प्रतिचित्रण वर्ग समूह: Difference between revisions

From Vigyanwiki
(Created page with "{{short description|Group of isotopy classes of a topological automorphism group}} गणित में, ज्यामितीय टोपोलॉजी के उ...")
 
No edit summary
 
(7 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{short description|Group of isotopy classes of a topological automorphism group}}
{{short description|Group of isotopy classes of a topological automorphism group}}
गणित में, [[ज्यामितीय टोपोलॉजी]] के उपक्षेत्र में, मैपिंग क्लास ग्रुप एक [[टोपोलॉजिकल स्पेस]] का एक महत्वपूर्ण बीजगणितीय अपरिवर्तनीय है। संक्षेप में, मानचित्रण वर्ग समूह अंतरिक्ष की समरूपता के अनुरूप एक निश्चित [[असतत समूह]] है।
गणित में, [[ज्यामितीय टोपोलॉजी|ज्यामितीय सांस्थिति विज्ञान]] के उपक्षेत्र में, प्रतिचित्रण कक्षा समूह एक [[टोपोलॉजिकल स्पेस|सांस्थितिक समष्टि]] का एक महत्वपूर्ण बीजगणितीय अपरिवर्तनीय रूप है। संक्षेप में, प्रतिचित्रण वर्ग समूह अंतरिक्ष की समरूपता के अनुरूप एक निश्चित [[असतत समूह]] है।


== प्रेरणा ==
== प्रयोजन ==
एक टोपोलॉजिकल स्पेस पर विचार करें, यानी अंतरिक्ष में बिंदुओं के बीच निकटता की कुछ धारणा वाला स्थान। हम होमोमोर्फिज्म के सेट को अंतरिक्ष से अपने आप में विचार कर सकते हैं, अर्थात, कंटीन्यूअस_फंक्शन#Continuous_functions_between_topological_spaces मैप्स विथ कंटीन्यूअस [[ उलटा काम करना ]]: ऐसे फंक्शन्स जो स्पेस को बिना तोड़े या चिपकाए लगातार स्पेस को स्ट्रेच और डिफॉर्म करते हैं। [[ होमियोमोर्फिज्म ]] के इस सेट को एक स्थान के रूप में ही माना जा सकता है। यह कार्यात्मक संरचना के तहत एक समूह बनाता है। हम होमोमोर्फिज्म के इस नए स्थान पर एक टोपोलॉजी को भी परिभाषित कर सकते हैं। इस नए फंक्शन स्पेस के [[ खुला सेट ]] उन फंक्शन्स के सेट से बने होंगे जो [[ कॉम्पैक्ट जगह ]] सबसेट K को ओपन सबसेट U में K और U रेंज के रूप में हमारे मूल टोपोलॉजिकल स्पेस में मैप करते हैं, जो उनके परिमित [[ चौराहा (सेट सिद्धांत) ]] के साथ पूरा होता है (जो होना चाहिए) टोपोलॉजी की परिभाषा द्वारा खुला) और मनमाना [[संघ (सेट सिद्धांत)]] (फिर से खुला होना चाहिए)। यह कार्यों के स्थान पर निरंतरता की धारणा देता है, ताकि हम होमियोमॉर्फिज्म के निरंतर विरूपण पर विचार कर सकें: [[होमोटॉपी]] कहा जाता है। हम होमोमोर्फिज्म की होमोटॉपी क्लासेस लेकर मैपिंग क्लास ग्रुप को परिभाषित करते हैं, और होमोमोर्फिज्म के स्थान पर पहले से मौजूद फंक्शनल कंपोजिशन ग्रुप स्ट्रक्चर से ग्रुप स्ट्रक्चर को प्रेरित करते हैं।
एक सांस्थितिक समष्टि पर विचार करें, अर्थात अंतरिक्ष में बिंदुओं के बीच निकटता की कुछ धारणा वाला स्थान अंतरिक्ष से स्वयं में होमोमोर्फिज्म के समुच्चय पर विचार कर सकते हैं, अर्थात निरंतर व्युत्क्रमों के साथ निरंतर मानचित्र: ऐसे कार्य जो अंतरिक्ष को बिना तोड़े या ग्लूइंग किए लगातार प्रसारित और विकृत करते हैं। [[ होमियोमोर्फिज्म |होमियोमोर्फिज्म]] के इस समुच्चय को एक स्थान के रूप में ही माना जा सकता है। यह कार्यात्मक संरचना के अंतर्गत एक समूह बनाता है। हम होमोमोर्फिज्म के इस नए स्थान पर एक सांस्थिति विज्ञान को भी परिभाषित कर सकते हैं। इस नए फंक्शन स्पेस के [[ खुला सेट |खुला समुच्चय]] उन फलनों के समुच्चय से बने होंगे जो [[ कॉम्पैक्ट जगह |कॉम्पैक्ट जगह]] सबसमुच्चय K को ओपन सबसमुच्चय U में K और U रेंज के रूप में हमारे मूल सांस्थितिक समष्टि में मैप करते हैं, जो उनके परिमित [[ चौराहा (सेट सिद्धांत) |प्रतिच्संवाहिनीन (समुच्चय सिद्धांत)]] के साथ पूरा होता है (जो होना चाहिए) सांस्थिति विज्ञान की परिभाषा द्वारा खुला) और मनमाना [[संघ (सेट सिद्धांत)|संघ (समुच्चय सिद्धांत)]] (फिर से खुला होना चाहिए)। यह कार्यों के स्थान पर निरंतरता की धारणा देता है, ताकि हम होमियोमॉर्फिज्म के निरंतर विरूपण पर विचार कर सकें: [[होमोटॉपी]] कहा जाता है। हम होमोमोर्फिज्म की होमोटॉपी क्लासेस लेकर प्रतिचित्रण कक्षा समूह को परिभाषित करते हैं, और होमोमोर्फिज्म के स्थान पर पहले से मौजूद फंक्शनल कंपोजिशन ग्रुप स्ट्रक्चर से ग्रुप स्ट्रक्चर को प्रेरित करते हैं।


