्रक्षेपण और अस्वीकृति भी लागू होती हैI r′ व्युत्क्रम परिवर्तनों के लिए, विनिमय r और r′ प्रेक्षित निर्देशांकों को स्विच करने के लिए, और सापेक्ष वेग को त्यागने के लिए v → −v (या बस यूनिट सदिश n → −n परिमाण के पश्चात् से v सदैव सकारात्मक होता है) प्राप्त करने के लिए,
यूनिट सदिश के निकट एकल बूस्ट के लिए समीकरणों को सरल बनाने का लाभ है, v या β सुविधाजनक होने पर किया जाना चाहिए, और रैपिडिटी पैरामीट्रिजेशन को शीघ्रता से परिवर्तित करके प्राप्त किया जाता है I β और βγ यह एकाधिक बूस्ट के लिए सुविधाजनक नहीं है।
सापेक्ष वेग और तीव्रता के मध्य सदिश संबंध है[14]
वेगों का परिवर्तन
समन्वय वेग और लोरेंत्ज़ कारक को परिभाषित करना
सदिश परिवर्तनों के निर्देशांक और समय में अंतर लेना, समीकरणों को विभाजित करना,
वेग u और u′ किसी विशाल वस्तु का वेग है। वे तीसरे जड़त्वीय फ्रेम के लिए भी हो सकते हैं (मान लीजिए F), जिस स्थिति में उन्हें स्थिर होना चाहिए। X द्वारा किसी भी इकाई को निरूपित करें। फिर X वेग u से चलता है I F के सापेक्ष, या समकक्ष वेग के साथ u′ F' के सापेक्ष, बदले में F' वेग v से चलता है। व्युत्क्रम परिवर्तन समान प्रकार से प्राप्त किया जा सकता है, या स्थिति निर्देशांक विनिमय के साथ u और u′, और v को −v.
तारकीय विपथन, फ़िज़ो प्रयोग और सापेक्ष डॉपलर प्रभाव में वेग का परिवर्तन उपयोगी है।
त्वरण तीन-त्वरण समान रूप से वेग सदिशों में अंतर लेकर और इन्हें समय के अंतर से विभाजित करके प्राप्त किया जा सकता है।
अन्य राशियों का रूपांतरण
प्रकार, चार मात्राएँ दी गई हैं I A और Z = (Zx, Zy, Zz) और उनके लोरेंत्ज़-बूस्टेड समकक्ष A′ और Z′ = (Z′x, Z′y, Z′z), रूप का संबंध इस प्रकार है :
मात्राएँ (A, Z) सामूहिक रूप से चार-सदिश बनाते हैं, जहाँ A टाइमलाइक घटक है, और Z स्पेसलाइक घटक है। इसके उदाहरण A और Z निम्नलिखित हैं:
चार-सदिश | A | Z |
---|---|---|
स्थिति चार-सदिश | समय ( c से गुणा), ct | स्थिति सदिश, r |
चार गति | ऊर्जा ( c द्वारा विभाजित), E/c | गति, p |
चार-तरंग सदिश | कोणीय आवृत्ति (c से विभाजित), ω/c | तरंग सदिश, k |
चार-स्पिन | (कोई नाम नहीं), st | स्पिन, s |
चार-करंट | चार्ज घनत्व (c से गुणा), ρc | वर्तमान घनत्व, j |
विद्युत चुम्बकीय चार-क्षमता | विद्युत क्षमता (c द्वारा विभाजित), φ/c | चुंबकीय सदिश क्षमता, A |
किसी दी गई वस्तु (जैसे, कण, द्रव, क्षेत्र, सामग्री) के लिए, यदि A या Z वस्तु के लिए विशिष्ट गुणों के अनुरूप होता है जैसे उसका चार्ज घनत्व, द्रव्यमान घनत्व, स्पिन (भौतिकी), आदि, उसके गुण उस वस्तु के बाकी फ्रेम में तय किए जा सकते हैं। लोरेंत्ज़ परिवर्तन निरंतर वेग के साथ वस्तु के सापेक्ष गतिमान फ्रेम में संबंधित गुण देता है। यह गैर-सापेक्ष भौतिकी में दी गई कुछ धारणाओं को विभक्त करता है। उदाहरण के लिए, ऊर्जा गैर-सापेक्षवादी यांत्रिकी में अदिश राशि है, लेकिन सापेक्षतावादी यांत्रिकी में नहीं क्योंकि लोरेंत्ज़ परिवर्तनों के अंतर्गत ऊर्जा में परिवर्तन