लोरेन्ट्स रूपांतरण: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(3 intermediate revisions by 2 users not shown)
Line 420: Line 420:
जहाँ {{math|'''R'''('''ρ''')}} 3डी [[रोटेशन मैट्रिक्स|घूर्णन मैट्रिक्स]] है, जो किसी भी 3डी सदिश को पृथ्वी (सक्रिय परिवर्तन) में घुमाता है, या समकक्ष समन्वय फ्रेम को विपरीत पृथ्वी (निष्क्रिय परिवर्तन) में घुमाता है। {{math|'''w'''}} और {{math|'''ρ'''}} जोड़ना सरल नहीं है I (या {{math|{{overline|'''w'''}}}} और {{math|{{overline|'''ρ'''}}}}) मूल बूस्ट मापदंडों के लिए {{math|'''u'''}} और {{math|'''v'''}} है I बूस्ट की संरचना में, {{math|''R''}} मैट्रिक्स को [[विग्नर रोटेशन|विग्नर घूर्णन]] नाम दिया गया है, और [[थॉमस प्रीसेशन]] को उत्पन्न करता है। ये लेख समग्र रूपांतरण मैट्रिसेस के लिए स्पष्ट सूत्र देते हैं, जिसमें अभिव्यक्ति {{math|'''w''', '''ρ''', {{overline|'''w'''}}, {{overline|'''ρ'''}}}} भी सम्मलित है I
जहाँ {{math|'''R'''('''ρ''')}} 3डी [[रोटेशन मैट्रिक्स|घूर्णन मैट्रिक्स]] है, जो किसी भी 3डी सदिश को पृथ्वी (सक्रिय परिवर्तन) में घुमाता है, या समकक्ष समन्वय फ्रेम को विपरीत पृथ्वी (निष्क्रिय परिवर्तन) में घुमाता है। {{math|'''w'''}} और {{math|'''ρ'''}} जोड़ना सरल नहीं है I (या {{math|{{overline|'''w'''}}}} और {{math|{{overline|'''ρ'''}}}}) मूल बूस्ट मापदंडों के लिए {{math|'''u'''}} और {{math|'''v'''}} है I बूस्ट की संरचना में, {{math|''R''}} मैट्रिक्स को [[विग्नर रोटेशन|विग्नर घूर्णन]] नाम दिया गया है, और [[थॉमस प्रीसेशन]] को उत्पन्न करता है। ये लेख समग्र रूपांतरण मैट्रिसेस के लिए स्पष्ट सूत्र देते हैं, जिसमें अभिव्यक्ति {{math|'''w''', '''ρ''', {{overline|'''w'''}}, {{overline|'''ρ'''}}}} भी सम्मलित है I


इस आलेख में अक्ष-कोण प्रतिनिधित्व के लिए {{math|'''ρ'''}} प्रयोग किया जाता है I घूर्णन इकाई सदिश की दिशा में अक्ष के सम्बन्ध में {{math|'''e'''}} है, कोण {{math|''θ''}} के माध्यम से (धनात्मक वामावर्त, ऋणात्मक दक्षिणावर्त, दाएँ हाथ के नियम के अनुसार) अक्ष-कोण सदिश इस प्रकार है:<math display="block">\boldsymbol{\theta} = \theta \mathbf{e}</math> उपयोगी संक्षिप्त नाम के रूप में काम करेगा।
इस आलेख में अक्ष-कोण प्रतिनिधित्व के लिए {{math|'''ρ'''}} प्रयोग किया जाता है I घूर्णन इकाई सदिश की दिशा में अक्ष के सम्बन्ध में {{math|'''e'''}} है, कोण {{math|''θ''}} के माध्यम से (धनात्मक वामावर्त, ऋणात्मक दक्षिणावर्त, दाएँ हाथ के नियम के अनुसार) अक्ष-कोण सदिश इस प्रकार है:<math display="block">\boldsymbol{\theta} = \theta \mathbf{e}</math> उपयोगी संक्षिप्त नाम के रूप में कार्य करेगा।


 
स्थानिक घूर्णन भी लोरेन्ट्स परिवर्तन हैं, वे अंतरिक्ष-समय अंतराल को अपरिवर्तित त्याग देते हैं। बूस्ट के प्रकार, भिन्न-भिन्न अक्षों के सम्बन्ध में क्रमिक घूर्णन संयुग्मित नहीं करते हैं। बूस्ट के विपरीत, किसी भी दो घूर्णनों की संरचना एकल घूर्णन के बराबर होती है। बूस्ट और घूर्णन मेट्रिसेस के मध्य कुछ अन्य समानताओं और अंतरों में सम्मलित हैं:
अकेले स्थानिक घूर्णन भी लोरेन्ट्स परिवर्तन हैं, वे अंतरिक्ष-समय अंतराल को अपरिवर्तित त्याग देते हैं। बूस्ट के प्रकार, भिन्न-भिन्न अक्षों के सम्बन्ध में क्रमिक घूर्णन कम्यूट नहीं करते हैं। बूस्ट के विपरीत, किसी भी दो घूर्णनों की संरचना एकल घूर्णन के बराबर होती है। बूस्ट और घूर्णन मेट्रिसेस के मध्य कुछ अन्य समानताओं और अंतरों में सम्मलित हैं:
* मैट्रिक्स व्युत्क्रम: {{math|1=''B''('''v''')<sup>−1</sup> = ''B''(−'''v''')}} (विपरीत दिशा में सापेक्ष गति), और {{math|1=''R''('''θ''')<sup>−1</sup> = ''R''(−'''θ''')}} (अक्ष के सम्बन्ध में पृथ्वी में विपरीत घूर्णन)
* मैट्रिक्स व्युत्क्रम: {{math|1=''B''('''v''')<sup>−1</sup> = ''B''(−'''v''')}} (विपरीत दिशा में सापेक्ष गति), और {{math|1=''R''('''θ''')<sup>−1</sup> = ''R''(−'''θ''')}} (अक्ष के सम्बन्ध में पृथ्वी में विपरीत घूर्णन)
* कोई सापेक्ष गति/घूर्णन के लिए [[पहचान परिवर्तन]]: {{math|1=''B''('''0''') = ''R''('''0''') = ''I''}}
* कोई सापेक्ष गति/घूर्णन के लिए [[पहचान परिवर्तन]]: {{math|1=''B''('''0''') = ''R''('''0''') = ''I''}}
* निर्धारित इकाई: {{math|1=det(''B'') = det(''R'') = +1}}. यह संपत्ति उन्हें उचित परिवर्तन बनाती है।
* निर्धारित इकाई: {{math|1=det(''B'') = det(''R'') = +1}}. यह संपत्ति उन्हें उचित परिवर्तन बनाती है।
* [[सममित मैट्रिक्स]]: {{math|''B''}} सममित है, जबकि {{math|''R''}} असममित है किन्तु [[ऑर्थोगोनल मैट्रिक्स]] (ट्रांसपोज़ मैट्रिक्स व्युत्क्रम के बराबर है, {{math|1=''R''<sup>T</sup> = ''R''<sup>−1</sup>}}).
* [[सममित मैट्रिक्स]]: {{math|''B''}} सममित है, जबकि {{math|''R''}} असममित है किन्तु [[ऑर्थोगोनल मैट्रिक्स]] (ट्रांसपोज़ मैट्रिक्स व्युत्क्रम के बराबर {{math|1=''R''<sup>T</sup> = ''R''<sup>−1</sup>}}) हैI


सामान्य उचित लोरेन्ट्स परिवर्तन {{math|Λ('''v''', '''θ''')}} में बूस्ट और घूर्णन सम्मलित है, और यह असममित मैट्रिक्स है। विशेष स्तिथियों के रूप में, {{math|1=Λ('''0''', '''θ''') = ''R''('''θ''')}} और {{math|1=Λ('''v''', '''0''') = ''B''('''v''')}}, सामान्य लोरेन्ट्स परिवर्तन का स्पष्ट रूप लिखना कठिन है, और यहाँ नहीं दिया जाएगा। फिर भी, समूह सैद्धांतिक तर्कों का उपयोग करते हुए परिवर्तन मैट्रिसेस के लिए बंद फॉर्म एक्सप्रेशन नीचे दिए जाएंगे। बूस्ट के लिए रैपिडिटी पैरामीट्रिजेशन का उपयोग करना सरल होगा, जिस स्थिति में कोई इस प्रकार लिखता {{math|Λ('''ζ''', '''θ''')}} और {{math|''B''('''ζ''')}} है I
सामान्य उचित लोरेन्ट्स परिवर्तन {{math|Λ('''v''', '''θ''')}} में बूस्ट और घूर्णन सम्मलित है, और यह असममित मैट्रिक्स है। विशेष स्तिथियों के रूप में, {{math|1=Λ('''0''', '''θ''') = ''R''('''θ''')}} और {{math|1=Λ('''v''', '''0''') = ''B''('''v''')}}, सामान्य लोरेन्ट्स परिवर्तन का स्पष्ट रूप लिखना कठिन है, और यहाँ नहीं दिया जाएगा। फिर भी, समूह सैद्धांतिक तर्कों का उपयोग करते हुए परिवर्तन मैट्रिसेस के लिए बंद फॉर्म एक्सप्रेशन नीचे दिए जाएंगे। बूस्ट के लिए रैपिडिटी पैरामीट्रिजेशन का उपयोग करना सरल होगा, जिस स्थिति में कोई इस प्रकार लिखता {{math|Λ('''ζ''', '''θ''')}} और {{math|''B''('''ζ''')}} है I
Line 435: Line 434:
परिवर्तनों का समुच्चय
परिवर्तनों का समुच्चय
<math display="block"> \{ B(\boldsymbol{\zeta}), R(\boldsymbol{\theta}), \Lambda(\boldsymbol{\zeta}, \boldsymbol{\theta}) \} </math>
<math display="block"> \{ B(\boldsymbol{\zeta}), R(\boldsymbol{\theta}), \Lambda(\boldsymbol{\zeta}, \boldsymbol{\theta}) \} </math>
मैट्रिक्स गुणन के साथ संयोजन के संचालन के रूप में समूह बनाता है, जिसे प्रतिबंधित लोरेन्ट्स समूह कहा जाता है, और [[विशेष अनिश्चितकालीन ऑर्थोगोनल समूह]] SO<sup>+</sup>(3,1) है I (प्लस चिन्ह इंगित करता है कि यह लौकिक आयाम के उन्मुखीकरण को संरक्षित करता है)।
मैट्रिक्स गुणन के साथ संयोजन के संचालन के रूप में समूह बनाता है, जिसे प्रतिबंधित लोरेन्ट्स समूह कहा जाता है, और [[विशेष अनिश्चितकालीन ऑर्थोगोनल समूह]] SO<sup>+</sup>(3,1) है I (प्लस चिन्ह प्रदर्शित करता है कि यह लौकिक आयाम के उन्मुखीकरण को संरक्षित करता है)।


सरलता के लिए, x दिशा में अतिसूक्ष्म लोरेन्ट्स बूस्ट को देखें (किसी अन्य दिशा में बूस्ट की जांच करना, या किसी अक्ष के चारों ओर घूमना, समान प्रक्रिया का पालन करता है)। इनफिनिटिमल बूस्ट आइडेंटिटी से दूर  छोटा सा बूस्ट है, जिसे बूस्ट मैट्रिक्स के [[ टेलर विस्तार |टेलर विस्तार]] द्वारा ऑर्डर के सम्बन्ध में {{math|1=''ζ'' = 0}} प्राप्त किया जाता है:
सरलता के लिए, x दिशा में अतिसूक्ष्म लोरेन्ट्स बूस्ट को देखें (किसी अन्य दिशा में बूस्ट का परिक्षण करना, या किसी अक्ष के चारों ओर घूमना, समान प्रक्रिया का पालन करता है)। इनफिनिटिमल बूस्ट आइडेंटिटी से दूर  छोटा सा बूस्ट है, जिसे बूस्ट मैट्रिक्स के [[ टेलर विस्तार |टेलर विस्तार]] द्वारा ऑर्डर के सम्बन्ध में {{math|1=''ζ'' = 0}} प्राप्त किया जाता है:
<math display="block"> B_x = I + \zeta \left. \frac{\partial B_x}{\partial \zeta } \right|_{\zeta=0} + \cdots </math>
<math display="block"> B_x = I + \zeta \left. \frac{\partial B_x}{\partial \zeta } \right|_{\zeta=0} + \cdots </math>
जहां उच्च आदेश को नहीं दिखाया गया है क्योंकि वे नगण्य हैंi  {{math|''ζ''}} छोटा है, और {{math|''B<sub>x</sub>''}} केवल x दिशा में बूस्ट मैट्रिक्स है। [[मैट्रिक्स गणना]] डेरिवेटिव्स का मैट्रिक्स है (प्रविष्टियों का, उसी चर के संबंध में), और यह समझा जाता है कि डेरिवेटिव {{math|1=''ζ'' = 0}} पाए जाते हैं फिर मूल्यांकन किया जाता है,
जहां उच्च आदेश को नहीं दिखाया गया है क्योंकि वे नगण्य हैंi  {{math|''ζ''}} छोटा है, और {{math|''B<sub>x</sub>''}} केवल x दिशा में बूस्ट मैट्रिक्स है। [[मैट्रिक्स गणना]] डेरिवेटिव्स का मैट्रिक्स है (प्रविष्टियों का, उसी चर के संबंध में), और यह अध्यन किया जाता है कि डेरिवेटिव {{math|1=''ζ'' = 0}} पाए जाते हैं फिर मूल्यांकन किया जाता है,
<math display="block"> \left. \frac{\partial B_x }{\partial \zeta } \right|_{\zeta=0} = - K_x \,. </math>
<math display="block"> \left. \frac{\partial B_x }{\partial \zeta } \right|_{\zeta=0} = - K_x \,. </math>
अभी के लिए, {{math|''K<sub>x</sub>''}} इस परिणाम द्वारा परिभाषित किया गया है। असीम रूप से अनंत संख्या की सीमा में, मैट्रिक्स घातांक के रूप में परिमित वृद्धि परिवर्तन प्राप्त होता हैI
अभी के लिए, {{math|''K<sub>x</sub>''}} इस परिणाम द्वारा परिभाषित किया गया है। अत्यंत रूप से अनंत संख्या की सीमा में, मैट्रिक्स घातांक के रूप में परिमित वृद्धि परिवर्तन प्राप्त होता हैI
<math display="block"> B_x =\lim_{N\to\infty}\left(I-\frac{\zeta }{N}K_x\right)^{N} = e^{-\zeta K_x} </math>
<math display="block"> B_x =\lim_{N\to\infty}\left(I-\frac{\zeta }{N}K_x\right)^{N} = e^{-\zeta K_x} </math>
जहां एक्सपोनेंशियल फ़ंक्शन औपचारिक परिभाषा का उपयोग किया गया है (एक्सपोनेंशियल फ़ंक्शन की विशेषताओं को भी देखें)। <ref group="nb">Explicitly,
जहां एक्सपोनेंशियल फ़ंक्शन औपचारिक परिभाषा का उपयोग किया गया है (एक्सपोनेंशियल फ़ंक्शन की विशेषताओं को भी देखें)। <ref group="nb">Explicitly,
Line 494: Line 493:


\end{alignat}</math>
\end{alignat}</math>
इन सभी को समान प्रकार से {{math|''K<sub>x</sub>''}} द्वारा परिभाषित किया गया है, चूँकि ऊपर बूस्ट जनरेटर में माइनस साइन पारंपरिक हैं। लोरेन्ट्स समूह के जनरेटर सांस्थानिक स्थान में महत्वपूर्ण समरूपता के अनुरूप हैं: {{math|'''J'''}} घूर्णन जनरेटर हैं जो कोणीय गति के अनुरूप हैं, और {{math|'''K'''}} बूस्ट जनरेटर हैं जो सांस्थानिक स्थान में सिस्टम की गति के अनुरूप हैं। किसी भी चिकने वक्र का व्युत्पन्न {{math|''C''(''t'')}} साथ {{math|1=''C''(0) = ''I''}} समूह में कुछ समूह पैरामीटर के आधार पर {{math|''t''}} उस समूह पैरामीटर के संबंध में, मूल्यांकन {{math|1=''t'' = 0}} किया गया , {{math|''G''}} संबंधित समूह जनरेटर की परिभाषा के रूप में कार्य करता है, और यह पहचान अतिसूक्ष्म परिवर्तन को दर्शाता है। वक्र को सदैव घातांक के रूप में लिया जा सकता है क्योंकि घातांक सदैव मैप करेगा I {{math|''G''}} सुचारू रूप से समूह में वापस {{math|''t'' → exp(''tG'')}} सभी के लिए {{math|''t''}}; यह वक्र निकलेगा {{math|''G''}} फिर से विभेदित होने पर {{math|1=''t'' = 0}} उनके टेलर श्रृंखला में घातांक का विस्तार प्राप्त करता है I<math display="block"> B({\boldsymbol {\zeta }})=I-\sinh \zeta (\mathbf {n} \cdot \mathbf {K} )+(\cosh \zeta -1)(\mathbf {n} \cdot \mathbf {K} )^2</math>
इन सभी को समान प्रकार से {{math|''K<sub>x</sub>''}} द्वारा परिभाषित किया गया है, चूँकि ऊपर बूस्ट जनरेटर में माइनस साइन पारंपरिक हैं। लोरेन्ट्स समूह के जनरेटर सांस्थानिक स्थान में महत्वपूर्ण समरूपता के अनुरूप हैं: {{math|'''J'''}} घूर्णन जनरेटर हैं जो कोणीय गति के अनुरूप हैं, और {{math|'''K'''}} बूस्ट जनरेटर हैं जो सांस्थानिक स्थान में प्रणाली की गति के अनुरूप हैं। किसी भी वक्र का व्युत्पन्न {{math|''C''(''t'')}} साथ {{math|1=''C''(0) = ''I''}} समूह में कुछ समूह पैरामीटर के आधार पर {{math|''t''}} उस समूह पैरामीटर के संबंध में, मूल्यांकन {{math|1=''t'' = 0}} किया गया , {{math|''G''}} संबंधित समूह जनरेटर की परिभाषा के रूप में कार्य करता है, और यह पहचान अतिसूक्ष्म परिवर्तन को दर्शाता है। वक्र को सदैव घातांक के रूप में लिया जा सकता है क्योंकि घातांक सदैव मैप करेगा I {{math|''G''}} सुचारू रूप से समूह में पुनः {{math|''t'' → exp(''tG'')}} सभी के लिए {{math|''t''}}; यह वक्र निकलेगा {{math|''G''}} फिर से विभेदित होने पर {{math|1=''t'' = 0}} उनके टेलर श्रृंखला में घातांक का विस्तार प्राप्त करता है I<math display="block"> B({\boldsymbol {\zeta }})=I-\sinh \zeta (\mathbf {n} \cdot \mathbf {K} )+(\cosh \zeta -1)(\mathbf {n} \cdot \mathbf {K} )^2</math>
<math display="block">R(\boldsymbol {\theta })=I+\sin \theta (\mathbf {e} \cdot \mathbf {J} )+(1-\cos \theta )(\mathbf {e} \cdot \mathbf {J} )^2\,.</math>
<math display="block">R(\boldsymbol {\theta })=I+\sin \theta (\mathbf {e} \cdot \mathbf {J} )+(1-\cos \theta )(\mathbf {e} \cdot \mathbf {J} )^2\,.</math>




जो पिछले अनुभाग में दिए गए अनुसार बूस्ट और घूर्णन मैट्रिसेस को कॉम्पैक्ट रूप से पुन: प्रस्तुत करता है।
 
जो पूर्व अनुभाग में दिए गए अनुसार बूस्ट और घूर्णन मैट्रिसेस को कॉम्पैक्ट रूप से पुन: प्रस्तुत करता है।


यह कहा गया है कि सामान्य उचित लोरेन्ट्स परिवर्तन बूस्ट और घूर्णन का उत्पाद है। अतिसूक्ष्म स्तर पर उत्पाद इस प्रकार है:
यह कहा गया है कि सामान्य उचित लोरेन्ट्स परिवर्तन बूस्ट और घूर्णन का उत्पाद है। अतिसूक्ष्म स्तर पर उत्पाद इस प्रकार है:
Line 524: Line 524:
ये रूपान्तरण संबंध, और जनरेटर के सदिश स्थान, [[झूठ बीजगणित|लाई बीजगणित]] <math>\mathfrak{so}(3, 1)</math> की परिभाषा को पूरा करते हैंI संक्षेप में, लाई बीजगणित को संख्याओं के [[क्षेत्र (गणित)]] पर सदिश स्थान V के रूप में परिभाषित किया गया है, और सदिश स्थान के तत्वों पर [[बाइनरी ऑपरेशन]] [ , ] (इस संदर्भ में एक [[लेट ब्रैकेट]] कहा जाता है) के साथ, स्वयंसिद्धों को संतुष्ट करता है। बिलिनियर मानचित्र, [[प्रत्यावर्तन]] और [[जैकोबी पहचान]] यहाँ संक्रिया [ , ] कम्यूटेटर है जो इन सभी अभिगृहीतों को संतुष्ट करती है, सदिश स्थान लोरेन्ट्स जनरेटर V का समुच्चय है जैसा कि पूर्व दिया गया है, और क्षेत्र वास्तविक संख्याओं का समुच्चय है।
ये रूपान्तरण संबंध, और जनरेटर के सदिश स्थान, [[झूठ बीजगणित|लाई बीजगणित]] <math>\mathfrak{so}(3, 1)</math> की परिभाषा को पूरा करते हैंI संक्षेप में, लाई बीजगणित को संख्याओं के [[क्षेत्र (गणित)]] पर सदिश स्थान V के रूप में परिभाषित किया गया है, और सदिश स्थान के तत्वों पर [[बाइनरी ऑपरेशन]] [ , ] (इस संदर्भ में एक [[लेट ब्रैकेट]] कहा जाता है) के साथ, स्वयंसिद्धों को संतुष्ट करता है। बिलिनियर मानचित्र, [[प्रत्यावर्तन]] और [[जैकोबी पहचान]] यहाँ संक्रिया [ , ] कम्यूटेटर है जो इन सभी अभिगृहीतों को संतुष्ट करती है, सदिश स्थान लोरेन्ट्स जनरेटर V का समुच्चय है जैसा कि पूर्व दिया गया है, और क्षेत्र वास्तविक संख्याओं का समुच्चय है।


गणित और भौतिकी में उपयोग की जाने वाली लिंकिंग शब्दावली: समूह जनरेटर लाई बीजगणित का कोई तत्व है। समूह पैरामीटर कुछ आधार के संबंध में लाई बीजगणित के मनमाने तत्व का प्रतिनिधित्व करने वाले समन्वय सदिश का घटक है। जनरेटर का समूह है जो सामान्य सदिश अंतरिक्ष अर्थ में लाई बीजगणित का आधार है।
गणित और भौतिकी में उपयोग की जाने वाली लिंकिंग शब्दावली: समूह जनरेटर लाई बीजगणित का कोई तत्व है। समूह पैरामीटर कुछ आधार के संबंध में लाई बीजगणित के तत्व का प्रतिनिधित्व करने वाले समन्वय सदिश का घटक है। जनरेटर का समूह है जो सामान्य सदिश अंतरिक्ष अर्थ में लाई बीजगणित का आधार है।


लाई बीजगणित से लाई समूह तक घातीय मानचित्र इस प्रकार है:
लाई बीजगणित से लाई समूह तक घातीय मानचित्र इस प्रकार है:
Line 734: Line 734:
और मीट्रिक हस्ताक्षर से स्वतंत्र होते हैं। SI इकाइयों के लिए, स्थानापन्न करें I {{math|''E'' → {{frac|''E''|''c''}}}}. {{harvtxt|मिस्नर|थोरने|व्हीलर|1973}} इस अंतिम रूप को इस रूप में देखें I {{math|3 + 1}} टेन्सर एक्सप्रेशन द्वारा दर्शाए गए ज्यामितीय दृश्य के विपरीत देखें I
और मीट्रिक हस्ताक्षर से स्वतंत्र होते हैं। SI इकाइयों के लिए, स्थानापन्न करें I {{math|''E'' → {{frac|''E''|''c''}}}}. {{harvtxt|मिस्नर|थोरने|व्हीलर|1973}} इस अंतिम रूप को इस रूप में देखें I {{math|3 + 1}} टेन्सर एक्सप्रेशन द्वारा दर्शाए गए ज्यामितीय दृश्य के विपरीत देखें I
<math display="block">F^{\mu'\nu'} = {\Lambda^{\mu'}}_\mu {\Lambda^{\nu'}}_\nu F^{\mu\nu},</math>
<math display="block">F^{\mu'\nu'} = {\Lambda^{\mu'}}_\mu {\Lambda^{\nu'}}_\nu F^{\mu\nu},</math>
और सरली से बिंदु बनाएं जिसके साथ परिणाम प्राप्त करना मुश्किल हो {{math|3 + 1}} दृश्य प्राप्त और समझा जा सकता है। केवल वे वस्तुएँ जिनमें अच्छी प्रकार से परिभाषित लोरेन्ट्स परिवर्तन गुण हैं और ज्यामितीय वस्तुएँ हैं। ज्यामितीय दृश्य में, विद्युत चुम्बकीय क्षेत्र दो अन्योन्याश्रित, किन्तु अंतरिक्ष और समय में विभक्त-विभक्त, 3-सदिश क्षेत्रों के विपरीत अंतरिक्ष-समय में एक छह-आयामी ज्यामितीय वस्तु है। मैदान {{math|'''E'''}} और {{math|'''B'''}} में अच्छी प्रकार से परिभाषित लोरेन्ट्स परिवर्तन गुण नहीं हैं। गणितीय आधार समीकरण {{EquationNote|(T1)}} और {{EquationNote|(T2)}} कि उपज {{EquationNote|(T3)}} हैं I यह ध्यान रखना चाहिए कि प्राइमेड और अनप्राइमेड टेंसर सांस्थानिक स्थान में ही घटना को संदर्भित करते हैं। इस प्रकार दिक्-काल निर्भरता के साथ पूर्ण समीकरण है I
और सरली से बिंदु बनाएं जिसके साथ परिणाम प्राप्त करना कठिन हो {{math|3 + 1}} दृश्य प्राप्त और अध्यन किया जा सकता है। केवल वे वस्तुएँ जिनमें अच्छी प्रकार से परिभाषित लोरेन्ट्स परिवर्तन गुण हैं और ज्यामितीय वस्तुएँ हैं। ज्यामितीय दृश्य में, विद्युत चुम्बकीय क्षेत्र दो अन्योन्याश्रित, किन्तु अंतरिक्ष और समय में विभक्त-विभक्त, 3-सदिश क्षेत्रों के विपरीत अंतरिक्ष-समय में एक छह-आयामी ज्यामितीय वस्तु है। मैदान {{math|'''E'''}} और {{math|'''B'''}} में अच्छी प्रकार से परिभाषित लोरेन्ट्स परिवर्तन गुण नहीं हैं। गणितीय आधार समीकरण {{EquationNote|(T1)}} और {{EquationNote|(T2)}} द्वारा {{EquationNote|(T3)}} प्राप्त होता हैं I यह ध्यान रखना चाहिए कि प्राइमेड और अनप्राइमेड टेंसर सांस्थानिक स्थान में ही घटना को संदर्भित करते हैं। इस प्रकार दिक्-काल निर्भरता के साथ पूर्ण समीकरण है I
<math display="block">
<math display="block">
   F^{\mu' \nu'}\left(x'\right) =
   F^{\mu' \nu'}\left(x'\right) =
Line 740: Line 740:
     {\Lambda^{\mu'}}_\mu {\Lambda^{\nu'}}_\nu F^{\mu\nu}(x).
     {\Lambda^{\mu'}}_\mu {\Lambda^{\nu'}}_\nu F^{\mu\nu}(x).
</math>
</math>
लंबाई के संकुचन का आवेश घनत्व पर प्रभाव पड़ता है I {{math|''ρ''}} और [[वर्तमान घनत्व]] {{math|'''J'''}}, और समय विस्तार का प्रभाव प्रवाह (वर्तमान) की दर पर प्रभाव पड़ता है, इसलिए आवेश और वर्तमान वितरण को बूस्ट के अंतर्गत संबंधित प्रकार से बदलना चाहिए। यह पता चला है कि वे बिल्कुल अंतरिक्ष-समय और ऊर्जा-संवेग चार-सदिश की प्रकार रूपांतरित होते हैं,
लंबाई के संकुचन का आवेश घनत्व पर प्रभाव पड़ता है I {{math|''ρ''}} और [[वर्तमान घनत्व]] {{math|'''J'''}}, और समय विस्तार का प्रभाव प्रवाह (वर्तमान) की दर पर प्रभाव पड़ता है, इसलिए आवेश और वर्तमान वितरण को बूस्ट के अंतर्गत संबंधित प्रकार से परिवर्तित होना चाहिए। यह पता चला है कि वे अंतरिक्ष-समय और ऊर्जा-संवेग चार-सदिश की प्रकार रूपांतरित होते हैं,
<math display="block">\begin{align}
<math display="block">\begin{align}
   \mathbf{j}' &= \mathbf{j} - \gamma\rho v\mathbf{n} + \left( \gamma - 1 \right)(\mathbf{j} \cdot \mathbf{n})\mathbf{n} \\
   \mathbf{j}' &= \mathbf{j} - \gamma\rho v\mathbf{n} + \left( \gamma - 1 \right)(\mathbf{j} \cdot \mathbf{n})\mathbf{n} \\
Line 752: Line 752:


=== स्पिनर ===
=== स्पिनर ===
समीकरण {{EquationNote|(T1)}} बिस्पिनर प्रतिनिधित्व सहित लोरेन्ट्स समूह के किसी भी प्रतिनिधित्व के लिए असंशोधित होल्ड में {{EquationNote|(T2)}} केवल  की सभी घटनाओं को परिवर्तित कर देता हैI {{math|Λ}} बिस्पिनर प्रतिनिधित्व द्वारा {{math|Π(Λ)}},इस प्रकार है:
समीकरण {{EquationNote|(T1)}} बिस्पिनर प्रतिनिधित्व सहित लोरेन्ट्स समूह के किसी भी प्रतिनिधित्व के लिए असंशोधित होल्ड में केवल {{EquationNote|(T2)}} की सभी घटनाओं को परिवर्तित कर देता हैI {{math|Λ}} बिस्पिनर प्रतिनिधित्व द्वारा {{math|Π(Λ)}},इस प्रकार है:


{{Equation box 1
{{Equation box 1
Line 954: Line 954:
{{Relativity}}
{{Relativity}}
{{Authority control}}
{{Authority control}}
[[Category: विशेष सापेक्षता]] [[Category: सैद्धांतिक भौतिकी]] [[Category: गणितीय भौतिकी]] [[Category: अंतरिक्ष समय]] [[Category: सिस्टम संयोजित करें]] [[Category: हेंड्रिक लोरेंत्ज़]]


[[Category: Machine Translated Page]]
[[Category:All articles with specifically marked weasel-worded phrases]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:Articles with invalid date parameter in template]]
[[Category:Articles with specifically marked weasel-worded phrases from November 2020]]
[[Category:Collapse templates]]
[[Category:Created On 02/03/2023]]
[[Category:Created On 02/03/2023]]
[[Category:Vigyan Ready]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Multi-column templates]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages using div col with small parameter]]
[[Category:Pages with empty portal template]]
[[Category:Pages with script errors]]
[[Category:Portal-inline template with redlinked portals]]
[[Category:Short description with empty Wikidata description]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Translated in Hindi]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates generating microformats]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:Templates using under-protected Lua modules]]
[[Category:Wikipedia fully protected templates|Div col]]
[[Category:Wikipedia metatemplates]]
[[Category:अंतरिक्ष समय]]
[[Category:गणितीय भौतिकी]]
[[Category:विशेष सापेक्षता]]
[[Category:सिस्टम संयोजित करें]]
[[Category:सैद्धांतिक भौतिकी]]
[[Category:हेंड्रिक लोरेंत्ज़]]

Latest revision as of 10:44, 15 March 2023

भौतिकी में, लोरेन्ट्स रूपांतरण रैखिक परिवर्तन का छह-पैरामीटर का सदस्य है I जो अंतरिक्ष समय में संदर्भ के फ्रेम से दूसरे फ्रेम में परिवर्तन का समन्वय करता है, और जो पूर्व के सापेक्ष निरंतर वेग पर गति करता है। इसे संबंधित व्युत्क्रम परिवर्तन के ऋणात्मक वेग द्वारा परिचालित किया जाता है। परिवर्तनों का नाम डच भौतिक विज्ञानी हेंड्रिक लोरेन्ट्स के नाम पर रखा गया है।

परिवर्तन का सामान्य रूप, वास्तविक स्थिरांक द्वारा पैरामीट्रिज्ड तक सीमित वेग का प्रतिनिधित्व करता है, x-दिशा, के रूप में व्यक्त किया जाता है I[1][2]

जहाँ (t, x, y, z) और (t′, x′, y′, z′) दो फ़्रेमों में घटना के निर्देशांक हैं, जिनकी उत्पत्ति t=t=0 पर मिलती है, जहां प्राइमेड फ्रेम को बिना प्राइमेड फ्रेम से गति के साथ चलते हुए देखा जाता है I v साथ x-अक्ष, जहां c प्रकाश की गति है, और लोरेन्ट्स कारक है। जब गति v से c अधिक छोटा है, लोरेन्ट्स कारक 1 से नगण्य रूप से भिन्न है, किन्तु जैसे v पहुँचता है, c, बिना किसी सीमा के बढ़ता है। v का मान c से छोटा होना चाहिए I परिवर्तन के लिए इस प्रकार अध्यन करते है।

गति को व्यक्त करते हुए परिवर्तन का समकक्ष रूप है[3]

संदर्भ के फ्रेम को दो समूहों में विभाजित किया जा सकता है: संदर्भ के जड़त्वीय फ्रेम और गैर-जड़त्वीय संदर्भ फ्रेम (त्वरित, घूर्णनदार मार्गों में गति करना, निरंतर कोणीय वेग के साथ घूर्णी गति, आदि)। लोरेन्ट्स रूपांतरण शब्द केवल जड़त्वीय फ़्रेमों के मध्य परिवर्तनों को संदर्भित करता है, सामान्यतः विशेष सापेक्षता के संदर्भ में संदर्भित करता है।

संदर्भ के प्रत्येक फ्रेम में, पर्यवेक्षक लंबाई को मापने के लिए स्थानीय समन्वय प्रणाली का उपयोग, और समय अंतराल को मापने के लिए घड़ी का उपयोग कर सकते है। घटना (सापेक्षता) कुछ ऐसी है, जो अंतरिक्ष में बिंदु पर समय में होती है, या अधिक औपचारिक रूप से सांस्थानिक स्थान में बिंदु होता है। परिवर्तन घटना (सापेक्षता) के स्थान और समय के निर्देशांक को जोड़ते हैं, जैसा कि प्रत्येक फ्रेम में पर्यवेक्षक द्वारा मापा जाता है।[nb 1] वे न्यूटोनियन भौतिकी के गैलीलियन परिवर्तन को त्याग देते हैं, जो पूर्ण स्थान और समय को मानता है। गैलिलियन परिवर्तन प्रकाश की गति से अधिक कम सापेक्ष गति पर ही सन्निकटन होते है। लोरेन्ट्ज़ परिवर्तनों में कई विशेषताएं हैं जो गैलिलियन परिवर्तनों में प्रकट नहीं होती हैं। उदाहरण के लिए, वे इस तथ्य को प्रतिबिंबित करते हैं कि विभिन्न वेगो पर चलने वाले पर्यवेक्षक भिन्न-भिन्न लंबाई के संकुचन, समय के विस्तारित होने और साथ में भिन्न-भिन्नसापेक्षता को माप सकते हैं, किन्तु सदैव ऐसा होता है कि सभी जड़त्वीय संदर्भ फ़्रेमों में प्रकाश की गति समान होती है। प्रकाश की गति का निश्चरता विशेष सापेक्षता के सिद्धांतों में से होता है।

ऐतिहासिक रूप से, परिवर्तन लोरेन्ट्स और अन्य लोगों द्वारा यह अध्यन के प्रयासों के परिणाम थे कि प्रकाश की गति को संदर्भ के फ्रेम से स्वतंत्र कैसे देखा गया था, और विद्युत चुंबकत्व के नियमों की समरूपता के अध्यन के लिए लोरेन्ट्स परिवर्तन अल्बर्ट आइंस्टीन की विशेष सापेक्षता के अनुसार है, किन्तु यह पूर्व में प्राप्त किया गया था।

लोरेन्ट्स परिवर्तन रैखिक परिवर्तन है। इसमें अंतरिक्ष का घूर्णन सम्मलित हो सकता है; घूर्णन-मुक्त लोरेन्ट्स परिवर्तन को लोरेन्ट्स बूस्ट कहा जाता है। मिन्कोव्स्की अंतरिक्ष में विशेष सापेक्षता में दिक्-काल का गणितीय मॉडल लोरेन्ट्स रूपांतरण किसी भी दो घटनाओं के मध्य दिक्-समय अंतराल को संरक्षित करता है। यह संपत्ति लोरेन्ट्स परिवर्तन की परिभाषित संपत्ति है। वे केवल उन रूपांतरणों का वर्णन करते हैं जिनमें उद्गम स्थल पर दिक्-काल की घटना निश्चित रहती है। उन्हें मिन्कोव्स्की अंतरिक्ष के अतिशयोक्तिपूर्ण घूर्णन के रूप में माना जा सकता है। रूपांतरण का अधिक सामान्य समूह जिसमें अनुवाद भी सम्मलित है, पोंकारे समूह के रूप में जाना जाता है।

इतिहास

कई भौतिक विज्ञानी जिनमें वोल्डेमर वोइगट, जॉर्ज फ्रांसिस फिट्ज़गेराल्ड, जोसेफ लारमोर और हेंड्रिक लोरेन्ट्स सम्मलित हैं[4] स्वयं 1887 से इन समीकरणों द्वारा निहित भौतिकी पर विचार कर रहे थे।[5] 1889 के प्रारम्भ में, ओलिवर हीविसाइड ने मैक्सवेल के समीकरणों से दिखाया था कि आवेश के गोलाकार वितरण के निकट विद्युत क्षेत्र में गोलाकार समरूपता समाप्त हो जानी चाहिए, जब आवेश चमकदार ईथर के सापेक्ष गति में हो। फिट्जगेराल्ड ने तब अनुमान लगाया कि हीविसाइड के विरूपण परिणाम को इंटरमॉलिक्युलर बलों के सिद्धांत पर प्रारम्भ किया जा सकता है। कुछ महीने पश्चात्, फिट्जगेराल्ड ने अनुमान प्रकाशित किया कि माइकलसन-मॉर्ले प्रयोग के अचंभित करने वाले परिणाम की व्याख्या करने के लिए गति में पिंडों को अनुबंधित किया जा रहा है। 1887 माइकलसन और मॉर्ले का एथर-विंड प्रयोग 1892 में, लोरेन्ट्स ने स्वतंत्र रूप से उसी विचार को अधिक विस्तृत प्रकार से प्रस्तुत किया, जिसे पश्चात् फिट्ज़गेराल्ड-लोरेन्ट्स संकुचन परिकल्पना कहा गया।[6] उनकी व्याख्या 1905 से पूर्व व्यापक रूप से जानी जाती थी।[7] लोरेन्ट्स (1892-1904) और लार्मर (1897-1900), जो ल्यूमिनिफेरस एथर परिकल्पना को मानते थे, उन्होंने ने भी उस परिवर्तन का परिक्षण किया जिसके अंतर्गत मैक्सवेल के समीकरण एथर से गतिशील फ्रेम में परिवर्तित होने पर अपरिवर्तनीय होते हैं। फिट्जगेराल्ड-लोरेन्ट्स संकुचन परिकल्पना का विस्तार किया और पाया कि समय समन्वय को भी संशोधित किया जाना है। हेनरी पोनकारे ने घड़ी के तुल्यकालन के परिणाम के रूप में, स्थानीय समय के लिए भौतिक व्याख्या दी कि प्रकाश की गति में स्थिर है I [8] लरमोर को अपने समीकरणों में निहित महत्वपूर्ण समय विस्तार संपत्ति का अध्यन करने वाले प्रथम व्यक्ति होने का श्रेय दिया जाता है।[9] 1905 में, पोंकारे प्रथम पहचान थी कि परिवर्तन में समूह (गणित) के गुण होते हैं, और उन्होंने इसका नाम लोरेन्ट्स के नाम पर रखा था।[10] उसी वर्ष अल्बर्ट आइंस्टीन ने प्रकाशित किया जिसे अब विशेष सापेक्षता कहा जाता है, सापेक्षता के सिद्धांत की मान्यताओं के अंतर्गत लोरेन्ट्स परिवर्तन को प्राप्त करके और किसी भी जड़त्वीय संदर्भ फ्रेम में प्रकाश की गति की स्थिरता, और यंत्रवत एथर को अनावश्यक रूप से त्याग कर सापेक्षता कहा जाता है I[11]