== परिभाषा ==
== परिभाषा ==
मैपिंग क्लास ग्रुप शब्द का एक लचीला उपयोग है। बहुधा इसका प्रयोग [[कई गुना]] 'एम' के संदर्भ में किया जाता है। 'M' के मानचित्रण वर्ग समूह की व्याख्या 'M' के [[ automorphism ]] के [[परिवेश समस्थानिक]] के समूह के रूप में की जाती है। इसलिए यदि 'एम' एक [[टोपोलॉजिकल मैनिफोल्ड]] है, तो मैपिंग क्लास ग्रुप 'एम' के [[होमोमोर्फिज्म समूह]] के आइसोटोपी क्लास का समूह है। यदि ''M'' एक [[ चिकना कई गुना ]] है, तो मैपिंग क्लास ग्रुप ''M'' के [[डिफियोमोर्फिज्म]] के आइसोटोपी क्लास का समूह है। जब भी किसी ऑब्जेक्ट 'एक्स' के ऑटोमोर्फिज्म के समूह में प्राकृतिक टोपोलॉजिकल स्पेस होता है, तो 'एक्स' के मैपिंग क्लास ग्रुप को परिभाषित किया जाता है <math>\operatorname{Aut}(X)/\operatorname{Aut}_0(X)</math>, कहाँ <math>\operatorname{Aut}_0(X)</math> [[जुड़ा हुआ स्थान]] है | पहचान का पथ-घटक <math>\operatorname{Aut}(X)</math>. (ध्यान दें कि कॉम्पैक्ट-ओपन टोपोलॉजी में, पथ घटक और समस्थानिक वर्ग मेल खाते हैं, अर्थात, दो मानचित्र f और g एक ही पथ-घटक में हैं यदि वे समस्थानिक हैं{{Citation needed|date=October 2021}}). टोपोलॉजिकल स्पेस के लिए, यह आमतौर पर [[कॉम्पैक्ट-ओपन टोपोलॉजी]] है। कम-आयामी टोपोलॉजी साहित्य में, एक्स के मानचित्रण वर्ग समूह को आम तौर पर एमसीजी (एक्स) दर्शाया जाता है, हालांकि इसे अक्सर निरूपित किया जाता है <math>\pi_0(\operatorname{Aut}(X))</math>, जहाँ ऑट के स्थान पर उस श्रेणी के सिद्धांत के लिए उपयुक्त समूह रखा जाता है जिससे X संबंधित है। यहाँ <math>\pi_0</math> किसी स्थान के 0-वें [[होमोटॉपी समूह]] को दर्शाता है।
प्रतिचित्रण कक्षा समूह शब्द का एक लचीला उपयोग है। बहुधा इसका प्रयोग [[कई गुना]] 'एम' के संदर्भ में किया जाता है। 'M' के प्रतिचित्रण वर्ग समूह की व्याख्या 'M' के [[ automorphism |स्वसमाकृतिकता]] के [[परिवेश समस्थानिक]] के समूह के रूप में की जाती है। इसलिए यदि 'एम' एक [[टोपोलॉजिकल मैनिफोल्ड]] है, तो प्रतिचित्रण कक्षा समूह 'एम' के [[होमोमोर्फिज्म समूह]] के आइसोटोपी क्लास का समूह है। यदि ''M'' [[ चिकना कई गुना |कई गुना]] है, तो प्रतिचित्रण कक्षा समूह ''M'' के [[डिफियोमोर्फिज्म]] के आइसोटोपी क्लास का समूह है। जब भी किसी ऑब्जेक्ट 'X' के ऑटोमोर्फिज्म के समूह में प्राकृतिक सांस्थितिक समष्टि होता है, तो 'X' के प्रतिचित्रण कक्षा समूह को परिभाषित किया जाता है <math>\operatorname{Aut}(X)/\operatorname{Aut}_0(X)</math>, कहाँ <math>\operatorname{Aut}_0(X)</math> [[जुड़ा हुआ स्थान]] है, पहचान का पथ-घटक <math>\operatorname{Aut}(X)</math>. (ध्यान दें कि कॉम्पैक्ट-ओपन सांस्थिति विज्ञान में, पथ घटक और समस्थानिक वर्ग समानता रखते हैं, अर्थात, दो मानचित्र f और g एक ही पथ-घटक में हैं यदि वे समस्थानिक हैं). सांस्थितिक समष्टि के लिए, यह सामान्यतः [[कॉम्पैक्ट-ओपन टोपोलॉजी|कॉम्पैक्ट-ओपन सांस्थिति विज्ञान]] है। कम-आयामी सांस्थिति विज्ञान साहित्य में, X के प्रतिचित्रण वर्ग समूह को सामान्यतः एमसीजी (X) दर्शाया जाता है, हालांकि इसे प्रायः निरूपित किया जाता है <math>\pi_0(\operatorname{Aut}(X))</math>, जहाँ ऑट के स्थान पर उस श्रेणी के सिद्धांत के लिए उपयुक्त समूह रखा जाता है जिससे X संबंधित है। यहाँ <math>\pi_0</math> किसी स्थान के 0-वें [[होमोटॉपी समूह]] को दर्शाता है।


तो सामान्य तौर पर, समूहों का एक सटीक अनुक्रम # लघु सटीक अनुक्रम सटीक अनुक्रम होता है:
तो सामान्यतः, समूहों का एक सटीक अनुक्रम # लघु सटीक अनुक्रम सटीक अनुक्रम होता है:


:<math>1 \rightarrow \operatorname{Aut}_0(X) \rightarrow \operatorname{Aut}(X) \rightarrow \operatorname{MCG}(X) \rightarrow 1.</math>
:<math>1 \rightarrow \operatorname{Aut}_0(X) \rightarrow \operatorname{Aut}(X) \rightarrow \operatorname{MCG}(X) \rightarrow 1.</math>
अक्सर यह अनुक्रम सटीक अनुक्रम विभाजित नहीं होता है।<ref>
प्रायः यह अनुक्रम सटीक अनुक्रम विभाजित नहीं होता है।<ref>
{{cite journal | last=Morita | first=Shigeyuki | title=Characteristic classes of surface bundles | journal=[[Inventiones Mathematicae]] | volume=90 | issue=3 | year=1987 | doi=10.1007/bf01389178 | pages=551–577 | bibcode=1987InMat..90..551M | mr=0914849| url=http://projecteuclid.org/euclid.bams/1183552184 }}
{{cite journal | last=Morita | first=Shigeyuki | title=Characteristic classes of surface bundles | journal=[[Inventiones Mathematicae]] | volume=90 | issue=3 | year=1987 | doi=10.1007/bf01389178 | pages=551–577 | bibcode=1987InMat..90..551M | mr=0914849| url=http://projecteuclid.org/euclid.bams/1183552184 }}
</ref>
</ref>
[[होमोटॉपी श्रेणी]] में काम करने पर, एक्स का मैपिंग क्लास ग्रुप एक्स के होमोटॉपी के होमोटॉपी का समूह है।