होता है; विभिन्न जड़त्वीय फ्रेमों के लिए इसका मान भिन्न होता है। किसी वस्तु के विरामावस्था फ्रेम में, इसकी विरामावस्था ऊर्जा और जीरो मोमेंटम होता है। बढ़े हुए फ्रेम में इसकी ऊर्जा विभक्त होती है और इसमें गति दिखाई देती है। इसी प्रकार, गैर-सापेक्षवादी क्वांटम यांत्रिकी में कण का चक्रण स्थिर सदिश होता है, लेकिन सापेक्षतावादी क्वांटम यांत्रिकी में चक्रण s सापेक्ष गति पर निर्भर करता है। कण के बाकी फ्रेम में, स्पिन स्यूडोसदिश को इसके सामान्य गैर-सापेक्षतावादी स्पिन के रूप में शून्य समयबद्ध मात्रा st के साथ तय किया जा सकता है, चूँकि बढ़ा हुआ पर्यवेक्षक गैर-शून्य समयबद्ध घटक और परिवर्तित स्पिन को देखेगा।[15] जैसा कि ऊपर दिखाया गया है, सभी मात्राएँ अपरिवर्तनीय नहीं हैं, उदाहरण के लिए कक्षीय कोणीय गति L के निकट समयबद्ध मात्रा नहीं है, और न ही विद्युत क्षेत्र E है, न ही चुंबकीय क्षेत्र B.है I कोणीय गति की परिभाषा L = r × p है, और बढ़े हुए फ्रेम में परिवर्तित कोणीय गति L′ = r′ × p′ हैI निर्देशांक और संवेग के परिवर्तनों का उपयोग करके इस परिभाषा को लागू करने से कोणीय संवेग का परिवर्तन होता है। L अन्य सदिश मात्रा के साथ रूपांतरित होता है I N = (E/c2)r − tp बूस्ट से संबंधित, विवरण के लिए सापेक्षिक कोणीय संवेग देखें। E और B क्षेत्रों में, सदिश बीजगणित का उपयोग करके रूपांतरणों को सीधे प्राप्त नहीं किया जा सकता है। लोरेंत्ज़ बल इन क्षेत्रों की परिभाषा है, और F यह है F = q(E + v × B) जब में F′ यह है F′ = q(E′ + v′ × B′) I कुशल प्रकार से ईएम क्षेत्र परिवर्तन प्राप्त करने की विधि जो विद्युत चुम्बकीय क्षेत्र की इकाई को भी दर्शाती है, टेन्सर बीजगणित, लोरेंत्ज़ परिवर्तन विद्युत चुम्बकीय क्षेत्र के परिवर्तन का उपयोग करती है।
गणितीय सूत्रीकरण
कुल मिलाकर, इटैलिक गैर-बोल्ड कैपिटल अक्षर 4×4 मैट्रिक्स हैं, जबकि गैर-इटैलिक बोल्ड अक्षर 3×3 मैट्रिक्स हैं।
सजातीय लोरेंत्ज़ समूह
कॉलम सदिश और मिन्कोव्स्की मीट्रिक में निर्देशांक लिखना η वर्ग मैट्रिक्स के रूप में
इस लेख में सभी लोरेंत्ज़ परिवर्तनों Λ के समूह (गणित) को निरूपित किया गया हैI मैट्रिक्स गुणन के साथ मिलकर यह समूह (गणित) बनाता है, इस संदर्भ में लोरेंत्ज़ समूह के रूप में जाना जाता है। साथ ही, उपरोक्त अभिव्यक्ति X·X स्पेसटाइम पर हस्ताक्षर (3,1) का द्विघात रूप है, और परिवर्तनों का समूह जो इस द्विघात रूप को अपरिवर्तित त्याग देता है, वह अनिश्चितकालीन ऑर्थोगोनल समूह O(3,1), लाइ समूह है। दूसरे शब्दों में, लोरेंत्ज़ समूह हे (3,1) है। जैसा कि इस लेख में प्रस्तुत किया गया है, उल्लिखित कोई भी लाइ समूह मैट्रिक्स लाइ समूह हैं। इस संदर्भ में संरचना का संचालन मैट्रिक्स गुणन के बराबर है।
स्पेसटाइम अंतराल के व्युत्क्रम से यह अनुसरण करता है
मिन्कोव्स्की मीट्रिक को ब्लॉक मैट्रिक्स के रूप में लिखना, और सबसे सामान्य रूप में लोरेंत्ज़ परिवर्तन के रूप में लिखना:
निर्धारक और असमानता लोरेंत्ज़ रूपांतरण को वर्गीकृत करने के चार प्रकार प्रदान करते हैं। किसी विशेष एलटी में केवल एक निर्धारक चिह्न 'और' केवल असमानता है। चार समूह हैं जिनमें इन वर्गीकृत त्याग समूह समूहों के प्रतिच्छेदन द्वारा दी गई हर संभव जोड़ी सम्मलित है।
प्रतिच्छेदन, ∩ | एंटीक्रोनस (या गैर-ऑर्थोक्रोनस) LTs
|
ऑर्थोक्रोनस LTs
|
---|---|---|
उचित LTs
|
उचित एंटीक्रोनस LTs
|
उचित ऑर्थोक्रोनस LTs
|
अनुचित LTs
|
अनुचित एंटीक्रोनस LTs
|
अनुचित ऑर्थोक्रोनस LTs
|
जहां + और - निर्धारक चिह्न को इंगित करते हैं, जबकि ≥ के लिए ↑ और ≤ के लिए ↓ असमानताओं को दर्शाते हैं।
पूर्ण लोरेंत्ज़ समूह चार विभक्त-विभक्त समूहों के संघ (यू-आकार का प्रतीक अर्थ या) में विभाजित होता है
उचित परिवर्तन
यदि लोरेंत्ज़ सहसंयोजक 4-सदिश को परिणाम के साथ जड़त्वीय फ्रेम में मापा जाता है, और अन्य जड़त्वीय फ्रेम में किया गया वही माप परिणाम देता है, तब दो परिणाम इससे संबंधित होंगे:
यदि एक फ्रेम F′ वेग से बढ़ाया जाता है u फ्रेम के सापेक्ष F, और दूसरा फ्रेम F′′ वेग से बढ़ाया जाता है v के सापेक्ष F′, विभक्त बूस्ट हैं:
यदि u और v समरेख नहीं हैं लेकिन भिन्न-भिन्न दिशाओं में, स्थिति काफी अधिक जटिल है। भिन्न-भिन्न दिशाओं में लोरेंत्ज़ बूस्ट कम्यूट नहीं करते हैं: B(v)B(u) और B(u)B(v) बराबर नहीं हैं। इसके अतिरिक्त, इन रचनाओं में से प्रत्येक एकल बूस्ट नहीं है, लेकिन वे अभी भी लोरेंत्ज़ रूपांतरण हैं, जिनमें से प्रत्येक स्पेसटाइम अंतराल को संरक्षित करता है। किसी भी दो लोरेंत्ज़ बूस्ट की संरचना स्थानिक निर्देशांक के रूप में R(ρ)B(w) या B(w)R(ρ) घूर्णन के पश्चात् या उससे पहले के बूस्ट के बराबर है I वह w और w वेग योग सूत्र हैं, जबकि ρ और ρ घूर्णन पैरामीटर हैं (अर्थात अक्ष-कोण प्रतिनिधित्व | अक्ष-कोण चर, यूलर कोण, आदि)। ब्लॉक मैट्रिक्स फॉर्म में घूर्णन सरल होता हैI
इस आलेख में अक्ष-कोण प्रतिनिधित्व के लिए ρ प्रयोग किया जाता है I घूर्णन इकाई सदिश की दिशा में अक्ष के बारे में e है, कोण θ के माध्यम से (धनात्मक वामावर्त, ऋणात्मक दक्षिणावर्त, दाएँ हाथ के नियम के अनुसार) अक्ष-कोण सदिश इस प्रकार है:
अकेले स्थानिक घूर्णन भी लोरेंत्ज़ परिवर्तन हैं, वे अंतरिक्ष-समय अंतराल को अपरिवर्तित त्याग देते हैं। बूस्ट के प्रकार, भिन्न-भिन्न अक्षों के बारे में क्रमिक घूर्णन कम्यूट नहीं करते हैं। बूस्ट के विपरीत, किसी भी दो घूर्णनों की संरचना एकल घूर्णन के बराबर होती है। बूस्ट और घूर्णन मेट्रिसेस के मध्य कुछ अन्य समानताओं और अंतरों में सम्मलित हैं:
- मैट्रिक्स व्युत्क्रम: B(v)−1 = B(−v) (विपरीत दिशा में सापेक्ष गति), और R(θ)−1 = R(−θ) (एक ही अक्ष के बारे में विपरीत अर्थ में घूर्णन)
- कोई सापेक्ष गति/घूर्णन के लिए पहचान परिवर्तन: B(0) = R(0) = I
- निर्धारित इकाई: det(B) = det(R) = +1. यह संपत्ति उन्हें उचित परिवर्तन बनाती है।
- सममित मैट्रिक्स: B सममित है, जबकि R असममित है लेकिन ऑर्थोगोनल मैट्रिक्स (ट्रांसपोज़ मैट्रिक्स व्युत्क्रम के बराबर है, RT = R−1).