लोरेन्ट्स परिवर्तनों के समूह की व्युत्पत्ति

घटना (सापेक्षता) जो सांस्थानिक स्थान में निश्चित बिंदु पर होती है, या अधिक सामान्यतः, सांस्थानिक स्थान में ही बिंदु पर होती है। किसी भी जड़त्वीय फ्रेम में घटना को समय समन्वय सीटी और कार्टेशियन निर्देशांक x, y, z के समूह द्वारा निर्दिष्ट किया जाता है I उस फ्रेम में अंतरिक्ष में स्थिति निर्दिष्ट करने के लिए सदस्यताएँ व्यक्तिगत घटनाओं को लेबल करती हैं।

विशेष आपेक्षिकता (प्रकाश की गति का व्युत्क्रम) के आइंस्टीन के अभिधारणाओं से यह इस प्रकार है:

 

 

 

 

(D1)

प्रकाश संकेतों a1 = (t1, x1, y1, z1) और a2 = (t2, x2, y2, z2) से जुड़ी घटनाओं के लिए सभी जड़त्वीय फ्रेम में बाईं ओर की मात्रा को घटनाओं के मध्य का सांस्थानिक स्थान अंतराल कहा जाता है I किन्हीं दो घटनाओं के मध्य का अंतराल, अनिवार्य रूप से प्रकाश संकेतों द्वारा विभक्त नहीं किया गया है, जो वास्तव में अपरिवर्तनीय है, अर्थात, विभिन्न जड़त्वीय फ़्रेमों में पर्यवेक्षकों की सापेक्ष गति की स्थिति से स्वतंत्र है, जैसा कि लोरेन्ट्स परिवर्तनों की व्युत्पत्ति अंतराल का व्युत्क्रम है। इस प्रकार रूपांतरण का यह गुण होना चाहिए :

 

 

 

 

(D2)

जहाँ (ct, x, y, z) सांस्थानिक स्थान निर्देशांक हैं, जिनका उपयोग घटनाओं को फ्रेम में परिभाषित करने के लिए किया जाता है, और दूसरे फ्रेम में निर्देशांक (ct′, x′, y′, z′) हैं। (D2) स्वेच्छानुसार होने पर संतुष्ट होता है I 4-टुसमय b संख्याओं को ईवेंट a1 और a2.में जोड़ा जाता है I इस प्रकार के परिवर्तनों को सांस्थानिक स्थान अनुवाद कहा जाता है और यहां इसके सम्बन्ध में विचार नहीं किया जाता है। सरल समस्या की उत्पत्ति को संरक्षित करने वाला रैखिक समाधान सामान्य समस्या का भी समाधान करता है:

 

 

 

 

(D3)

(सूत्र को संतुष्ट करने वाला समाधान स्वचालित रूप से दूसरे को भी संतुष्ट करता है; ध्रुवीकरण पहचान देखें)। सरल समस्या का समाधान शास्त्रीय समूहों के सिद्धांत में देखने का विषय है जो विभिन्न हस्ताक्षरों के बिलिनियर रूपों को संरक्षित करता है।[nb 2] (D3) में प्रथम समीकरण अधिक संक्षिप्त रूप में लिखा जा सकता है:

 

 

 

 

(D4)

जहाँ (·, ·) हक्ष्ताक्षर के बिलिनियर (द्विघात रूप) रूप को संदर्भित करता है I (1, 3) पर R4 दाहिने हाथ की ओर सूत्र द्वारा उजागर (D3), दाईं ओर परिभाषित वैकल्पिक संकेतन को सापेक्षतावादी डॉट उत्पाद कहा जाता है। सांस्थानिक स्थान को R4 गणितीय रूप में देखा जाता है I इस द्विरेखीय रूप से संपन्न मिन्कोव्स्की अंतरिक्ष के M रूप में जाना जाता है I लोरेन्ट्स परिवर्तन इस प्रकार समूह का O(1, 3) तत्व है, लोरेन्ट्स समूह या, उनके लिए जो अन्य मीट्रिक हस्ताक्षर में रूचि होती हैं, O(3, 1) (जिसे लोरेन्ट्स समूह भी कहा जाता है)।[nb 3]

 

 

 

 

(D5)

(D3) जो वास्तव में द्विरेखीय रूप का संरक्षण है I जिसका अर्थ है (रैखिकता द्वारा Λ और प्रपत्र की द्विरेखीयता) कि (D2) संतुष्ट है। लोरेन्ट्स समूह के तत्व घूर्णन समूह SO(3) हैं, और इसके पश्चात् इसे बढ़ाते और मिलाते हैं। यदि अंतरिक्ष-समय के अनुवादों को सम्मलित किया जाता है, तो विषम लोरेन्ट्स समूह या पॉइनकेयर समूह प्राप्त होता है।

सामान्यता

प्राइमेड और अनप्राइमेड सांस्थानिक स्थान निर्देशांक के मध्य संबंध लोरेन्ट्स परिवर्तन हैं, फ्रेम में प्रत्येक समन्वय दूसरे फ्रेम में सभी निर्देशांकों का रैखिक कार्य है, और व्युत्क्रम कार्य व्युत्क्रम परिवर्तन हैं। फ़्रेम एक दूसरे के सापेक्ष कैसे चलते हैं, और वे एक दूसरे के सापेक्ष अंतरिक्ष में कैसे उन्मुख होते हैं, इस पर निर्भर करते हुए, अन्य पैरामीटर जो दिशा, गति और अभिविन्यास का वर्णन करते हैं, परिवर्तन समीकरणों में प्रवेश करते हैं।

निरंतर वेग के साथ सापेक्ष गति का वर्णन करने वाले परिवर्तन और अंतरिक्ष समन्वय अक्षों को घूर्णन के बिना बूस्ट कहा जाता है, और फ्रेम के मध्य सापेक्ष वेग के परिवर्तन को पैरामीटर कहा जाता है। अन्य मूल प्रकार का लोरेन्ट्स परिवर्तन केवल स्थानिक निर्देशांक में घूर्णन है, ये बूस्ट जड़त्वीय परिवर्तन होते हैं, क्योंकि कोई सापेक्ष गति नहीं है, फ्रेम झुका हुआ है, और इस विषय में घूर्णन को परिभाषित करने वाली मात्राएँ परिवर्तन के पैरामीटर हैं (जैसे, अक्ष-कोण प्रतिनिधित्व, या यूलर कोण, आदि)। घूर्णन और बूस्ट का संयोजन सजातीय परिवर्तन है, जो मूल को पुनः मूल में परिवर्तित कर देता है।

पूर्ण लोरेन्ट्स समूह O(3, 1) में विशेष परिवर्तन भी सम्मलित हैं जो न तो घूर्णन हैं और न ही बूस्ट, बल्कि मूल के माध्यम से समतल में प्रतिबिंब (गणित) होते है I इनमें से दो का चयन किया जा सकता है; पी-सममिति जिसमें सभी घटनाओं के स्थानिक निर्देशांक साइन में विपरीत होते हैं और टी-समरूपता जिसमें प्रत्येक घटना के लिए समय निर्देशांक अपने साइन को विपरीत कर देता है।

बूस्ट को सांस्थानिक स्थान में मात्र विस्थापन के साथ नहीं जोड़ा जाना चाहिए; इस विषय में, समन्वय प्रणाली स्थानांतरित हो जाती है और कोई सापेक्ष गति नहीं होती है। चूँकि, इन्हें विशेष सापेक्षता द्वारा समरूपता के रूप में भी गिना जाता है क्योंकि वे सांस्थानिक स्थान अंतराल को अपरिवर्तित कर देते हैं। बूस्ट के साथ घूर्णन का संयोजन, जिसके पश्चात् सांस्थानिक स्थान में परिवर्तन होता है, अमानवीय लोरेन्ट्स परिवर्तन है, जो पोंकारे समूह का तत्व है, जिसे अमानवीय लोरेन्ट्स समूह भी कहा जाता है।

लोरेन्ट्स का भौतिक सूत्रीकरण

समन्वय परिवर्तन

फ्रेम में स्थिर पर्यवेक्षक F निर्देशांक t, x, y, z के साथ घटनाओं को परिभाषित करता है, और फ्रेम F वेग से गति करता है, v के सापेक्ष F, और इस गति के अनुसार फ्रेम में पर्यवेक्षक F निर्देशांकों t′, x′, y′, z का उपयोग करके घटनाओं को परिभाषित करता है I

प्रत्येक फ्रेम में समन्वय अक्ष ( x और x अक्ष समानांतर हैं, y और y अक्ष समानांतर हैं, और z और z समानांतर हैं) समानांतर हैं, और परस्पर लंबवत हैं, सापेक्ष गति संपाती xx′ के साथ होती है। t = t′ = 0, दोनों समन्वय प्रणालियों की उत्पत्ति (x, y, z) = (x′, y′, z′) = (0, 0, 0) समान है I दूसरे शब्दों में, इस घटना में समय और स्थान संयोग हैं। यदि ये सभी धारण करते हैं, तो समन्वय प्रणाली को मानक विन्यास, या सिंक्रनाइज़ में कहा जाता है।

यदि कोई पर्यवेक्षक F घटना रिकॉर्ड करता है, उसके पश्चात् पर्यवेक्षक F उसी घटना को निर्देशांक t, x, y, z के साथ रिकॉर्ड करता है[12]

लोरेन्ट्स बूस्ट (x दिशा)

जहाँ v फ्रेम के मध्य सापेक्ष वेग x-दिशा में है, c प्रकाश की गति है, और

(लोअरकेस गामा) लोरेन्ट्स कारक है।

यहाँ, v परिवर्तन का पैरामीटर है, किसी दिए गए बूस्ट के लिए यह स्थिर संख्या है, किन्तु मूल्यों की निरंतर श्रेणी ले सकती है। यहां प्रयोग किए गए समूह में, धनात्मक सापेक्ष वेग v > 0, xx अक्षों की धनात्मक दिशाओं में गति है, शून्य सापेक्ष वेग v = 0 कोई सापेक्ष गति नहीं है, जबकि ऋणात्मक सापेक्ष वेग v < 0 कि ऋणात्मक दिशाओं में सापेक्ष गति xx है । सापेक्ष वेग v का परिमाण c के बराबर या उससे अधिक नहीं हो सकता , इसलिए केवल सबलूमिनल गति c < v < c अनुमति दी जाती है। γ की संगत श्रेणी 1 ≤ γ < ∞ है I

यदि v इन सीमाओं के बाहर है तो परिवर्तनों को परिभाषित नहीं किया गया है। प्रकाश की गति से (v = c) γ अनंत है, और प्रकाश से तीव्र (v > c) है I γ सम्मिश्र संख्या है, जिनमें से प्रत्येक परिवर्तन को अभौतिक बनाता है। स्थान और समय निर्देशांक मापने योग्य मात्राएँ हैं और संख्यात्मक रूप से वास्तविक संख्याएँ होनी चाहिए।

सक्रिय परिवर्तन के रूप में, F' में पर्यवेक्षक परिवर्तन में v के कारण xx अक्षों की नकारात्मक दिशाओं में "बढ़ाए जाने" के लिए घटना के निर्देशांक को नोटिस करता है। यह xx अक्षों की सकारात्मक दिशाओं में बढ़ाए गए समन्वय प्रणाली F' के समतुल्य प्रभाव है, जबकि घटना में परिवर्तन नहीं होता है और अन्य समन्वय प्रणाली में प्रतिनिधित्व किया जाता है, जो निष्क्रिय परिवर्तन है।

व्युत्क्रम संबंध (t, x, y, z के अनुसार t′, x′, y′, z) समीकरणों के मूल समूह को बीजगणितीय रूप से समाधान करके पाया जा सकता है। भौतिक सिद्धांतों का उपयोग करने का अधिक कुशल उपाय है। यहाँ F स्थिर फ्रेम है जबकि F गतिमान फ्रेम है। सापेक्षता के सिद्धांत के अनुसार, संदर्भ का कोई विशेषाधिकार प्राप्त रूप नहीं है, इसलिए F से परिवर्तन F को वैसा ही रूप लेना चाहिए जैसा कि परिवर्तनों से होता हैI F और F अंतर है कि है F वेग v से गति करता है, F (जैसे, सापेक्ष वेग का परिमाण समान है किन्तु विपरीत दिशा में है)। इस प्रकार यदि पर्यवेक्षक में F घटना नोट करता है, पुनः पर्यवेक्षक F उसी घटना को निर्देशांक के t′, x′, y′, z साथ नोट करता है,

प्रतिलोम लोरेन्ट्स बूस्ट (x दिशा)