मानचित्रण वर्ग समूहों के कई [[उपसमूह]] हैं जिनका अक्सर अध्ययन किया जाता है। यदि एम एक उन्मुख कई गुना है, <math>\operatorname{Aut}(M)</math> M का ओरिएंटेशन-प्रिज़र्विंग ऑटोमोर्फिज्म होगा और इसलिए M का मैपिंग क्लास ग्रुप (एक ओरिएंटेड मैनिफोल्ड के रूप में) M के मैपिंग क्लास ग्रुप में इंडेक्स दो होगा (एक अनरिएंटेड मैनिफोल्ड के रूप में) बशर्ते M एक ओरिएंटेशन-रिवर्सिंग ऑटोमोर्फिज्म को स्वीकार करे। इसी प्रकार जो उपसमूह M के सभी समजातियों (गणित) पर सर्वसमिका का कार्य करता है, उसे M का 'टोरेली समूह' कहते हैं।
[[होमोटॉपी श्रेणी]] में काम करने पर, X का प्रतिचित्रण कक्षा समूह X के होमोटॉपी के होमोटॉपी का समूह है।
 
प्रतिचित्रण वर्ग समूहों के कई [[उपसमूह]] हैं जिनका प्रायः अध्ययन किया जाता है। यदि एम एक उन्मुख कई गुना है, <math>\operatorname{Aut}(M)</math> M का ओरिएंटेशन-प्रिज़र्विंग ऑटोमोर्फिज्म होगा और इसलिए M का प्रतिचित्रण कक्षा समूह (एक ओरिएंटेड मैनिफोल्ड के रूप में) M के प्रतिचित्रण कक्षा समूह में अनुक्रमणिका दो होगा (एक अनरिएंटेड मैनिफोल्ड के रूप में) बशर्ते M एक ओरिएंटेशन-रिवर्सिंग ऑटोमोर्फिज्म को स्वीकार करे। इसी प्रकार जो उपसमूह M के सभी समजातियों (गणित) पर सर्वसमिका का कार्य करता है, उसे M का 'टोरेली समूह' कहते हैं।


== उदाहरण ==
== उदाहरण ==


=== क्षेत्र ===
=== क्षेत्र ===
किसी भी श्रेणी में (चिकनी, पीएल, टोपोलॉजिकल, होमोटॉपी)<ref>{{citation| mr=0212840|last1=Earle|first1= Clifford J.|author1-link=Clifford John Earle Jr.| last2= Eells|first2= James|author2-link=James Eells|  
किसी भी श्रेणी में (समतल, पीएल, टोपोलॉजिकल, होमोटॉपी)<ref>{{citation| mr=0212840|last1=Earle|first1= Clifford J.|author1-link=Clifford John Earle Jr.| last2= Eells|first2= James|author2-link=James Eells|  
title=The diffeomorphism group of a compact Riemann surface|
title=The diffeomorphism group of a compact Riemann surface|
journal=[[Bulletin of the American Mathematical Society]] | volume=73|year=1967|issue=4 |pages=557–559|doi=10.1090/S0002-9904-1967-11746-4|doi-access=free}}</ref>
journal=[[Bulletin of the American Mathematical Society]] | volume=73|year=1967|issue=4 |pages=557–559|doi=10.1090/S0002-9904-1967-11746-4|doi-access=free}}</ref>
:<math>\operatorname{MCG}(S^2) \simeq \Z/2\Z,</math>
:<math>\operatorname{MCG}(S^2) \simeq \Z/2\Z,</math>
एक सतत मानचित्रण की डिग्री के नक्शे के अनुरूप ±1।
एक सतत प्रतिचित्रण की डिग्री के प्रतिचित्रण के अनुरूप ±1।


=== टोरस ===
=== टोरस ===
होमोटॉपी श्रेणी में
होमोटॉपी श्रेणी में
:<math> \operatorname{MCG}(\mathbf{T}^n) \simeq \operatorname{GL}(n,\Z). </math>
:<math> \operatorname{MCG}(\mathbf{T}^n) \simeq \operatorname{GL}(n,\Z). </math>
ऐसा इसलिए है क्योंकि टोरस#एन-डायमेंशनल टोरस|एन-डायमेंशनल टोरस <math>\mathbf{T}^n = (S^1)^n</math> एक ईलेनबर्ग-मैकलेन स्थान है।
ऐसा इसलिए है क्योंकि टोरस एन-डायमेंशनल टोरस एन-डायमेंशनल टोरस <math>\mathbf{T}^n = (S^1)^n</math> एक ईलेनबर्ग-मैकलेन स्थान है।


अन्य श्रेणियों के लिए यदि <math>n\ge  5</math>,<ref>{{cite book |first=A.E. |last=Hatcher |chapter=Concordance spaces, higher simple-homotopy theory, and applications |chapter-url={{GBurl|6hsDCAAAQBAJ|p=3}} |title=Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976), Part 1 |series=Proceedings of Symposia in Pure Mathematics |publisher= |location= |date=1978 |volume=32 |issue=1 |isbn=978-0-8218-9320-3 |pages=3–21 |doi=10.1090/pspum/032.1/520490 |mr=0520490}}</ref> one में निम्नलिखित विभाजन-सटीक क्रम हैं:
अन्य श्रेणियों के लिए यदि <math>n\ge  5</math>,<ref>{{cite book |first=A.E. |last=Hatcher |chapter=Concordance spaces, higher simple-homotopy theory, and applications |chapter-url={{GBurl|6hsDCAAAQBAJ|p=3}} |title=Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976), Part 1 |series=Proceedings of Symposia in Pure Mathematics |publisher= |location= |date=1978 |volume=32 |issue=1 |isbn=978-0-8218-9320-3 |pages=3–21 |doi=10.1090/pspum/032.1/520490 |mr=0520490}}</ref> one में निम्नलिखित विभाजन-सटीक क्रम हैं:


[[टोपोलॉजिकल स्पेस की श्रेणी]] में
[[टोपोलॉजिकल स्पेस की श्रेणी|सांस्थितिक समष्टि की श्रेणी]] में
:<math>0\to \Z_2^\infty\to \operatorname{MCG}(\mathbf{T}^n) \to \operatorname{GL}(n,\Z)\to 0</math>
:<math>0\to \Z_2^\infty\to \operatorname{MCG}(\mathbf{T}^n) \to \operatorname{GL}(n,\Z)\to 0</math>
टुकड़े-टुकड़े रैखिक कई गुना | पीएल-श्रेणी में
टुकड़े-टुकड़े रैखिक कई गुना | पीएल-श्रेणी में
Line 41: Line 42:
स्मूथ मैनिफोल्ड में
स्मूथ मैनिफोल्ड में
:<math>0\to \Z_2^\infty\oplus\binom n2\Z_2\oplus\sum_{i=0}^n\binom n i\Gamma_{i+1}\to \operatorname{MCG}(\mathbf{T}^n)\to \operatorname{GL}(n,\Z)\to 0</math>
:<math>0\to \Z_2^\infty\oplus\binom n2\Z_2\oplus\sum_{i=0}^n\binom n i\Gamma_{i+1}\to \operatorname{MCG}(\mathbf{T}^n)\to \operatorname{GL}(n,\Z)\to 0</math>
कहाँ <math>\Gamma_i</math> [[होमोटॉपी क्षेत्र]]ों के केरवायर-मिल्नोर परिमित एबेलियन समूह हैं और <math>\Z_2</math> क्रम 2 का समूह है।
कहाँ <math>\Gamma_i</math> [[होमोटॉपी क्षेत्र]] के केरवायर-मिल्नोर परिमित एबेलियन समूह हैं और <math>\Z_2</math> क्रम 2 का समूह है।


=== सतहें ===
=== सतहें ===
{{Main article | Mapping class group of a surface}}
{{Main article |एक सतह के वर्ग समूह का मानचित्रण}}


[[ सतह (टोपोलॉजी) ]] के मानचित्रण वर्ग समूहों का गहन अध्ययन किया गया है, और कभी-कभी उन्हें टीचमुलर मॉड्यूलर समूह कहा जाता है (विशेष मामले पर ध्यान दें) <math>\operatorname{MCG}(\mathbf{T}^2)</math> ऊपर), चूंकि वे टीचमूलर अंतरिक्ष पर कार्य करते हैं और भागफल रिमेंन सतहों का मॉडुली स्थान है जो सतह पर होमोमोर्फिक है। ये समूह [[अतिशयोक्तिपूर्ण समूह]]ों और उच्च रैंक रैखिक समूहों दोनों के समान सुविधाएँ प्रदर्शित करते हैं{{citation needed|date=July 2016}}. उनके पास [[विलियम थर्स्टन]] के ज्यामितीय तीन-कई गुना के सिद्धांत में कई अनुप्रयोग हैं (उदाहरण के लिए, [[सतह बंडल]]ों के लिए)। इस समूह के तत्वों का स्वयं भी अध्ययन किया गया है: एक महत्वपूर्ण परिणाम नीलसन-थर्स्टन वर्गीकरण प्रमेय है, और समूह के लिए एक जनक परिवार [[स्ट्रेच ट्विस्ट]] द्वारा दिया गया है जो एक अर्थ में सबसे सरल मानचित्रण वर्ग हैं। प्रत्येक परिमित समूह एक बंद, उन्मुख सतह के मानचित्रण वर्ग समूह का एक उपसमूह है;<ref>{{cite book |first=Leon |last=Greenberg |chapter=Maximal groups and signatures |chapter-url={{GBurl|EFbQCwAAQBAJ|p=207}} |title=Discontinuous Groups and Riemann Surfaces: Proceedings of the 1973 Conference at the University of Maryland |publisher=Princeton University Press |series=Annals of Mathematics Studies |volume=79 |date=1974 |isbn=978-1-4008-8164-2 |pages=207–226 |mr=0379835}}</ref> वास्तव में किसी भी परिमित समूह को कुछ कॉम्पैक्ट [[रीमैन सतह]] के आइसोमेट्री के समूह के रूप में महसूस किया जा सकता है (जिसका अर्थ है कि यह अंतर्निहित टोपोलॉजिकल सतह के मैपिंग वर्ग समूह में इंजेक्ट करता है)।
[[ सतह (टोपोलॉजी) |सतह (सांस्थिति विज्ञान)]] के प्रतिचित्रण वर्ग समूहों का गहन अध्ययन किया गया है, और कभी-कभी उन्हें टीचमुलर मॉड्यूलर समूह कहा जाता है (विशेष मामले पर ध्यान दें) <math>\operatorname{MCG}(\mathbf{T}^2)</math> ऊपर), चूंकि वे टीचमूलर अंतरिक्ष पर कार्य करते हैं और भागफल रिमेंन सतहों का मॉडुली स्थान है जो सतह पर होमोमोर्फिक है। ये समूह [[अतिशयोक्तिपूर्ण समूह]] और उच्च रैंक रैखिक समूहों दोनों के समान सुविधाएँ प्रदर्शित करते हैं{{citation needed|date=July 2016}}. उनके पास [[विलियम थर्स्टन]] के ज्यामितीय तीन-कई गुना के सिद्धांत में कई अनुप्रयोग हैं (उदाहरण के लिए, [[सतह बंडल]] के लिए)। इस समूह के तत्वों का स्वयं भी अध्ययन किया गया है: एक महत्वपूर्ण परिणाम नीलसन-थर्स्टन वर्गीकरण प्रमेय है, और समूह के लिए एक जनक परिवार [[स्ट्रेच ट्विस्ट]] द्वारा दिया गया है जो एक अर्थ में सबसे सरल प्रतिचित्रण वर्ग हैं। प्रत्येक परिमित समूह एक बंद, उन्मुख सतह के प्रतिचित्रण वर्ग समूह का एक उपसमूह है;<ref>{{cite book |first=Leon |last=Greenberg |chapter=Maximal groups and signatures |chapter-url={{GBurl|EFbQCwAAQBAJ|p=207}} |title=Discontinuous Groups and Riemann Surfaces: Proceedings of the 1973 Conference at the University of Maryland |publisher=Princeton University Press |series=Annals of Mathematics Studies |volume=79 |date=1974 |isbn=978-1-4008-8164-2 |pages=207–226 |mr=0379835}}</ref> वास्तव में किसी भी परिमित समूह को कुछ कॉम्पैक्ट [[रीमैन सतह]] के आइसोमेट्री के समूह के रूप में स्पष्ट किया जा सकता है (जिसका अर्थ है कि यह अंतर्निहित टोपोलॉजिकल सतह के प्रतिचित्रण वर्ग समूह में इंजेक्ट करता है)।