सामान्य उचित लोरेंत्ज़ परिवर्तन Λ(v, θ) में बूस्ट और घूर्णन सम्मलित है, और यह असममित मैट्रिक्स है। विशेष स्तिथियों के रूप में, Λ(0, θ) = R(θ) और Λ(v, 0) = B(v), सामान्य लोरेंत्ज़ परिवर्तन का स्पष्ट रूप लिखना कठिन है, और यहाँ नहीं दिया जाएगा। फिर भी, समूह सैद्धांतिक तर्कों का उपयोग करते हुए परिवर्तन मैट्रिसेस के लिए बंद फॉर्म एक्सप्रेशन नीचे दिए जाएंगे। बूस्ट के लिए रैपिडिटी पैरामीट्रिजेशन का उपयोग करना सरल होगा, जिस स्थिति में कोई इस प्रकार लिखता Λ(ζ, θ) और B(ζ) है I
लाई समूह SO+(3,1)
परिवर्तनों का समुच्चय
सरलता के लिए, x दिशा में अतिसूक्ष्म लोरेंत्ज़ बूस्ट को देखें (किसी अन्य दिशा में बूस्ट की जांच करना, या किसी अक्ष के चारों ओर घूमना, समान प्रक्रिया का पालन करता है)। इनफिनिटिमल बूस्ट आइडेंटिटी से दूर छोटा सा बूस्ट है, जिसे बूस्ट मैट्रिक्स के टेलर विस्तार द्वारा ऑर्डर के बारे में ζ = 0 प्राप्त किया जाता है:
जो पिछले अनुभाग में दिए गए अनुसार बूस्ट और घूर्णन मैट्रिसेस को कॉम्पैक्ट रूप से पुन: प्रस्तुत करता है।
यह कहा गया है कि सामान्य उचित लोरेंत्ज़ परिवर्तन बूस्ट और घूर्णन का उत्पाद है। अतिसूक्ष्म स्तर पर उत्पाद इस प्रकार है:
लाई बीजगणित so(3,1)
अधिक लोरेंत्ज़ जनरेटर प्राप्त करने के लिए लोरेंत्ज़ जनरेटर को साथ में जोड़ा जा सकता है, या वास्तविक संख्याओं से गुणा किया जा सकता है। दूसरे शब्दों में, सभी लोरेंत्ज़ जनरेटर का समुच्चय इस प्रकार है:
ये रूपान्तरण संबंध, और जनरेटर के सदिश स्थान, लाई बीजगणित की परिभाषा को पूरा करते हैंI संक्षेप में, लाई बीजगणित को संख्याओं के क्षेत्र (गणित) पर सदिश स्थान V के रूप में परिभाषित किया गया है, और सदिश स्थान के तत्वों पर बाइनरी ऑपरेशन [ , ] (इस संदर्भ में एक लेट ब्रैकेट कहा जाता है) के साथ, स्वयंसिद्धों को संतुष्ट करता है। बिलिनियर मानचित्र, प्रत्यावर्तन और जैकोबी पहचान यहाँ संक्रिया [ , ] कम्यूटेटर है जो इन सभी अभिगृहीतों को संतुष्ट करती है, सदिश स्थान लोरेंत्ज़ जनरेटर V का समुच्चय है जैसा कि पहले दिया गया है, और क्षेत्र वास्तविक संख्याओं का समुच्चय है।
गणित और भौतिकी में उपयोग की जाने वाली लिंकिंग शब्दावली: समूह जनरेटर लाई बीजगणित का कोई तत्व है। समूह पैरामीटर कुछ आधार के संबंध में लाई बीजगणित के मनमाने तत्व का प्रतिनिधित्व करने वाले समन्वय सदिश का घटक है। जनरेटर का समूह है जो सामान्य सदिश अंतरिक्ष अर्थ में लाई बीजगणित का आधार है।
लाई बीजगणित से लाई समूह तक घातीय मानचित्र इस प्रकार है:
अनुचित परिवर्तन
लोरेंत्ज़ परिवर्तनों में समता व्युत्क्रमण भी सम्मलित है:
यदि Λ तब उचित ऑर्थोक्रोनस लोरेंत्ज़ परिवर्तन TΛ है, अनुचित एंटीक्रोनस PΛ है, अनुचित ऑर्थोक्रोनस है, और TPΛ = PTΛ उचित एंटीक्रोनस है।
अमानवीय लोरेंत्ज़ समूह
दो अन्य स्पेसटाइम समरूपताओं को बताया नहीं गया है। स्पेसटाइम अंतराल के अपरिवर्तनीय होने के लिए, इसे दिखाया जा सकता है[17] समन्वय परिवर्तन के रूप में होना आवश्यक और पर्याप्त है I
टेन्सर सूत्रीकरण
विपरीत सदिश
निर्देशांकों के सामान्य मैट्रिक्स परिवर्तन को मैट्रिक्स समीकरण के रूप में इस प्रकार लिखा जाता है:
परिवर्तन मैट्रिक्स सभी चार-सदिशों के लिए सार्वभौमिक है, न कि केवल 4-आयामी स्पेसटाइम निर्देशांक है I यदि A कोई भी चार-सदिश है, फिर टेंसर इंडेक्स नोटेशन में इस प्रकार है
सहपरिवर्ती सदिश
सहपरिवर्ती सूचकांकों के साथ सदिश राशियाँ भी होती हैं। वे सामान्यतः सूचकांक को कम करने के संचालन द्वारा प्रतिवर्ती सूचकांकों के साथ उनकी संबंधित वस्तुओं से प्राप्त होते हैं; जैसे,
टेन्सर