और γ का मूल्य अपरिवर्तित होता है। इसके परिमाण को संरक्षित करते हुए, और प्राइमेड और अनप्राइमेड चर का आदान-प्रदान करते हुए सापेक्ष वेग की दिशा के विपरीत की यह गति सदैव किसी भी दिशा में प्रत्येक बूस्ट के व्युत्क्रम परिवर्तन के शोध के लिए प्रारम्भ होती है।

कभी-कभी इसका उपयोग करना अधिक सुविधाजनक होता है, जैसे β = v/c (लोअरकेस बीटा) के अतिरिक्त v, जिससे

जो अधिक स्पष्ट रूप से परिवर्तन में समरूपता दिखाता है। v की अनुमत श्रेणियों से और β की परिभाषा, इस प्रकार है −1 < β < 1. का उपयोग β और γ पूर्ण साहित्य में मानक है।

लोरेन्ट्स परिवर्तनों को इस प्रकार से भी प्राप्त किया जा सकता है जो अतिशयोक्तिपूर्ण कार्यों का उपयोग करके 3डी अंतरिक्ष में परिपत्र घूर्णन जैसा दिखता है। x दिशा में बूस्ट के लिए परिणाम हैं:

लोरेन्ट्स बूस्ट (x दिशा से बूस्ट ζ)

जहाँ ζ (लोअरकेस जीटा) पैरामीटर है जिसे बूस्ट कहा जाता है (कई अन्य प्रतीकों का उपयोग किया जाता है, जिनमें सम्मलित हैं θ, ϕ, φ, η, ψ, ξ). कार्तीय xy, yz, और zx समतलो में 3डी अंतरिक्ष में स्थानिक निर्देशांक के घूर्णन के लिए समानता को देखते हुए, लोरेन्ट्स बूस्ट को xt, yt, और zt कार्टेशियन-समय समतलो में 4डी मिन्कोवस्की सांस्थानिक स्थान निर्देशांक के अतिशयोक्तिपूर्ण घूर्णन के रूप में माना जा सकता है। पैरामीटर ζ घूर्णन का अतिशयोक्तिपूर्ण कोण है, जो वृत्ताकार घूर्णनों के लिए सामान्य कोण के समान है। इस परिवर्तन को मिन्कोव्स्की आरेख द्वारा चित्रित किया जा सकता है।

योग के अतिरिक्त अतिशयोक्तिपूर्ण कार्य समय के वर्गों के मध्य के अंतर से उत्पन्न होते हैं, और सांस्थानिक स्थान अंतराल में स्थानिक निर्देशांक होते हैं। अतिशयोक्तिपूर्ण कार्यों के परिवर्तनों में x = 0 या ct = 0 ज्यामितीय महत्व को लेकर कल्पना की जा सकती है। परिणामों को स्क्वायर करना और घटाना, निरंतर समन्वय मूल्यों के अतिपरवलयिक वक्र ζ प्राप्त कर सकते हैं किन्तु भिन्न होते हैं, जो पहचान के अनुसार वक्रों को पैरामीट्रिज करता है I

इसके विपरीत ct और x भिन्न-भिन्न निर्देशांक किन्तु स्थिर के लिए ζ का निर्माण किया जा सकता है:
ct सांस्थानिक समय में गति के स्थिर मूल्य और K ढलान के मध्य की स्थिरता प्रदान करता है। परिणाम ये दो अतिशयोक्तिपूर्ण सूत्र पहचान है जो लोरेंत्ज़ कारक से मिलते है:
सापेक्ष वेग और तीव्रता के संदर्भ में लोरेन्ट्स परिवर्तनों की तुलना करना, या उपरोक्त सूत्रों का उपयोग करना, β, γ, और ζ के मध्य संबंध हैं:
प्रतिलोम अतिशयोक्तिपूर्ण स्पर्शज्या लेने से तीव्रता प्राप्त होती है
तब से −1 < β < 1, यह इस प्रकार है −∞ < ζ < ∞. मध्य के संबंध से ζ और β, सकारात्मक बूस्ट ζ > 0, xx अक्षो की सकारात्मक दिशाओं में गति है, शून्य तीव्रता ζ = 0 कोई सापेक्ष गति नहीं है, जबकि नकारात्मक गति है, ζ < 0, xx अक्षो की ऋणात्मक दिशाओं में सापेक्ष गति है।

व्युत्क्रम परिवर्तन निर्देशांक फ़्रेमों को स्विच करने के लिए प्राइमेड और अनप्राइमेड मात्राओं का आदान-प्रदान करके और बूस्ट ζ → −ζ को प्राप्त किया जाता है, क्योंकि यह सापेक्ष वेग को त्यागने के बराबर है। इसलिए,

व्युत्क्रम लोरेन्ट्स बूस्ट (x तीव्रता से दिशा ζ)

जब स्तिथियों पर विचार करके व्युत्क्रम परिवर्तनों x′ = 0 और ct′ = 0 को समान रूप से देखा जा सकता है I

अब तक लोरेन्ट्स परिवर्तनों को घटना पर प्रारम्भ किया गया है। यदि दो घटनाएँ होती हैं, तो उनके मध्य स्थानिक विभक्ताव और समय अंतराल होता है। यह लोरेन्ट्स परिवर्तनों के रैखिक परिवर्तन से अनुसरण करता है कि अंतरिक्ष और समय निर्देशांक के दो मूल्यों का चयन किया जा सकता है, लोरेन्ट्स परिवर्तनों को प्रत्येक पर प्रारम्भ किया जा सकता है, फिर अंतरों के लोरेन्ट्स परिवर्तनों को प्राप्त करने के लिए घटाया जा सकता है;

व्युत्क्रम संबंधों के साथ,
जहाँ Δ (डेल्टा) मात्राओं के अंतर को प्रदर्शित करता है; जैसे, Δx = x2x1 के दो मानों के लिए x निर्देशांक, और इसी प्रकार है।

स्थानिक बिंदुओं या समय के क्षणों के अतिरिक्त मतभेदों पर ये परिवर्तन कई कारणों से उपयोगी होते हैं:

  • गणना और प्रयोगों में, यह दो बिंदुओं या समय अंतरालों के मध्य की लंबाई होती है जो मापी जाती है (जैसे, गति करते हुए वाहन की लंबाई, या एक स्थान से दूसरे स्थान तक यात्रा करने में लगने वाली समयावधि),
  • अंतर को अत्यन्त्त रूप से छोटा करके और समीकरणों को विभाजित करके और त्वरण के परिवर्तन के लिए दोहराई जाने वाली प्रक्रिया को वेग के परिवर्तनों को सरलता से प्राप्त किया जा सकता है,
  • यदि समन्वय प्रणाली मानक विन्यास में नहीं है, और यदि दोनों पर्यवेक्षक किसी घटना पर सहमत हो सकते हैं I t0, x0, y0, z0 में F और t0′, x0′, y0′, z0 में F, तो वे उस घटना को उत्पत्ति के रूप में उपयोग कर सकते हैं, और अंतरिक्ष-समय समन्वय अंतर उनके निर्देशांक और इस उत्पत्ति के मध्य के अंतर हैं, उदाहरण के लिए, Δx = xx0, Δx′ = x′ − x0

भौतिक प्रभाव

लोरेन्ट्स परिवर्तनों की महत्वपूर्ण आवश्यकता प्रकाश की गति की निश्चितता है, जो उनकी व्युत्पत्ति में उपयोग किया जाता है, और स्वयं परिवर्तनों में निहित है। F के साथ प्रकाश की नाड़ी के लिए समीकरण x दिशा है x = ct, में फिर F लोरेन्ट्स रूपांतरण देते हैं I x′ = ct, और इसके विपरीत, किसी के लिए भी c < v < c है I

प्रकाश की गति की तुलना में अधिक कम सापेक्ष गति के लिए, लोरेन्ट्स परिवर्तन गैलीलियन परिवर्तन को कम करता है I

पत्राचार सिद्धांत के अनुसार कभी-कभी यह कहा जाता है कि गैर-सापेक्षवादी भौतिकी दूरी पर तात्कालिक क्रिया का भौतिकी है।[13] परिवर्तनों के तीन विपरीत, किन्तु सही, भविष्यवाणियां हैं:

एक साथ की सापेक्षता
मान लीजिए दो घटनाएं x अक्ष के साथ-साथ घटित होती हैं , किन्तु (Δt = 0) में F अशून्य विस्थापन द्वारा विभक्त किया गया हैं, Δx. में पुनः F, हम पाते हैं , इसलिए गतिमान पर्यवेक्षक के अनुसार घटनाएँ अब एक साथ नहीं हैं।
समय विस्तार
मान लीजिए कि घड़ी विरामावस्था में है I यदि उस फ्रेम F में किसी बिंदु पर समय अंतराल मापा जाता है, जिससे Δx = 0, तो परिवर्तन F द्वारा Δt′ = γΔt इस अंतराल को देते हैं I इसके विपरीत, मान लीजिए कि विरामावस्था पर घड़ी F है, यदि उस फ्रेम में किसी बिंदु पर अंतराल मापा जाता है, जिससे Δx′ = 0, तो रूपांतरण इस अंतराल Δt = γΔt को F द्वारा देते हैं I γ उसकी अपनी घड़ी की टिक टिक के मध्य के समय अंतराल की तुलना में किसी भी प्रकार से, प्रत्येक पर्यवेक्षक गतिमान घड़ी की टिक के मध्य के समय अंतराल को कारक द्वारा लंबा होने के लिए मापता है।

लंबाई संकुचन

मान लीजिए कि छड़ विरामावस्था F में है, लंबाई के साथ x अक्ष के साथ संरेखित Δx. में F, छड़ वेग -v से चलती है, इसलिए इसकी लंबाई (Δt′ = 0) विपरीत सिरों पर माप दो साथ लेकर मापी जानी चाहिए। इसके अंतर्गत, व्युत्क्रम लोरेन्ट्स परिवर्तन यह दर्शाता है I Δx = γΔx में F दो माप अब साथ नहीं हैं, किन्तु इससे कोई प्रभाव नहीं पड़ता क्योंकि रॉड विरामावस्था F पर है I इसलिए प्रत्येक प्रेक्षक गतिमान छड़ के अंतिम बिंदुओं के मध्य की दूरी को कारक द्वारा कम करने के लिए मापता है I अपने स्वयं के फ्रेम 1/γ में विरामावस्था से समान छड़ के अंत बिंदुओं की तुलना में लंबाई संकुचन लंबाई से संबंधित किसी भी ज्यामितीय मात्रा को प्रभावित करता है, इसलिए गतिमान पर्यवेक्षक के दृष्टिकोण से, क्षेत्र और आयतन भी गति की दिशा में सिकुड़ते हुए दिखाई देंगे।

सदिश परिवर्तन

फ्रेम में पर्यवेक्षक F देखता है F वेग से चलना v, जबकि F देखता है F वेग से चलना v. The coordinate axes of each frame are still parallel[according to whom?] और ऑर्थोगोनल। प्रत्येक फ्रेम में मापी गई स्थिति सदिश सापेक्ष वेग सदिश के समानांतर और लंबवत घटकों में विभाजित होती है v.
बायां: मानक कॉन्फ़िगरेशन। दाएँ: विपरीत विन्यास।

सदिशों के उपयोग से स्थिति और वेगों को स्वेच्छानुसार दिशाओं में अभिव्यक्त करने की अनुमति मिलती है। किसी भी दिशा में एकल बूस्ट पूर्ण सापेक्ष [[वेग वेक्टर|वेग v सदिश]] पर निर्भर करता हैI 0 ≤ v < c परिमाण के साथ |v| = v जो c के बराबर या अधिक नहीं हो सकता है।

सापेक्ष गति की दिशा के समानांतर केवल समय और निर्देशांक परिवर्तित होते है, जबकि वे निर्देशांक लंबवत नहीं होते हैं। इसे ध्यान में रखते हुए, स्थानिक स्थिति सदिश v को विभाजित करें I r में मापा गया F, और r में मापा गया F′, प्रत्येक को लंबवत (⊥) और समानांतर (‖ ) घटकों में विभाजित करें:

तब परिवर्तन हैं
जहाँ · डॉट उत्पाद है। लोरेन्ट्स कारक γ किसी भी दिशा में बूस्ट देने के लिए अपनी परिभाषा को निरंतर रखता है, क्योंकि यह केवल सापेक्ष वेग के परिमाण पर निर्भर करता है। मानहानि β = v/c परिमाण के साथ 0 ≤ β < 1 का उपयोग कुछ लेखकों द्वारा भी किया जाता है।

इकाई सदिश का परिचय n = v/v = β/β आपेक्षिक गति की दिशा में सापेक्ष वेग हैI v = vn परिमाण के साथ v और दिशा n, और सदिश प्रक्षेपण और असहमति क्रमशः देते हैं:

परिणाम संचित करने से पूर्ण परिवर्तन होता है,

लोरेन्ट्स बूस्ट (दिशा में n परिमाण के साथ v)

प्रक्षेपण और अस्वीकृति भी प्रारम्भ होती हैI r व्युत्क्रम परिवर्तनों के लिए, विनिमय r और r प्रेक्षित निर्देशांकों को स्विच करने के लिए, और सापेक्ष वेग को त्यागने के लिए v → −v (या केवल इकाई सदिश n → −n परिमाण के पश्चात् से v सदैव सकारात्मक होता है) प्राप्त करने के लिए,

व्युत्क्रम लोरेन्ट्स बूस्ट (दिशा में n परिमाण के साथ v)