==== गैर-उन्मुख सतहें ====
==== गैर-उन्मुख सतहें ====
कुछ उन्मुखीकरण | गैर-उन्मुख सतहों में सरल प्रस्तुतियों के साथ वर्ग समूहों का मानचित्रण होता है। उदाहरण के लिए, वास्तविक प्रक्षेपी तल का प्रत्येक होमोमोर्फिज्म <math>\mathbf{P}^2(\R)</math> पहचान के लिए समस्थानिक है:
कुछ उन्मुखीकरण गैर-उन्मुख सतहों में सरल प्रस्तुतियों के साथ वर्ग समूहों का प्रतिचित्रण होता है। उदाहरण के लिए, वास्तविक प्रक्षेपी तल का प्रत्येक होमोमोर्फिज्म <math>\mathbf{P}^2(\R)</math> पहचान के लिए समस्थानिक है:


:<math> \operatorname{MCG}(\mathbf{P}^2(\R)) = 1. </math>
:<math> \operatorname{MCG}(\mathbf{P}^2(\R)) = 1. </math>
क्लेन बोतल K का मानचित्रण वर्ग समूह है:
क्लेन बोतल K का प्रतिचित्रण वर्ग समूह है:


:<math> \operatorname{MCG}(K)= \Z_2 \oplus  \Z_2.</math>
:<math> \operatorname{MCG}(K)= \Z_2 \oplus  \Z_2.</math>
Line 60: Line 61:


:<math> \operatorname{MCG}(N_3) = \operatorname{GL}(2,\Z). </math>
:<math> \operatorname{MCG}(N_3) = \operatorname{GL}(2,\Z). </math>
ऐसा इसलिए है क्योंकि सतह N में एकतरफा वक्रों का एक अनूठा वर्ग है, जैसे कि, जब N को इस तरह के वक्र C के साथ खोला जाता है, तो परिणामी सतह <math>N\setminus C</math> एक डिस्क के साथ एक टोरस है जिसे हटा दिया गया है। एक गैर-उन्मुख सतह के रूप में, इसका मानचित्रण वर्ग समूह है <math>\operatorname{GL}(2,\Z)</math>. (प्रमेयिका 2.1<ref>{{cite journal |first=Martin |last=Scharlemann |title=अनुरेखणीय सतहों पर वक्रों का परिसर|journal=Journal of the London Mathematical Society |volume=s2-25 |issue=1 |pages=171–184 |date=February 1982 |doi=10.1112/jlms/s2-25.1.171 |citeseerx=10.1.1.591.2588}}</ref>).
ऐसा इसलिए है क्योंकि सतह N में एकतरफा वक्रों का एक अनूठा वर्ग है, जैसे कि, जब N को इस तरह के वक्र C के साथ खोला जाता है, तो परिणामी सतह <math>N\setminus C</math> एक डिस्क के साथ एक टोरस है जिसे हटा दिया गया है। एक गैर-उन्मुख सतह के रूप में, इसका प्रतिचित्रण वर्ग समूह है <math>\operatorname{GL}(2,\Z)</math>. (प्रमेयिका 2.1<ref>{{cite journal |first=Martin |last=Scharlemann |title=अनुरेखणीय सतहों पर वक्रों का परिसर|journal=Journal of the London Mathematical Society |volume=s2-25 |issue=1 |pages=171–184 |date=February 1982 |doi=10.1112/jlms/s2-25.1.171 |citeseerx=10.1.1.591.2588}}</ref>).


=== [[3-कई गुना]] ===
=== [[3-कई गुना]] ===
3-मेनिफोल्ड्स के मैपिंग क्लास ग्रुप्स ने भी काफी अध्ययन प्राप्त किया है, और 2-मैनीफोल्ड्स के मैपिंग क्लास ग्रुप्स से निकटता से संबंधित हैं। उदाहरण के लिए, किसी भी परिमित समूह को कॉम्पैक्ट हाइपरबोलिक 3-मैनिफ़ोल्ड के मैपिंग क्लास ग्रुप (और आइसोमेट्री ग्रुप) के रूप में महसूस किया जा सकता है।<ref>{{cite journal |first=S. |last=Kojima |title=Isometry transformations of hyperbolic 3-manifolds |journal=Topology and Its Applications |volume=29 |issue=3 |pages=297–307 |date=August 1988 |doi=10.1016/0166-8641(88)90027-2 |url=|doi-access=free }}</ref>
3-मेनिफोल्ड्स के प्रतिचित्रण क्लास ग्रुप्स ने भी काफी अध्ययन प्राप्त किया है, और 2-मैनीफोल्ड्स के प्रतिचित्रण क्लास ग्रुप्स से निकटता से संबंधित हैं। उदाहरण के लिए, किसी भी परिमित समूह को कॉम्पैक्ट हाइपरबोलिक 3-मैनिफ़ोल्ड के प्रतिचित्रण कक्षा समूह (और आइसोमेट्री ग्रुप) के रूप में स्पष्ट किया जा सकता है।<ref>{{cite journal |first=S. |last=Kojima |title=Isometry transformations of hyperbolic 3-manifolds |journal=Topology and Its Applications |volume=29 |issue=3 |pages=297–307 |date=August 1988 |doi=10.1016/0166-8641(88)90027-2 |url=|doi-access=free }}</ref>