यदि A और B सदिश रिक्त स्थान पर रैखिक ऑपरेटर U और V हैं I तब रैखिक संकारक A ⊗ B के टेंसर उत्पाद पर परिभाषित किया जा सकता है U और V, निरूपित U ⊗ V के अनुसार[21]
(T1)
इससे यह स्पष्ट हो जाता है कि यदि u और v में चार-सदिश हैं V, तब u ⊗ v ∈ T2V ≡ V ⊗ V के रूप में रूपांतरित करता है
(T2)
दूसरा चरण टेंसर उत्पाद की बिलिनियरिटी का उपयोग करता है और अंतिम चरण घटक रूप पर 2-टेंसर को परिभाषित करता है, यह केवल टेंसर का नाम u ⊗ v में बदल देता हैI
ये अवलोकन अधिक कारकों के लिए स्पष्ट प्रकार से सामान्यीकरण करते हैं, और इस तथ्य का उपयोग करते हुए कि सदिश स्थान पर सामान्य टेन्सर V को गुणांक (घटक!) के योग के रूप में लिखा जा सकता है, आधार सदिश और आधार को सदिश के टेन्सर उत्पाद, किसी भी टेंसर मात्रा के लिए परिवर्तन कानून पर आता हैI T द्वारा दिया गया है[22]
(T3)
जहाँ Λχ′ψ ऊपर परिभाषित किया गया है। इस फॉर्म को सामान्यतः सामान्य के लिए फॉर्म में घटाया जा सकता है I n-कंपोनेंट ऑब्जेक्ट मैट्रिक्स (Π(Λ)) के साथ ऊपर दिए गए हैं, कॉलम सदिश पर काम कर रहा है। यह पश्चात् वाला रूप कभी-कभी पसंद किया जाता है; उदाहरण के लिए, विद्युत चुम्बकीय क्षेत्र टेंसर के लिए।
विद्युत चुम्बकीय क्षेत्र का परिवर्तन
चुंबकीय क्षेत्र को दर्शाने के लिए लोरेंत्ज़ परिवर्तनों का भी उपयोग किया जा सकता हैI B और विद्युत क्षेत्र E विद्युत आवेशों और पर्यवेक्षकों के मध्य सापेक्ष गति के परिणामस्वरूप बल के भिन्न-भिन्न पहलू हैं - विद्युत चुम्बकीय बल।[23] तथ्य यह है कि विद्युत चुम्बकीय क्षेत्र सापेक्षतावादी प्रभाव दिखाता है, और सरल विचार प्रयोग करने से स्पष्ट हो जाता है।[24]
- पर्यवेक्षक फ्रेम F में चार्ज मापता है। पर्यवेक्षक स्थिर विद्युत क्षेत्र का पता लगाता है। चूंकि इस फ्रेम में चार्ज स्थिर है, कोई विद्युत प्रवाह नहीं है, इसलिए प्रेक्षक कोई चुंबकीय क्षेत्र नहीं देखता है।
- फ्रेम F' में अन्य प्रेक्षक वेग v से चलता हैI F और आवेश के सापेक्ष यह पर्यवेक्षक विभक्त विद्युत क्षेत्र देखता है क्योंकि आवेश वेग −v से चलता है, उनके बाकी फ्रेम में आवेश की गति विद्युत प्रवाह से मेल खाती है, और इस प्रकार फ्रेम F' में प्रेक्षक भी चुंबकीय क्षेत्र देखता है।
विद्युत और चुंबकीय क्षेत्र अंतरिक्ष और समय से भिन्न रूप से परिवर्तित होते हैं, लेकिन ठीक उसी प्रकार जैसे सापेक्षतावादी कोणीय गति और बूस्ट सदिश होते हैं I
विद्युत चुम्बकीय क्षेत्र शक्ति टेंसर द्वारा दिया जाता है:
सामान्य परिवर्तन कानून (T3) हो जाता है
मैक्सवेल समीकरण लोरेंत्ज़ परिवर्तनों के अंतर्गत अपरिवर्तनीय हैं।
स्पिनर
समीकरण (T1) बिस्पिनर प्रतिनिधित्व सहित लोरेंत्ज़ समूह के किसी भी प्रतिनिधित्व के लिए असंशोधित होल्ड में (T2) बस की सभी घटनाओं को परिवर्तित कर देता हैI Λ बिस्पिनर प्रतिनिधित्व द्वारा Π(Λ),इस प्रकार है:
(T4)
उपरोक्त समीकरण, उदाहरण के लिए, दो मुक्त इलेक्ट्रॉनों का वर्णन करने वाले फॉक स्पेस में राज्य का परिवर्तन हो सकता है।
सामान्य क्षेत्रों का परिवर्तन
क्वांटम क्षेत्र सिद्धांत में सामान्य गैर-बातचीत बहु-कण अवस्था नियम के अनुसार परिवर्तित हो जाती है[27]
|
(1) |
जहाँ W(Λ, p) विग्नर घूर्णन है, और D(j) है (2j + 1)-आकार का प्रतिनिधित्व SO(3) है I
यह भी देखें
फुटनोट्स
- ↑ One can imagine that in each inertial frame there are observers positioned throughout space, each with a synchronized clock and at rest in the particular inertial frame. These observers then report to a central office, where all reports are collected. When one speaks of a particular observer, one refers to someone having, at least in principle, a copy of this report. See, e.g., Sard (1970).