इकाई सदिश के निकट एकल बूस्ट के लिए समीकरणों को सरल बनाने का लाभ है, v या β सुविधाजनक होने पर किया जाना चाहिए, और रैपिडिटी पैरामीट्रिजेशन को शीघ्रता से परिवर्तित करके प्राप्त किया जाता है I β और βγ यह एकाधिक बूस्ट के लिए सुविधाजनक नहीं है।

सापेक्ष वेग और तीव्रता के मध्य सदिश संबंध है[14]

और रैपिडिटी सदिश के रूप में परिभाषित किया जा सकता है
जिनमें से प्रत्येक कुछ संदर्भों में उपयोगी संक्षेप के रूप में कार्य करता है। ζ का परिमाण 0 ≤ ζ < ∞ तक सीमित रैपिडिटी अदिश का पूर्ण मूल्य है, जो सीमा 0 ≤ β < 1 से सहमत है I

वेगों का परिवर्तन

वेगों का परिवर्तन परिभाषा वेग जोड़ सूत्र प्रदान करता है , वेगों के योग के क्रम को दर्शाने के लिए सदिशों के क्रम का चयन किया जाता है; v (F' के सापेक्ष F' का वेग) तब u (F' के सापेक्ष X का वेग) प्राप्त करने के लिए u = vu (F के सापेक्ष X का वेग) है।

समन्वय वेग और लोरेन्ट्स कारक को परिभाषित करना

सदिश परिवर्तनों के निर्देशांक और समय में अंतर लेना, समीकरणों को विभाजित करना,

वेग u और u किसी विशाल वस्तु का वेग है। वे तीसरे जड़त्वीय फ्रेम के लिए भी हो सकते हैं (मान लीजिए F), जिस स्थिति में उन्हें स्थिर होना चाहिए। X द्वारा किसी भी इकाई को निरूपित करें। फिर X वेग u से गति करता हैI F के सापेक्ष, या समकक्ष वेग के साथ u F' के सापेक्ष, विपरीत में F' वेग v से गति करता है। व्युत्क्रम परिवर्तन समान प्रकार से प्राप्त किया जा सकता है, या स्थिति निर्देशांक विनिमय के साथ u और u, और v को v हैI

तारकीय विपथन, फ़िज़ो प्रयोग और सापेक्ष डॉसमयर प्रभाव में वेग का परिवर्तन उपयोगी है।

त्वरण तीन-त्वरण समान रूप से वेग सदिशों में अंतर लेकर और इन्हें समय के अंतर से विभाजित करके प्राप्त किया जा सकता है।

अन्य राशियों का रूपांतरण

इस प्रकार, चार मात्राएँ दी गई हैं I A और Z = (Zx, Zy, Zz) और उनके लोरेन्ट्स-बूस्टेड समकक्ष A और Z′ = (Zx, Zy, Zz), रूप का संबंध इस प्रकार है :

अंतरिक्ष-समय निर्देशांक के परिवर्तन के समान लोरेन्ट्स परिवर्तनों के अंतर्गत मात्राएँ रूपांतरित होती हैं;
Z (और Z) का अपघटन लंबवत और समानांतर घटकों में v स्थिति सदिश के समान ही है, जैसा कि व्युत्क्रम परिवर्तन प्राप्त करने की प्रक्रिया है (विनिमय (A, Z) और (A′, Z′) देखी गई मात्राओं को स्विच करने के लिए, और प्रतिस्थापन द्वारा सापेक्ष गति की दिशा n ↦ −n को विपरीत कर दे I

मात्राएँ (A, Z) सामूहिक रूप से चार-सदिश बनाते हैं, जहाँ A टाइमलाइक घटक है, और Z स्पेसलाइक घटक है। इसके उदाहरण A और Z निम्नलिखित हैं:

चार-सदिश A Z
स्थिति चार-सदिश समय ( c से गुणा), ct स्थिति सदिश, r
चार गति ऊर्जा ( c द्वारा विभाजित), E/c गति, p
चार-तरंग सदिश कोणीय आवृत्ति (c से विभाजित), ω/c तरंग सदिश, k
चार-स्पिन (कोई नाम नहीं), st स्पिन, s
चार-करंट आवेश घनत्व (c से गुणा), ρc वर्तमान घनत्व, j
विद्युत चुम्बकीय चार-क्षमता विद्युत क्षमता (c द्वारा विभाजित), φ/c चुंबकीय सदिश क्षमता, A

किसी दी गई वस्तु (जैसे, कण, द्रव, क्षेत्र, सामग्री) के लिए, यदि A या Z वस्तु के लिए विशिष्ट गुणों के अनुरूप होता है जैसे उसका आवेश घनत्व, द्रव्यमान घनत्व, स्पिन (भौतिकी), आदि, शेष वस्तु के गुण फ्रेम में तय की जा सकती हैं। लोरेन्ट्स परिवर्तन निरंतर वेग के साथ वस्तु के सापेक्ष गतिमान फ्रेम में संबंधित गुण देता है। यह गैर-सापेक्ष भौतिकी में दी गई कुछ धारणाओं को विभक्त करता है। उदाहरण के लिए, ऊर्जा गैर-सापेक्षवादी यांत्रिकी में अदिश राशि है, किन्तु सापेक्षतावादी यांत्रिकी में नहीं क्योंकि लोरेन्ट्स परिवर्तनों के अंतर्गत ऊर्जा में परिवर्तन होता है; विभिन्न जड़त्वीय फ्रेमों के लिए इसका मान भिन्न होता है। किसी वस्तु के विरामावस्था फ्रेम में, इसकी विरामावस्था ऊर्जा और शून्य गति होती है। बढ़े हुए फ्रेम में इसकी ऊर्जा विभक्त होती है और इसमें गति दिखाई देती है। इसी प्रकार, गैर-सापेक्षवादी क्वांटम यांत्रिकी में कण का चक्रण स्थिर सदिश होता है, किन्तु सापेक्षतावादी क्वांटम यांत्रिकी में चक्रण s सापेक्ष गति पर निर्भर करता है। कण के शेष फ्रेम में, स्पिन स्यूडोसदिश को इसके सामान्य गैर-सापेक्षतावादी स्पिन के रूप में शून्य समयबद्ध मात्रा st के साथ तय किया जा सकता है, चूँकि बढ़ा हुआ पर्यवेक्षक गैर-शून्य समयबद्ध घटक और परिवर्तित स्पिन को देखेगा।[15] जैसा कि ऊपर दिखाया गया है, सभी मात्राएँ अपरिवर्तनीय नहीं हैं, उदाहरण के लिए कक्षीय कोणीय गति L के निकट समयबद्ध मात्रा नहीं है, और न ही विद्युत क्षेत्र E है, न ही चुंबकीय क्षेत्र B.है I कोणीय गति की परिभाषा L = r × p है, और बढ़े हुए फ्रेम में परिवर्तित कोणीय गति L′ = r′ × p हैI निर्देशांक और संवेग के परिवर्तनों का उपयोग करके इस परिभाषा को प्रारम्भ करने से कोणीय संवेग का परिवर्तन होता है। L अन्य सदिश मात्रा के साथ रूपांतरित होता है I N = (E/c2)rtp बूस्ट से संबंधित, विवरण के लिए सापेक्षिक कोणीय संवेग देखें। E और B क्षेत्रों में, सदिश बीजगणित का उपयोग करके रूपांतरणों को सीधे प्राप्त नहीं किया जा सकता है। लोरेन्ट्स बल इन क्षेत्रों की परिभाषा है, और F यह है F = q(E + v × B) जब में F यह है F′ = q(E′ + v′ × B′) I कुशल प्रकार से ईएम क्षेत्र परिवर्तन प्राप्त करने की विधि जो विद्युत चुम्बकीय क्षेत्र की इकाई को भी दर्शाती है, टेन्सर बीजगणित, लोरेन्ट्स परिवर्तन विद्युत चुम्बकीय क्षेत्र के परिवर्तन का उपयोग करती है।

गणितीय सूत्रीकरण

कुल मिलाकर, इटैलिक गैर-बोल्ड कैपिटल अक्षर 4×4 मैट्रिक्स हैं, जबकि गैर-इटैलिक बोल्ड अक्षर 3×3 मैट्रिक्स हैं।

सजातीय लोरेन्ट्स समूह

कॉलम सदिश और मिन्कोव्स्की मीट्रिक में निर्देशांक लिखना η वर्ग मैट्रिक्स के रूप में

सांस्थानिक स्थान अंतराल रूप लेता है (सुपरस्क्रिप्ट T स्थानांतरण दर्शाता है)
और लोरेन्ट्स परिवर्तन के अंतर्गत अपरिवर्तनीय (भौतिकी) है
जहाँ Λ वर्ग मैट्रिक्स है जो मापदंडों पर निर्भर कर सकता है।

इस लेख में सभी लोरेन्ट्स परिवर्तनों Λ के समूह (गणित) को निरूपित किया गया हैI मैट्रिक्स गुणन के साथ मिलकर यह समूह (गणित) बनाता है, इस संदर्भ में लोरेन्ट्स समूह के रूप में जाना जाता है। साथ ही, उपरोक्त अभिव्यक्ति X·X सांस्थानिक स्थान पर हस्ताक्षर (3,1) का द्विघात रूप है, और परिवर्तनों का समूह जो इस द्विघात रूप को अपरिवर्तित त्याग देता है, वह अनिश्चितकालीन ऑर्थोगोनल समूह O(3,1), लाइ समूह है। दूसरे शब्दों में, लोरेन्ट्स समूह (3,1) है। जैसा कि इस लेख में प्रस्तुत किया गया है, उल्लिखित कोई भी लाइ समूह मैट्रिक्स लाइ समूह हैं। इस संदर्भ में संरचना का संचालन मैट्रिक्स गुणन के बराबर है।

सांस्थानिक स्थान अंतराल के व्युत्क्रम से यह अनुसरण करता है

और इस मैट्रिक्स समीकरण में सांस्थानिक स्थान अंतराल के व्युत्क्रम को सुनिश्चित करने के लिए लोरेन्ट्स परिवर्तन पर सामान्य नियम सम्मलित हैं। गुणनफल नियम का प्रयोग करते हुए समीकरण का निर्धारक [nb 4] शीघ्रतापूर्वक देता है:


मिन्कोव्स्की मीट्रिक को ब्लॉक मैट्रिक्स के रूप में लिखना, और सकेवल े सामान्य रूप में लोरेन्ट्स परिवर्तन के रूप में लिखना:

Γ, a, b, M सापेक्षतावादी आक्रमण सुनिश्चित करने के लिए ब्लॉक मैट्रिक्स गुणा करने पर सामान्य स्थिति प्राप्त होती है। सभी स्थितियों से अधिक जानकारी सरलता से नहीं निकाली जा सकती है, चूँकि परिणाम इस प्रकार है:
bTb ≥ 0 सदैव तो यह इस प्रकार है
नकारात्मक असमानता अप्रत्याशित हो सकती है, क्योंकि Γ समय समन्वय को गुणा करता है और इसका समय अनुवाद समरूपता पर प्रभाव पड़ता है। यदि सकारात्मक समानता रखती है, तो Γ लोरेन्ट्स कारक है।

निर्धारक और असमानता लोरेन्ट्स रूपांतरण को वर्गीकृत करने के चार प्रकार प्रदान करते हैं। किसी विशेष एलटी में केवल निर्धारक चिह्न 'और' केवल असमानता है। चार समूह हैं जिनमें इन वर्गीकृत त्याग समूहों के प्रतिच्छेदन द्वारा दी गई प्रत्येक संभव जोड़ी सम्मलित है।

प्रतिच्छेदन, ∩ एंटीक्रोनस (या गैर-ऑर्थोक्रोनस) LTs
ऑर्थोक्रोनस LTs
उचित LTs
उचित एंटीक्रोनस LTs
उचित ऑर्थोक्रोनस LTs
अनुचित LTs
अनुचित एंटीक्रोनस LTs
अनुचित ऑर्थोक्रोनस LTs

जहां + और - निर्धारक चिह्न को प्रदर्शित करते हैं, जबकि ≥ के लिए ↑ और ≤ के लिए ↓ असमानताओं को दर्शाते हैं।

पूर्ण लोरेन्ट्स समूह चार भिन्न-भिन्न समूहों के संघ (यू-आकार का प्रतीक अर्थ या) में विभाजित होता है I

समूह के उपसमूह को समूह के समान संचालन (यहां मैट्रिक्स गुणन) के अंतर्गत बंद (गणित) होना चाहिए। दूसरे शब्दों में, दो लोरेन्ट्स परिवर्तनों के लिए Λ और L विशेष समूह से, समग्र लोरेन्ट्स परिवर्तन ΛL और LΛ उसी समूह में होना चाहिए I Λ और L सदैव स्थित नहीं होता है: दो एंटीक्रोनस लोरेन्ट्स परिवर्तनों की संरचना ऑर्थोक्रोनस है, और दो अनुचित लोरेन्ट्स परिवर्तनों की संरचना उचित है। दूसरे शब्दों में, जबकि समूह , , , और सभी प्रपत्र उपसमूह, पर्याप्त उचित ऑर्थोक्रोनस परिवर्तनों के बिना अनुचित या एंटीक्रोनस परिवर्तनों वाले समूह (उदा। , , ) उपसमूह नहीं बनाते हैं।

उचित परिवर्तन

यदि लोरेन्ट्स सहसंयोजक 4-सदिश को परिणाम के साथ जड़त्वीय फ्रेम में मापा जाता है, और अन्य जड़त्वीय फ्रेम में किया गया वही माप परिणाम देता है, तब दो परिणाम इससे संबंधित होंगे:

जहां बूस्ट मैट्रिक्स अप्रकाशित और प्राथमिक फ़्रेमों के मध्य लोरेन्ट्स परिवर्तन का प्रतिनिधित्व करता है और प्राइमेड फ्रेम का वेग है जैसा कि अनप्राइमेड फ्रेम से देखा जाता है। मैट्रिक्स द्वारा इस प्रकार दिया गया है:[16]
जहाँ वेग का परिमाण है और लोरेन्ट्स कारक है। यह सूत्र निष्क्रिय परिवर्तन का प्रतिनिधित्व करता है, क्योंकि यह वर्णन करता है कि मापी गई मात्रा के निर्देशांक अप्रमाणित फ्रेम से प्राइमेड फ्रेम में कैसे परिवर्तित करते हैं। सक्रिय परिवर्तन द्वारा दिया जाता हैI

यदि एक फ्रेम F वेग से बढ़ाया जाता है u फ्रेम के सापेक्ष F, और दूसरा फ्रेम F′′ वेग से बढ़ाया जाता है v के सापेक्ष F, विभक्त बूस्ट हैं:

F′′ और F दो बूस्ट की संरचना निर्देशांक को जोड़ती है,
क्रमिक परिवर्तन बाईं ओर कार्य करते हैं। यदि u और v समरेख हैं (सापेक्ष गति की रेखा के समानांतर), बूस्ट मेट्रिसेस कम्यूटेटिव गुण: B(v)B(u) = B(u)B(v) I यह समग्र परिवर्तन में बूस्ट होता है, B(w), जहाँ w के साथ संरेख है u और v हैं।

यदि u और v समरेख नहीं हैं किन्तु भिन्न-भिन्न दिशाओं में, स्थिति अधिक जटिल है। भिन्न-भिन्न दिशाओं में लोरेन्ट्स बूस्ट में संयुग्मित नहीं करते हैं: B(v)B(u) और B(u)B(v) बराबर नहीं हैं। इसके अतिरिक्त, इन रचनाओं में से प्रत्येक एकल बूस्ट नहीं है, किन्तु वे अभी भी लोरेन्ट्स रूपांतरण हैं, जिनमें से प्रत्येक सांस्थानिक स्थान अंतराल को संरक्षित करता है। किसी भी दो लोरेन्ट्स बूस्ट की संरचना स्थानिक निर्देशांक के रूप में R(ρ)B(w) या B(w)R(ρ) घूर्णन के पश्चात् या उससे पूर्व के बूस्ट के बराबर है I वह w और w वेग योग सूत्र हैं, जबकि ρ और ρ घूर्णन पैरामीटर हैं (अर्थात अक्ष-कोण प्रतिनिधित्व, अक्ष-कोण चर, यूलर कोण, आदि)। ब्लॉक मैट्रिक्स फॉर्म में घूर्णन सरल होता हैI

जहाँ R(ρ) 3डी घूर्णन मैट्रिक्स है, जो किसी भी 3डी सदिश को पृथ्वी (सक्रिय परिवर्तन) में घुमाता है, या समकक्ष समन्वय फ्रेम को विपरीत पृथ्वी (निष्क्रिय परिवर्तन) में घुमाता है। w और ρ जोड़ना सरल नहीं है I (या w और ρ) मूल बूस्ट मापदंडों के लिए u और v है I बूस्ट की संरचना में, R मैट्रिक्स को विग्नर घूर्णन नाम दिया गया है, और थॉमस प्रीसेशन को उत्पन्न करता है। ये लेख समग्र रूपांतरण मैट्रिसेस के लिए स्पष्ट सूत्र देते हैं, जिसमें अभिव्यक्ति w, ρ, w, ρ भी सम्मलित है I

इस आलेख में अक्ष-कोण प्रतिनिधित्व के लिए ρ प्रयोग किया जाता है I घूर्णन इकाई सदिश की दिशा में अक्ष के सम्बन्ध में e है, कोण θ के माध्यम से (धनात्मक वामावर्त, ऋणात्मक दक्षिणावर्त, दाएँ हाथ के नियम के अनुसार) अक्ष-कोण सदिश इस प्रकार है:

उपयोगी संक्षिप्त नाम के रूप में कार्य करेगा।

स्थानिक घूर्णन भी लोरेन्ट्स परिवर्तन हैं, वे अंतरिक्ष-समय अंतराल को अपरिवर्तित त्याग देते हैं। बूस्ट के प्रकार, भिन्न-भिन्न अक्षों के सम्बन्ध में क्रमिक घूर्णन संयुग्मित नहीं करते हैं। बूस्ट के विपरीत, किसी भी दो घूर्णनों की संरचना एकल घूर्णन के बराबर होती है। बूस्ट और घूर्णन मेट्रिसेस के मध्य कुछ अन्य समानताओं और अंतरों में सम्मलित हैं:

  • मैट्रिक्स व्युत्क्रम: B(v)−1 = B(−v) (विपरीत दिशा में सापेक्ष गति), और R(θ)−1 = R(−θ) (अक्ष के सम्बन्ध में पृथ्वी में विपरीत घूर्णन)
  • कोई सापेक्ष गति/घूर्णन के लिए पहचान परिवर्तन: B(0) = R(0) = I
  • निर्धारित इकाई: det(B) = det(R) = +1. यह संपत्ति उन्हें उचित परिवर्तन बनाती है।
  • सममित मैट्रिक्स: B सममित है, जबकि R असममित है किन्तु ऑर्थोगोनल मैट्रिक्स (ट्रांसपोज़ मैट्रिक्स व्युत्क्रम के बराबर RT = R−1) हैI

सामान्य उचित लोरेन्ट्स परिवर्तन Λ(v, θ) में बूस्ट और घूर्णन सम्मलित है, और यह असममित मैट्रिक्स है। विशेष स्तिथियों के रूप में, Λ(0, θ) = R(θ) और Λ(v, 0) = B(v), सामान्य लोरेन्ट्स परिवर्तन का स्पष्ट रूप लिखना कठिन है, और यहाँ नहीं दिया जाएगा। फिर भी, समूह सैद्धांतिक तर्कों का उपयोग करते हुए परिवर्तन मैट्रिसेस के लिए बंद फॉर्म एक्सप्रेशन नीचे दिए जाएंगे। बूस्ट के लिए रैपिडिटी पैरामीट्रिजेशन का उपयोग करना सरल होगा, जिस स्थिति में कोई इस प्रकार लिखता Λ(ζ, θ) और B(ζ) है I

लाई समूह SO+(3,1)

परिवर्तनों का समुच्चय

मैट्रिक्स गुणन के साथ संयोजन के संचालन के रूप में समूह बनाता है, जिसे प्रतिबंधित लोरेन्ट्स समूह कहा जाता है, और विशेष अनिश्चितकालीन ऑर्थोगोनल समूह SO+(3,1) है I (प्लस चिन्ह प्रदर्शित करता है कि यह लौकिक आयाम के उन्मुखीकरण को संरक्षित करता है)।

सरलता के लिए, x दिशा में अतिसूक्ष्म लोरेन्ट्स बूस्ट को देखें (किसी अन्य दिशा में बूस्ट का परिक्षण करना, या किसी अक्ष के चारों ओर घूमना, समान प्रक्रिया का पालन करता है)। इनफिनिटिमल बूस्ट आइडेंटिटी से दूर छोटा सा बूस्ट है, जिसे बूस्ट मैट्रिक्स के टेलर विस्तार द्वारा ऑर्डर के सम्बन्ध में ζ = 0 प्राप्त किया जाता है:

जहां उच्च आदेश को नहीं दिखाया गया है क्योंकि वे नगण्य हैंi ζ छोटा है, और Bx केवल x दिशा में बूस्ट मैट्रिक्स है। मैट्रिक्स गणना डेरिवेटिव्स का मैट्रिक्स है (प्रविष्टियों का, उसी चर के संबंध में), और यह अध्यन किया जाता है कि डेरिवेटिव ζ = 0 पाए जाते हैं फिर मूल्यांकन किया जाता है,
अभी के लिए, Kx इस परिणाम द्वारा परिभाषित किया गया है। अत्यंत रूप से अनंत संख्या की सीमा में, मैट्रिक्स घातांक के रूप में परिमित वृद्धि परिवर्तन प्राप्त होता हैI
जहां एक्सपोनेंशियल फ़ंक्शन औपचारिक परिभाषा का उपयोग किया गया है (एक्सपोनेंशियल फ़ंक्शन की विशेषताओं को भी देखें)। [nb 5]

अक्ष-कोण θ सदिश और रैपिडिटी सदिश ζ कुल मिलाकर छह निरंतर चर हैं, जो समूह पैरामीटर बनाते हैं, K = (Kx, Ky, Kz) और J = (Jx, Jy, Jz) समूह के जनरेटर हैंI मैट्रिसेस के प्रत्येक सदिश स्पष्ट रूपों के साथ इस प्रकार है:[nb 6]

इन सभी को समान प्रकार से Kx द्वारा परिभाषित किया गया है, चूँकि ऊपर बूस्ट जनरेटर में माइनस साइन पारंपरिक हैं। लोरेन्ट्स समूह के जनरेटर सांस्थानिक स्थान में महत्वपूर्ण समरूपता के अनुरूप हैं: J घूर्णन जनरेटर हैं जो कोणीय गति के अनुरूप हैं, और K बूस्ट जनरेटर हैं जो सांस्थानिक स्थान में प्रणाली की गति के अनुरूप हैं। किसी भी वक्र का व्युत्पन्न C(t) साथ C(0) = I समूह में कुछ समूह पैरामीटर के आधार पर t उस समूह पैरामीटर के संबंध में, मूल्यांकन t = 0 किया गया , G संबंधित समूह जनरेटर की परिभाषा के रूप में कार्य करता है, और यह पहचान अतिसूक्ष्म परिवर्तन को दर्शाता है। वक्र को सदैव घातांक के रूप में लिया जा सकता है क्योंकि घातांक सदैव मैप करेगा I G सुचारू रूप से समूह में पुनः t → exp(tG) सभी के लिए t; यह वक्र निकलेगा G फिर से विभेदित होने पर t = 0 उनके टेलर श्रृंखला में घातांक का विस्तार प्राप्त करता है I


जो पूर्व अनुभाग में दिए गए अनुसार बूस्ट और घूर्णन मैट्रिसेस को कॉम्पैक्ट रूप से पुन: प्रस्तुत करता है।

यह कहा गया है कि सामान्य उचित लोरेन्ट्स परिवर्तन बूस्ट और घूर्णन का उत्पाद है। अतिसूक्ष्म स्तर पर उत्पाद इस प्रकार है:

विनिमेय है क्योंकि केवल रैखिक पदों की आवश्यकता होती है (जैसे उत्पाद (θ·J)(ζ·K) और (ζ·K)(θ·J) उच्च आदेश के रूप में गिने जाते हैं और नगण्य हैं)। पूर्व की प्रकार सीमा लेने से घातांक के रूप में परिमित परिवर्तन होता है
इसका विलोम भी सत्य है, किन्तु इस प्रकार के कारकों में परिमित सामान्य लोरेन्ट्स परिवर्तन का अपघटन गैर-तुच्छ है। विशेष रूप से,
क्योंकि जेनरेटर नहीं चलते हैं। बूस्ट और सिद्धांत में घूर्णन के संदर्भ में सामान्य लोरेन्ट्स परिवर्तन के कारकों के विवरण के लिए (J और K सामान्यतः जनरेटर के संदर्भ में समझदार अभिव्यक्ति नहीं देता है ), विग्नर घूर्णन देखें। यदि, दूसरी ओर, जनरेटर के संदर्भ में अपघटन दिया जाता है, और कोई जनरेटर के संदर्भ में उत्पाद शोध करना चाहता है, तो बेकर-कैंपबेल-हॉसडॉर्फ सूत्र प्रारम्भ होता है।

लाई बीजगणित so(3,1)

अधिक लोरेन्ट्स जनरेटर प्राप्त करने के लिए लोरेन्ट्स जनरेटर को साथ में जोड़ा जा सकता है, या वास्तविक संख्याओं से गुणा किया जा सकता है। दूसरे शब्दों में, सभी लोरेन्ट्स जनरेटर का समुच्चय इस प्रकार है:

साधारण मैट्रिक्स जोड़ और मैट्रिक्स गुणन अदिश गुणन के संचालन के साथ मिलकर, वास्तविक संख्याओं पर सदिश स्थल बनाता है।[nb 7] जनरेटर Jx, Jy, Jz, Kx, Ky, Kz V का आधार (रैखिक बीजगणित) समुच्चय, अक्ष-कोण θx, θy, θz, ζx, ζy, ζz और रैपिडिटी सदिश के घटक बनाते हैंI इस आधार के संबंध में लोरेन्ट्स जनरेटर के निर्देशांक सदिश हैं।[nb 8] लोरेन्ट्स जनरेटर के तीन रूपांतरण संबंध इस प्रकार है:
जहां कोष्ठक [A, B] = ABBA को कम्यूटेटर के रूप में जाना जाता है, और अन्य संबंधों को x, y, z घटकों के चक्रीय क्रमपरिवर्तन (जैसे x को y, y से z, और z को x) में बदलकर पाया जा सकता है।