== जोड़े के वर्ग समूहों का मानचित्रण ==
== जोड़े के वर्ग समूहों का प्रतिचित्रण ==
रिक्त स्थान (एक्स, ए) की एक जोड़ी को देखते हुए जोड़ी का मानचित्रण वर्ग समूह जोड़ी के ऑटोमोर्फिज्म का आइसोटोपी-वर्ग है, जहां (एक्स, ए) के ऑटोमोर्फिज्म को एक्स के ऑटोमोर्फिज्म के रूप में परिभाषित किया जाता है जो ए को संरक्षित करता है, यानी एफ : X → X व्युत्क्रमणीय है और f(A) = A.
रिक्त स्थान (X, ए) की एक जोड़ी को देखते हुए जोड़ी का प्रतिचित्रण वर्ग समूह जोड़ी के ऑटोमोर्फिज्म का आइसोटोपी-वर्ग है, जहां (X, ए) के ऑटोमोर्फिज्म को X के ऑटोमोर्फिज्म के रूप में परिभाषित किया जाता है जो ए को संरक्षित करता है, अर्थात एफ : X → X व्युत्क्रमणीय है और f(A) = A.


=== गाँठ और कड़ियों का सममिति समूह ===
=== समूह और कड़ियों का सममिति समूह ===
यदि के ⊂ 'एस'<sup>3</sup> एक [[गाँठ (गणित)]] या एक लिंक (गांठ सिद्धांत) है, गाँठ के समरूपता समूह (प्रतिक्रिया लिंक) को जोड़ी के मानचित्रण वर्ग समूह (एस) के रूप में परिभाषित किया गया है<sup>3</सुप>, के)[[अतिशयोक्तिपूर्ण गाँठ]] गाँठ के समरूपता समूह को [[डायहेड्रल समूह]] या [[चक्रीय समूह]] के रूप में जाना जाता है, इसके अलावा प्रत्येक डायहेड्रल और चक्रीय समूह को गांठों के समरूपता समूह के रूप में महसूस किया जा सकता है। एक [[टोरस गाँठ]] का समरूपता समूह क्रम दो 'Z' के रूप में जाना जाता है<sub>2</sub>.
यदि K ⊂ 'S'<sup>3</sup> एक [[गाँठ (गणित)|समूह (गणित)]] या एक लिंक (समूह सिद्धांत) है, समूह के समरूपता समूह (प्रतिक्रिया लिंक) को जोड़ी के प्रतिचित्रण वर्ग समूह (एस) के रूप में परिभाषित किया गया है) [[अतिशयोक्तिपूर्ण गाँठ|अतिशयोक्तिपूर्ण समूह]] समूह के समरूपता समूह को [[डायहेड्रल समूह]] या [[चक्रीय समूह]] के रूप में जाना जाता है, इसके अतिरिक्त प्रत्येक डायहेड्रल और चक्रीय समूह को समूहों के समरूपता समूह के रूप में स्पष्ट किया जा सकता है। एक [[टोरस गाँठ|टोरस समूह]] का समरूपता समूह क्रम दो 'Z<sub>2</sub>' के रूप में जाना जाता है।


== टोरेली समूह ==
== टोरेली समूह ==
ध्यान दें कि स्पेस एक्स के [[सह-समरूपता]] (गणित) (और कोहोलॉजी) पर मैपिंग क्लास ग्रुप की एक प्रेरित क्रिया है। ऐसा इसलिए है क्योंकि (सह) होमोलॉजी फंक्शनोरियल और होमियो है<sub>0</sub> तुच्छ रूप से कार्य करता है (क्योंकि सभी तत्व समस्थानिक हैं, इसलिए पहचान के लिए होमोटोपिक हैं, जो तुच्छ रूप से कार्य करता है, और (सह) होमोलॉजी पर कार्रवाई समरूपता के तहत अपरिवर्तनीय है)। इस क्रिया का मूल टोरेली समूह है, जिसका नाम टोरेली प्रमेय के नाम पर रखा गया है।
ध्यान दें कि स्पेस X के [[सह-समरूपता]] (गणित) (और कोहोलॉजी) पर प्रतिचित्रण कक्षा समूह की एक प्रेरित क्रिया है। ऐसा इसलिए है क्योंकि (सह) होमोलॉजी फंक्शनोरियल और होमियो है<sub>0</sub> तुच्छ रूप से कार्य करता है (क्योंकि सभी तत्व समस्थानिक हैं, इसलिए पहचान के लिए होमोटोपिक हैं, जो तुच्छ रूप से कार्य करता है, और (सह) होमोलॉजी पर कार्रवाई समरूपता के अंतर्गत अपरिवर्तनीय है)। इस क्रिया का मूल टोरेली समूह है, जिसका नाम टोरेली प्रमेय के नाम पर रखा गया है।