- ↑ The separate requirements of the three equations lead to three different groups. The second equation is satisfied for spacetime translations in addition to Lorentz transformations leading to the Poincaré group or the inhomogeneous Lorentz group. The first equation (or the second restricted to lightlike separation) leads to a yet larger group, the conformal group of spacetime.
- ↑ The groups O(3, 1) and O(1, 3) are isomorphic. It is widely believed that the choice between the two metric signatures has no physical relevance, even though some objects related to O(3, 1) and O(1, 3) respectively, e.g., the Clifford algebras corresponding to the different signatures of the bilinear form associated to the two groups, are non-isomorphic.
- ↑ For two square matrices A and B, det(AB) = det(A)det(B)
- ↑ Explicitly,
- ↑ In quantum mechanics, relativistic quantum mechanics, and quantum field theory, a different convention is used for these matrices; the right hand sides are all multiplied by a factor of the imaginary unit i = √−1.
- ↑ Until now the term "vector" has exclusively referred to "Euclidean vector", examples are position r, velocity v, etc. The term "vector" applies much more broadly than Euclidean vectors, row or column vectors, etc., see linear algebra and vector space for details. The generators of a Lie group also form a vector space over a field of numbers (e.g. real numbers, complex numbers), since a linear combination of the generators is also a generator. They just live in a different space to the position vectors in ordinary 3d space.
- ↑ In ordinary 3d position space, the position vector r = xex + yey + zez is expressed as a linear combination of the Cartesian unit vectors ex, ey, ez which form a basis, and the Cartesian coordinates x, y, z are coordinates with respect to this basis.
टिप्पणियाँ
- ↑ Rao, K. N. Srinivasa (1988). भौतिकविदों के लिए रोटेशन और लोरेंत्ज़ समूह और उनका प्रतिनिधित्व (illustrated ed.). John Wiley & Sons. p. 213. ISBN 978-0-470-21044-4. Equation 6-3.24, page 210
- ↑ Forshaw & Smith 2009
- ↑ Cottingham & Greenwood 2007, p. 21
- ↑ Lorentz 1904
- ↑ O'Connor & Robertson 1996
- ↑ Brown 2003
- ↑ Rothman 2006, pp. 112f.
- ↑ Darrigol 2005, pp. 1–22
- ↑ Macrossan 1986, pp. 232–34
- ↑ The reference is within the following paper:Poincaré 1905, pp. 1504–1508
- ↑ Einstein 1905, pp. 891–921
- ↑ Forshaw & Smith 2009
- ↑ Einstein 1916
- ↑ Barut 1964, p. 18–19
- ↑ Chaichian & Hagedorn 1997, p. 239
- ↑ Furry, W. H. (1955-11-01). "लोरेंत्ज़ परिवर्तन और थॉमस रियायत". American Journal of Physics. 23 (8): 517–525. Bibcode:1955AmJPh..23..517F. doi:10.1119/1.1934085. ISSN 0002-9505.
- ↑ Weinberg 1972
- ↑ Weinberg 2005, pp. 55–58
- ↑ Ohlsson 2011, p. 3–9
- ↑ Dennery & Krzywicki 2012, p. 138
- ↑ Hall 2003, Chapter 4
- ↑ Carroll 2004, p. 22
- ↑ Grant & Phillips 2008
- ↑ Griffiths 2007
- ↑ Jackson 1999
- ↑ Misner, Thorne & Wheeler 1973
- ↑ Weinberg 2002, Chapter 3
संदर्भ
वेबसाइट्स
- O'Connor, John J.; Robertson, Edmund F. (1996), A History of Special Relativity
- Brown, Harvey R. (2003), Michelson, FitzGerald and Lorentz: the Origins of Relativity Revisited
पेपर
- Cushing, J. T. (1967). "वेक्टर लोरेंत्ज़ परिवर्तन". American Journal of Physics. 35 (9): 858–862. Bibcode:1967AmJPh..35..858C. doi:10.1119/1.1974267.
- Macfarlane, A. J. (1962). "प्रतिबंधित लोरेंत्ज़ समूह और समरूप रूप से इससे संबंधित समूहों पर". Journal of Mathematical Physics. 3 (6): 1116–1129. Bibcode:1962JMP.....3.1116M. doi:10.1063/1.1703854. hdl:2027/mdp.39015095220474.
- Rothman, Tony (2006), "Lost in Einstein's Shadow" (PDF), American Scientist, 94 (2): 112f
- Darrigol, Olivier (2005), "The Genesis of the theory of relativity" (PDF), Séminaire Poincaré, 1: 1–22, Bibcode:2006eins.book....1D, doi:10.1007/3-7643-7436-5_1, ISBN 978-3-7643-7435-8
- Macrossan, Michael N. (1986), "A Note on Relativity Before Einstein", Br. J. Philos. Sci., 37 (2): 232–34, CiteSeerX 10.1.1.679.5898, doi:10.1093/bjps/37.2.232, archived from the original on 2013-10-29, retrieved 2007-04-02
- Poincaré, Henri (1905), , Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences, 140: 1504–1508
- Einstein, Albert (1905), "Zur Elektrodynamik bewegter Körper" (PDF), Annalen der Physik, 322 (10): 891–921, Bibcode:1905AnP...322..891E, doi:10.1002/andp.19053221004. यह भी देखें: अंग्रेजी अनुवाद।
- Lorentz, Hendrik Antoon (1904). . Proceedings of the Royal Netherlands Academy of Arts and Sciences. 6: 809–831.