ये रूपान्तरण संबंध, और जनरेटर के सदिश स्थान, लाई बीजगणित की परिभाषा को पूरा करते हैंI संक्षेप में, लाई बीजगणित को संख्याओं के क्षेत्र (गणित) पर सदिश स्थान V के रूप में परिभाषित किया गया है, और सदिश स्थान के तत्वों पर बाइनरी ऑपरेशन [ , ] (इस संदर्भ में एक लेट ब्रैकेट कहा जाता है) के साथ, स्वयंसिद्धों को संतुष्ट करता है। बिलिनियर मानचित्र, प्रत्यावर्तन और जैकोबी पहचान यहाँ संक्रिया [ , ] कम्यूटेटर है जो इन सभी अभिगृहीतों को संतुष्ट करती है, सदिश स्थान लोरेन्ट्स जनरेटर V का समुच्चय है जैसा कि पूर्व दिया गया है, और क्षेत्र वास्तविक संख्याओं का समुच्चय है।

गणित और भौतिकी में उपयोग की जाने वाली लिंकिंग शब्दावली: समूह जनरेटर लाई बीजगणित का कोई तत्व है। समूह पैरामीटर कुछ आधार के संबंध में लाई बीजगणित के तत्व का प्रतिनिधित्व करने वाले समन्वय सदिश का घटक है। जनरेटर का समूह है जो सामान्य सदिश अंतरिक्ष अर्थ में लाई बीजगणित का आधार है।

लाई बीजगणित से लाई समूह तक घातीय मानचित्र इस प्रकार है:

लाई बीजगणित की उत्पत्ति के आसपास और लाई समूह के पहचान तत्व के आसपास के मध्य एक-से-एक पत्राचार प्रदान करता है। लोरेन्ट्स समूह की स्तिथि में, घातीय मानचित्र केवल मैट्रिक्स घातांक है। विश्व स्तर पर, घातीय मानचित्र एक-से-एक नहीं है, किन्तु लोरेन्ट्स समूह की स्तिथि में, यह विशेषण कार्य है। इसलिए पहचान के जुड़े घटक में किसी भी समूह तत्व को लाई बीजगणित के तत्व के घातांक के रूप में व्यक्त किया जा सकता है।

अनुचित परिवर्तन

लोरेन्ट्स परिवर्तनों में समता व्युत्क्रमण भी सम्मलित है:

जो केवल सभी स्थानिक निर्देशांकों और T-समरूपता को त्यागता है:
जो त्यागता है, समय केवल समन्वय करता है, क्योंकि ये परिवर्तन अंतरिक्ष-समय अंतराल को अपरिवर्तित त्याग देते हैं। यहाँ I 3डी शिनाख्त सांचा है। ये दोनों सममित हैं, वे अपने स्वयं के व्युत्क्रम हैं (इनवोल्यूशन देखें (गणित), और प्रत्येक में निर्धारक -1 है। यह पश्चात् की संपत्ति उन्हें अनुचित परिवर्तन बनाती है।

यदि Λ तब उचित ऑर्थोक्रोनस लोरेन्ट्स परिवर्तन TΛ है, अनुचित एंटीक्रोनस PΛ है, अनुचित ऑर्थोक्रोनस है, और TPΛ = PTΛ उचित एंटीक्रोनस है।

अमानवीय लोरेन्ट्स समूह

दो अन्य सांस्थानिक स्थान समरूपताओं को बताया नहीं गया है। सांस्थानिक स्थान अंतराल के अपरिवर्तनीय होने के लिए, इसे दिखाया जा सकता है[17] समन्वय परिवर्तन के रूप में होना आवश्यक और पर्याप्त है I

जहां C निरंतर स्तंभ है, जिसमें समय और स्थान में अनुवाद होता है। यदि C ≠ 0 है, तो यह 'अमानवीय लोरेन्ट्स रूपांतरण' या 'पॉइनकेयर रूपांतरण' है।[18][19] यदि C = 0, यह 'सजातीय लोरेन्ट्स परिवर्तन' है। इस लेख में पॉइनकेयर रूपांतरणों के सम्बन्ध में आगे नहीं बताया गया है।

टेन्सर सूत्रीकरण

विपरीत सदिश

निर्देशांकों के सामान्य मैट्रिक्स परिवर्तन को मैट्रिक्स समीकरण के रूप में इस प्रकार लिखा जाता है:

अन्य भौतिक राशियों के परिवर्तन की अनुमति देता है, जिन्हें चार-सदिश के रूप में व्यक्त नहीं किया जा सकता है; उदाहरण के लिए, परिभाषित किए जाने वाले 4डी दिक्-काल में किसी भी क्रम के टेन्सर या स्पिनर संबंधित टेंसर इंडेक्स नोटेशन में, उपरोक्त मैट्रिक्स एक्सप्रेशन होते है:
जहां निचले और ऊपरी सूचकांक क्रमशः सदिशों के सहप्रसरण और प्रतिप्रसरण को लेबल करते हैं,[20] और योग सम्मेलन प्रस्तावित किया जाता है। यह ग्रीक वर्णमाला सूचकांकों का उपयोग करने के लिए मानक सम्मेलन है जो समय के घटकों के लिए मान 0 लेता है, और अंतरिक्ष घटकों के लिए 1, 2, 3, जबकि लैटिन वर्णमाला सूचकांक केवल स्थानिक घटकों के लिए मान 1, 2, 3 लेते हैं। ध्यान दें कि प्रथम इंडेक्स (बाएं से दाएं पढ़ना) मैट्रिक्स नोटेशन में पंक्ति इंडेक्स से मेल खाता है। दूसरा इंडेक्स कॉलम इंडेक्स से मेल खाता है।

परिवर्तन मैट्रिक्स सभी चार-सदिशों के लिए सार्वभौमिक है, न कि केवल 4-आयामी सांस्थानिक स्थान निर्देशांक है I यदि A कोई भी चार-सदिश है, फिर टेंसर इंडेक्स नोटेशन में इस प्रकार है

वैकल्पिक रूप से,
जिसमें प्राइमेड इंडेक्स प्राइमेड फ्रेम में A के इंडेक्स को दर्शाता है। जनरल के लिए n-कंपोनेंट ऑब्जेक्ट कोई भी लिख सकता है:
जहाँ Π लोरेन्ट्स समूह का उपयुक्त प्रतिनिधित्व सिद्धांत है, A n×n प्रत्येक के लिए मैट्रिक्स Λ. इस स्तिथि में, सूचकांकों को सांस्थानिक स्थान सूचकांकों के रूप में नहीं सोचा जाना चाहिए, और वे 1 को n. उदा., यदि X बिस्पिनोर है, तो सूचकांकों को डायराक सूचकांक कहा जाता है।

सहपरिवर्ती सदिश

सहपरिवर्ती सूचकांकों के साथ सदिश राशियाँ भी होती हैं। वे सामान्यतः सूचकांक को कम करने के संचालन द्वारा प्रतिवर्ती सूचकांकों के साथ उनकी संबंधित वस्तुओं से प्राप्त होते हैं; जैसे,

जहाँ η मीट्रिक टेंसर है। (लिंक किया गया लेख इस सम्बन्ध में अधिक जानकारी प्रदान करता है कि वास्तव में गणितीय रूप से सूचकांकों को ऊपर उठाने और घटाने की क्रिया क्या है।) इस रूपांतरण का व्युत्क्रम निम्न द्वारा दिया गया है:
जहां, जब मेट्रिसेस के रूप में देखा जाता है, ημν का विलोम ημν है I जैसा की ημν = ημν होता है, इसे सूचकांक बढ़ाने के रूप में जाना जाता है। सहसंयोजक सदिश को बदलने के लिए Aμ, पूर्व इसके सूचकांक को बढ़ाएँ, फिर इसे उसी नियम के अनुसार रूपांतरित करें जैसे कि प्रतिपरिवर्ती के लिए 4-सदिश, अंत में सूचकांक को कम करें;
किन्तु
जैसे यह (μ, ν)-प्रतिलोम लोरेन्ट्स परिवर्तन का घटक है, और संकेतन के रूप में परिभाषित करता है,
और इस अंकन में लिख सकते हैं
अब सूक्ष्मता के लिए K दाहिने हाथ की ओर निहित योग
प्रतिनिधित्व करने वाले मैट्रिक्स की पंक्ति अनुक्रमणिका Λ−1 पर चल रहा हैI इस प्रकार, मैट्रिसेस के संदर्भ में, इस परिवर्तन को व्युत्क्रम संक्रमण Λ के रूप में माना जाना चाहिए I कॉलम सदिश पर कार्य करना Aμ. जैसे, शुद्ध मैट्रिक्स संकेतन में,
इसका तात्पर्य यह है कि लोरेन्ट्स समूह के मानक प्रतिनिधित्व के दोहरे प्रतिनिधित्व के अनुसार सहसंयोजक सदिश रूपांतरित होते हैं। यह धारणा सामान्य अभ्यावेदन का सामान्यीकरण करती है,Λ साथ Π(Λ) प्रतिस्थापित करें I

टेन्सर

यदि A और B सदिश रिक्त स्थान पर रैखिक ऑपरेटर U और V हैं I तब रैखिक संकारक AB के टेंसर उत्पाद पर परिभाषित किया जा सकता है U और V, निरूपित UV के अनुसार[21]

   (T1)

इससे यह स्पष्ट हो जाता है कि यदि u और v में चार-सदिश हैं V, तब uvT2VVV के रूप में रूपांतरित करता है

   (T2)

दूसरा चरण टेंसर उत्पाद की बिलिनियरिटी का उपयोग करता है और अंतिम चरण घटक रूप पर 2-टेंसर को परिभाषित करता है, यह केवल टेंसर का नाम uv में बदल देता हैI

ये अवलोकन अधिक कारकों के लिए स्पष्ट प्रकार से सामान्यीकरण करते हैं, और इस तथ्य का उपयोग करते हुए कि सदिश स्थान पर सामान्य टेन्सर V को गुणांक (घटक!) के योग के रूप में लिखा जा सकता है, आधार सदिश और आधार को सदिश के टेन्सर उत्पाद, किसी भी टेंसर मात्रा के लिए परिवर्तन नियम पर आता हैI T द्वारा दिया गया है[22]

   (T3)

जहाँ Λχ′ψ ऊपर परिभाषित किया गया है। इस फॉर्म को सामान्यतः सामान्य के लिए फॉर्म में घटाया जा सकता है I n-कंपोनेंट ऑब्जेक्ट मैट्रिक्स (Π(Λ)) के साथ ऊपर दिए गए हैं, कॉलम सदिश पर काम कर रहा है। यह पश्चात् वाला रूप कभी-कभी सरूप किया जाता है; उदाहरण के लिए, विद्युत चुम्बकीय क्षेत्र टेंसर के लिए।

विद्युत चुम्बकीय क्षेत्र का परिवर्तन

लोरेन्ट्स विद्युत आवेश को बूस्ट देता है, आवेश एक या दूसरे फ्रेम में स्थिर रहता है।

चुंबकीय क्षेत्र को दर्शाने के लिए लोरेन्ट्स परिवर्तनों का भी उपयोग किया जा सकता हैI B और विद्युत क्षेत्र E विद्युत आवेशों और पर्यवेक्षकों के मध्य सापेक्ष गति के परिणामस्वरूप विद्युत चुम्बकीय बल भिन्न-भिन्न होते हैं ।[23] तथ्य यह है कि विद्युत चुम्बकीय क्षेत्र सापेक्षतावादी प्रभाव दिखाता है, और सरल विचार प्रयोग करने से स्पष्ट हो जाता है।[24]

  • पर्यवेक्षक फ्रेम F में आवेश मापता है। पर्यवेक्षक स्थिर विद्युत क्षेत्र का पता लगाता है। चूंकि इस फ्रेम में आवेश स्थिर है, कोई विद्युत प्रवाह नहीं है, इसलिए प्रेक्षक कोई चुंबकीय क्षेत्र नहीं देखता है।
  • फ्रेम F' में अन्य प्रेक्षक वेग v से गति करता हैI F और आवेश के सापेक्ष यह पर्यवेक्षक विभक्त विद्युत क्षेत्र देखता है क्योंकि आवेश वेग v से गति करता है, उनके बाकी फ्रेम में आवेश की गति विद्युत प्रवाह से मेल खाती है, और इस प्रकार फ्रेम F' में प्रेक्षक भी चुंबकीय क्षेत्र देखता है।

विद्युत और चुंबकीय क्षेत्र अंतरिक्ष और समय से भिन्न रूप से परिवर्तित होते हैं, किन्तु ठीक उसी प्रकार जैसे सापेक्षतावादी कोणीय गति और बूस्ट सदिश होते हैं I

विद्युत चुम्बकीय क्षेत्र शक्ति टेंसर द्वारा दिया जाता है:

एसआई इकाइयों की सापेक्षता में, गौसियन इकाइयों को प्रायः एसआई इकाइयों से अधिक सरूप किया जाता है, यहां तक ​​​​कि उन पाठों में भी जिनकी इकाइयों की मुख्य इकाई एसआई इकाइयां हैं, क्योंकि इसमें विद्युत क्षेत्र E और चुंबकीय प्रेरण B में वही इकाइयाँ होती हैं जो विद्युत चुम्बकीय टेंसर की उपस्थिति को और अधिक प्राकृतिक बनाती हैं।[25] x-दिशा में लोरेन्ट्स बूस्ट पर विचार करें।[26]
जहां नीचे दिए गए जोड़-तोड़ में सकेवल े सरल संभव संदर्भ के लिए फ़ील्ड टेंसर को साथ-साथ प्रदर्शित किया जाता है।

सामान्य परिवर्तन नियम (T3) हो जाता है

चुंबकीय क्षेत्र के लिए प्राप्त करता है
विद्युत क्षेत्र के परिणामों के लिए