- Einstein, A. (1916). सापेक्षता: विशेष और सामान्य सिद्धांत. Retrieved 2012-01-23. Einstein, A. (1916). सापेक्षता: विशेष और सामान्य सिद्धांत. New York: Three Rivers Press (published 1995). ISBN 978-0-517-88441-6 – via Albert Einstein Reference Archive.
- Ungar, A. A. (1988). "थॉमस रोटेशन और लोरेंत्ज़ परिवर्तन समूह का मानकीकरण". Foundations of Physics Letters. 1 (1): 55–89. Bibcode:1988FoPhL...1...57U. doi:10.1007/BF00661317. ISSN 0894-9875. S2CID 121240925. समीकरण (55).
- Ungar, A. A. (1989). "सापेक्षतावादी वेग रचना विरोधाभास और थॉमस रोटेशन". Foundations of Physics. 19 (11): 1385–1396. Bibcode:1989FoPh...19.1385U. doi:10.1007/BF00732759. S2CID 55561589.
- Ungar, A. A. (2000). "सापेक्षवादी समग्र-वेग पारस्परिकता सिद्धांत". Foundations of Physics. 30 (2): 331–342. CiteSeerX 10.1.1.35.1131. doi:10.1023/A:1003653302643. S2CID 118634052.
- Mocanu, C. I. (1986). "आपेक्षिक विद्युतगतिकी के ढांचे के भीतर कुछ कठिनाइयाँ". Archiv für Elektrotechnik. 69 (2): 97–110. doi:10.1007/bf01574845. S2CID 123543303.
- Mocanu, C. I. (1992). "सापेक्ष वेग रचना विरोधाभास और थॉमस रोटेशन पर". Foundations of Physics. 5 (5): 443–456. Bibcode:1992FoPhL...5..443M. doi:10.1007/bf00690425. S2CID 122472788.
- Weinberg, S. (2002). फ़ील्ड्स की क्वांटम थ्योरी, खंड I. Cambridge University Press. ISBN 978-0-521-55001-7.
पुस्तकें
- Dennery, Philippe; Krzywicki, André (2012). भौतिकविदों के लिए गणित. Courier Corporation. ISBN 978-0-486-15712-2.
- Cottingham, W. N.; Greenwood, D. A. (2007). कण भौतिकी के मानक मॉडल का परिचय (2nd ed.). Cambridge University Press. ISBN 978-1-139-46221-1.
- Young, H. D.; Freedman, R. A. (2008). विश्वविद्यालय भौतिकी - आधुनिक भौतिकी के साथ (12th ed.). ISBN 978-0-321-50130-1.
- Halpern, A. (1988). भौतिकी में 3000 हल की गई समस्याएं. Schaum Series. Mc Graw Hill. p. 688. ISBN 978-0-07-025734-4.
- Forshaw, J. R.; Smith, A. G. (2009). गतिशीलता और सापेक्षता. Manchester Physics Series. John Wiley & Sons Ltd. pp. 124–126. ISBN 978-0-470-01460-8.
- Wheeler, J. A.; Taylor, E. F (1971). स्पेसटाइम भौतिकी. Freeman. ISBN 978-0-7167-0336-5.
- Wheeler, J. A.; Thorne, K. S.; Misner, C. W. (1973). आकर्षण-शक्ति. Freeman. ISBN 978-0-7167-0344-0.
- Carroll, S. M. (2004). स्पेसटाइम एंड ज्योमेट्री: एन इंट्रोडक्शन टू जनरल रिलेटिविटी (illustrated ed.). Addison Wesley. p. 22. ISBN 978-0-8053-8732-2.
- Grant, I. S.; Phillips, W. R. (2008). "14". विद्युत चुंबकत्व. Manchester Physics (2nd ed.). John Wiley & Sons. ISBN 978-0-471-92712-9.
- Griffiths, D. J. (2007). इलेक्ट्रोडायनामिक्स का परिचय (3rd ed.). Pearson Education, Dorling Kindersley. ISBN 978-81-7758-293-2.
- Hall, Brian C. (2003). झूठ समूह, झूठ बीजगणित, और प्रतिनिधित्व एक प्राथमिक परिचय. Springer. ISBN 978-0-387-40122-5.
- Weinberg, S. (2008), Cosmology, Wiley, ISBN 978-0-19-852682-7
- Weinberg, S. (2005), The quantum theory of fields (3 vol.), vol. 1, Cambridge University Press, ISBN 978-0-521-67053-1
- Ohlsson, T. (2011), Relativistic Quantum Physics, Cambridge University Press, ISBN 978-0-521-76726-2
- Goldstein, H. (1980) [1950]. शास्त्रीय यांत्रिकी (2nd ed.). Reading MA: Addison-Wesley. ISBN 978-0-201-02918-5.
- Jackson, J. D. (1975) [1962]. "Chapter 11". शास्त्रीय इलेक्ट्रोडायनामिक्स (2nd ed.). John Wiley & Sons. pp. 542–545. ISBN 978-0-471-43132-9.
- Landau, L. D.; Lifshitz, E. M. (2002) [1939]. खेतों का शास्त्रीय सिद्धांत. Course of Theoretical Physics. Vol. 2 (4th ed.). Butterworth–Heinemann. pp. 9–12. ISBN 0-7506-2768-9.
- Feynman, R. P.; Leighton, R. B.; Sands, M. (1977) [1963]. "15". भौतिकी पर फेनमैन व्याख्यान. Vol. 1. Addison Wesley. ISBN 978-0-201-02117-2.
- Feynman, R. P.; Leighton, R. B.; Sands, M. (1977) [1964]. "13". भौतिकी पर फेनमैन व्याख्यान. Vol. 2. Addison Wesley. ISBN 978-0-201-02117-2.
- Misner, Charles W.; Thorne, Kip S.; Wheeler, John Archibald (1973). आकर्षण-शक्ति. San Francisco: W. H. Freeman. ISBN 978-0-7167-0344-0.
- Rindler, W. (2006) [2001]. "Chapter 9". सापेक्षता विशेष, सामान्य और ब्रह्माण्ड संबंधी (2nd ed.). Dallas: Oxford University Press. ISBN 978-0-19-856732-5.
- Ryder, L. H. (1996) [1985]. क्वांटम फील्ड थ्योरी (2nd ed.). Cambridge: Cambridge University Press. ISBN 978-0521478144.
- Sard, R. D. (1970). सापेक्षवादी यांत्रिकी - विशेष सापेक्षता और शास्त्रीय कण गतिकी. New York: W. A. Benjamin. ISBN 978-0805384918.
- Sexl, R. U.; Urbantke, H. K. (2001) [1992]. सापेक्षता, समूह कण। क्षेत्र और कण भौतिकी में विशेष सापेक्षता और सापेक्षतावादी समरूपता. Springer. ISBN 978-3211834435.
- Gourgoulhon, Eric (2013). सामान्य फ्रेम में विशेष सापेक्षता: कणों से खगोल भौतिकी तक. Springer. p. 213. ISBN 978-3-642-37276-6.
- Chaichian, Masud; Hagedorn, Rolf (1997). क्वांटम यांत्रिकी में समरूपता: कोणीय गति से सुपरसिमेट्री तक. IoP. p. 239. ISBN 978-0-7503-0408-5.
- Landau, L.D.; Lifshitz, E.M. (2002) [1939]. खेतों का शास्त्रीय सिद्धांत. Course of Theoretical Physics. Vol. 2 (4th ed.). Butterworth–Heinemann. ISBN 0-7506-2768-9.
अग्रिम पठन
- Ernst, A.; Hsu, J.-P. (2001), "First proposal of the universal speed of light by Voigt 1887" (PDF), Chinese Journal of Physics, 39 (3): 211–230, Bibcode:2001ChJPh..39..211E, archived from the original (PDF) on 2011-07-16
- Thornton, Stephen T.; Marion, Jerry B. (2004), Classical dynamics of particles and systems (5th ed.), Belmont, [CA.]: Brooks/Cole, pp. 546–579, ISBN 978-0-534-40896-1
- Voigt, Woldemar (1887), "Über das Doppler'sche princip", Nachrichten von der Königlicher Gesellschaft den Wissenschaft zu Göttingen, 2: 41–51
बाहरी संबंध
![](https://upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/langen-gb-38px-Wikisource-logo.svg.png)
![](https://upload.wikimedia.org/wikipedia/commons/thumb/d/df/Wikibooks-logo-en-noslogan.svg/langen-gb-40px-Wikibooks-logo-en-noslogan.svg.png)
![](https://upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Wikiversity_logo_2017.svg/langen-gb-40px-Wikiversity_logo_2017.svg.png)
- Derivation of the Lorentz transformations. This web page contains a more detailed derivation of the Lorentz transformation with special emphasis on group properties.
- The Paradox of Special Relativity. This webpage poses a problem, the solution of which is the Lorentz transformation, which is presented graphically in its next page.
- Relativity – a chapter from an online textbook
- Warp Special Relativity Simulator. A computer program demonstrating the Lorentz transformations on everyday objects.
- Animation clip on YouTube visualizing the Lorentz transformation.
- MinutePhysics video on YouTube explaining and visualizing the Lorentz transformation with a mechanical Minkowski diagram
- Interactive graph on Desmos (graphing) showing Lorentz transformations with a virtual Minkowski diagram
- Interactive graph on Desmos showing Lorentz transformations with points and hyperbolas
- Lorentz Frames Animated from John de Pillis. Online Flash animations of Galilean and Lorentz frames, various paradoxes, EM wave phenomena, etc.