उन्मुख सतहों के मामले में, यह पहली कोहोलॉजी एच पर कार्रवाई है<sup>1</sup>(Σ) ≅ Z<sup>2जी</sup>. अभिविन्यास-संरक्षण मानचित्र ठीक वे हैं जो शीर्ष कोहोलॉजी एच पर तुच्छ रूप से कार्य करते हैं<sup>2</sup>(Σ) ≅ Z. ​​''H''<sup>1</sup>(Σ) में एक [[सहानुभूतिपूर्ण ज्यामिति]] संरचना है, जो [[कप उत्पाद]] से आती है; चूंकि ये नक्शे ऑटोमोर्फिज्म हैं, और मैप्स कप उत्पाद को संरक्षित करते हैं, मैपिंग क्लास ग्रुप सिम्पलेक्टिक ऑटोमोर्फिज्म के रूप में कार्य करता है, और वास्तव में सभी सिम्प्लेक्टिक ऑटोमोर्फिज्म का एहसास होता है, जो संक्षिप्त सटीक अनुक्रम प्रदान करता है:
उन्मुख सतहों के मामले में, यह पहली कोहोलॉजी एच पर कार्रवाई है<sup>1</sup>(Σ) ≅ Z<sup>2जी</sup>. अभिविन्यास-संरक्षण मानचित्र ठीक वे हैं जो शीर्ष कोहोलॉजी एच पर तुच्छ रूप से कार्य करते हैं<sup>2</sup>(Σ) ≅ Z. ​​''H''<sup>1</sup>(Σ) में एक [[सहानुभूतिपूर्ण ज्यामिति]] संरचना है, जो [[कप उत्पाद]] से आती है; चूंकि ये प्रतिचित्रण ऑटोमोर्फिज्म हैं, और मैप्स कप उत्पाद को संरक्षित करते हैं, प्रतिचित्रण कक्षा समूह सिम्पलेक्टिक ऑटोमोर्फिज्म के रूप में कार्य करता है, और वास्तव में सभी सिम्प्लेक्टिक ऑटोमोर्फिज्म का एहसास होता है, जो संक्षिप्त सटीक अनुक्रम प्रदान करता है:
:<math>1 \to \operatorname{Tor}(\Sigma) \to \operatorname{MCG}(\Sigma) \to \operatorname{Sp}(H^1(\Sigma)) \cong \operatorname{Sp}_{2g}(\mathbf{Z}) \to 1</math>
:<math>1 \to \operatorname{Tor}(\Sigma) \to \operatorname{MCG}(\Sigma) \to \operatorname{Sp}(H^1(\Sigma)) \cong \operatorname{Sp}_{2g}(\mathbf{Z}) \to 1</math>
कोई इसे बढ़ा सकता है
कोई इसे बढ़ा सकता है
:<math>1 \to \operatorname{Tor}(\Sigma) \to \operatorname{MCG}^*(\Sigma) \to \operatorname{Sp}^{\pm}(H^1(\Sigma)) \cong \operatorname{Sp}^{\pm}_{2g}(\mathbf{Z}) \to 1</math>
:<math>1 \to \operatorname{Tor}(\Sigma) \to \operatorname{MCG}^*(\Sigma) \to \operatorname{Sp}^{\pm}(H^1(\Sigma)) \cong \operatorname{Sp}^{\pm}_{2g}(\mathbf{Z}) \to 1</math>
[[सहानुभूतिपूर्ण समूह]] अच्छी तरह से समझा जाता है। इसलिए मानचित्रण वर्ग समूह की बीजगणितीय संरचना को समझने से अक्सर टोरेली समूह के बारे में प्रश्न कम हो जाते हैं।
[[सहानुभूतिपूर्ण समूह]] अच्छी तरह से समझा जाता है। इसलिए प्रतिचित्रण वर्ग समूह की बीजगणितीय संरचना को समझने से प्रायः टोरेली समूह के बारे में प्रश्न कम हो जाते हैं।


ध्यान दें कि टोरस (जीनस 1) के लिए सहानुभूति समूह का नक्शा एक समरूपता है, और टोरेली समूह गायब हो जाता है।
ध्यान दें कि टोरस (जीनस 1) के लिए सहानुभूति समूह का प्रतिचित्रण एक समरूपता है, और टोरेली समूह लुप्त हो जाता है।


== स्थिर मानचित्रण वर्ग समूह ==
== स्थिर प्रतिचित्रण वर्ग समूह ==
{{Expand section|date=December 2009}}
कोई सतह एम्बेड कर सकता है <math>\Sigma_{g,1}</math> जीनस जी और 1 सीमा घटक में <math>\Sigma_{g+1,1}</math> अंत में एक अतिरिक्त संवाहिनी जोड़कर (अर्थात, एक साथ चिपकाकर <math>\Sigma_{g,1}</math> और <math>\Sigma_{1,2}</math>), और इस प्रकार सीमा तय करने वाली छोटी सतह के ऑटोमोर्फिज्म बड़ी सतह तक फैल जाते हैं। इन समूहों और समावेशन की सीधी सीमा लेने से स्थिर प्रतिचित्रण वर्ग समूह प्राप्त होता है, जिसकी तर्कसंगत कोहोलॉजी रिंग [[डेविड ममफोर्ड]] द्वारा अनुमानित की गई थी (अनुमानों में से एक जिसे [[ममफोर्ड अनुमान (बहुविकल्पी)]] कहा जाता है)। समाकलन (सिर्फ तर्कसंगत नहीं) कोहोलॉजी रिंग की गणना 2002 में [[ इब पागल |इब पागल]] और माइकल वीस (गणितज्ञ) द्वारा की गई थी, जो ममफोर्ड के अनुमान को प्रमाणित करता है।
कोई सतह एम्बेड कर सकता है <math>\Sigma_{g,1}</math> जीनस जी और 1 सीमा घटक में <math>\Sigma_{g+1,1}</math> अंत में एक अतिरिक्त छेद जोड़कर (यानी, एक साथ चिपकाकर <math>\Sigma_{g,1}</math> और <math>\Sigma_{1,2}</math>), और इस प्रकार सीमा तय करने वाली छोटी सतह के ऑटोमोर्फिज्म बड़ी सतह तक फैल जाते हैं। इन समूहों और समावेशन की सीधी सीमा लेने से स्थिर मानचित्रण वर्ग समूह प्राप्त होता है, जिसकी तर्कसंगत कोहोलॉजी रिंग [[डेविड ममफोर्ड]] द्वारा अनुमानित की गई थी (अनुमानों में से एक जिसे [[ममफोर्ड अनुमान (बहुविकल्पी)]] कहा जाता है)। इंटीग्रल (सिर्फ तर्कसंगत नहीं) कोहोलॉजी रिंग की गणना 2002 में [[ इब पागल ]] और माइकल वीस (गणितज्ञ) द्वारा की गई थी, जो ममफोर्ड के अनुमान को साबित करता है।


== यह भी देखें ==
== यह भी देखें ==
*ब्रेड समूह, पंचर डिस्क के मानचित्रण वर्ग समूह
*ब्रेड समूह, पंचर डिस्क के प्रतिचित्रण वर्ग समूह
* होमोटोपी समूह
* होमोटोपी समूह
* [[होम्योपैथी]] समूह
* [[होम्योपैथी|होमेटोपी]] समूह
*दीपक संबंध
*दीपक संबंध


Line 109: Line 109:




=== स्थिर मानचित्रण वर्ग समूह ===
=== स्थिर प्रतिचित्रण वर्ग समूह ===
*{{cite journal |author1-link=Ib Madsen |author2-link=Michael Weiss (mathematician) |last1=Madsen |first1=Ib |first2=Michael |last2=Weiss |title=रीमैन सतहों का स्थिर मापांक स्थान: ममफोर्ड का अनुमान|journal=Annals of Mathematics |volume= 165|issue= 3|pages=843–941 |date=2007 |doi=10.4007/annals.2007.165.843 |jstor=20160047 |arxiv=math/0212321 |citeseerx=10.1.1.236.2025|s2cid=119721243 }}
*{{cite journal |author1-link=Ib Madsen |author2-link=Michael Weiss (mathematician) |last1=Madsen |first1=Ib |first2=Michael |last2=Weiss |title=रीमैन सतहों का स्थिर मापांक स्थान: ममफोर्ड का अनुमान|journal=Annals of Mathematics |volume= 165|issue= 3|pages=843–941 |date=2007 |doi=10.4007/annals.2007.165.843 |jstor=20160047 |arxiv=math/0212321 |citeseerx=10.1.1.236.2025|s2cid=119721243 }}


Line 115: Line 115:
* [https://web.archive.org/web/20090623072924/http://math.ucsd.edu/~justin/madsenweissS06.html Madsen-Weiss MCG Seminar]; many references
* [https://web.archive.org/web/20090623072924/http://math.ucsd.edu/~justin/madsenweissS06.html Madsen-Weiss MCG Seminar]; many references


{{DEFAULTSORT:Mapping Class Group}}[[Category: ज्यामितीय टोपोलॉजी]] [[Category: होमोमोर्फिज्म]]
{{DEFAULTSORT:Mapping Class Group}}
 
 


[[Category: Machine Translated Page]]
[[Category:All articles with unsourced statements|Mapping Class Group]]
[[Category:Created On 28/02/2023]]
[[Category:Articles with hatnote templates targeting a nonexistent page|Mapping Class Group]]
[[Category:Articles with unsourced statements from July 2016|Mapping Class Group]]
[[Category:CS1]]
[[Category:Created On 28/02/2023|Mapping Class Group]]
[[Category:Lua-based templates|Mapping Class Group]]
[[Category:Machine Translated Page|Mapping Class Group]]
[[Category:Pages with script errors|Mapping Class Group]]
[[Category:Short description with empty Wikidata description|Mapping Class Group]]
[[Category:Templates Vigyan Ready|Mapping Class Group]]
[[Category:Templates that add a tracking category|Mapping Class Group]]
[[Category:Templates that generate short descriptions|Mapping Class Group]]
[[Category:Templates using TemplateData|Mapping Class Group]]
[[Category:ज्यामितीय टोपोलॉजी|Mapping Class Group]]
[[Category:होमोमोर्फिज्म|Mapping Class Group]]

Latest revision as of 10:15, 20 March 2023

गणित में, ज्यामितीय सांस्थिति विज्ञान के उपक्षेत्र में, प्रतिचित्रण कक्षा समूह एक सांस्थितिक समष्टि का एक महत्वपूर्ण बीजगणितीय अपरिवर्तनीय रूप है। संक्षेप में, प्रतिचित्रण वर्ग समूह अंतरिक्ष की समरूपता के अनुरूप एक निश्चित असतत समूह है।

प्रयोजन

एक सांस्थितिक समष्टि पर विचार करें, अर्थात अंतरिक्ष में बिंदुओं के बीच निकटता की कुछ धारणा वाला स्थान अंतरिक्ष से स्वयं में होमोमोर्फिज्म के समुच्चय पर विचार कर सकते हैं, अर्थात निरंतर व्युत्क्रमों के साथ निरंतर मानचित्र: ऐसे कार्य जो अंतरिक्ष को बिना तोड़े या ग्लूइंग किए लगातार प्रसारित और विकृत करते हैं। होमियोमोर्फिज्म के इस समुच्चय को एक स्थान के रूप में ही माना जा सकता है। यह कार्यात्मक संरचना के अंतर्गत एक समूह बनाता है। हम होमोमोर्फिज्म के इस नए स्थान पर एक सांस्थिति विज्ञान को भी परिभाषित कर सकते हैं। इस नए फंक्शन स्पेस के खुला समुच्चय उन फलनों के समुच्चय से बने होंगे जो कॉम्पैक्ट जगह सबसमुच्चय K को ओपन सबसमुच्चय U में K और U रेंज के रूप में हमारे मूल सांस्थितिक समष्टि में मैप करते हैं, जो उनके परिमित प्रतिच्संवाहिनीन (समुच्चय सिद्धांत) के साथ पूरा होता है (जो होना चाहिए) सांस्थिति विज्ञान की परिभाषा द्वारा खुला) और मनमाना संघ (समुच्चय सिद्धांत) (फिर से खुला होना चाहिए)। यह कार्यों के स्थान पर निरंतरता की धारणा देता है, ताकि हम होमियोमॉर्फिज्म के निरंतर विरूपण पर विचार कर सकें: होमोटॉपी कहा जाता है। हम होमोमोर्फिज्म की होमोटॉपी क्लासेस लेकर प्रतिचित्रण कक्षा समूह को परिभाषित करते हैं, और होमोमोर्फिज्म के स्थान पर पहले से मौजूद फंक्शनल कंपोजिशन ग्रुप स्ट्रक्चर से ग्रुप स्ट्रक्चर को प्रेरित करते हैं।

परिभाषा

प्रतिचित्रण कक्षा समूह शब्द का एक लचीला उपयोग है। बहुधा इसका प्रयोग कई गुना 'एम' के संदर्भ में किया जाता है। 'M' के प्रतिचित्रण वर्ग समूह की व्याख्या 'M' के स्वसमाकृतिकता के परिवेश समस्थानिक के समूह के रूप में की जाती है। इसलिए यदि 'एम' एक टोपोलॉजिकल मैनिफोल्ड है, तो प्रतिचित्रण कक्षा समूह 'एम' के होमोमोर्फिज्म समूह के आइसोटोपी क्लास का समूह है। यदि M कई गुना है, तो प्रतिचित्रण कक्षा समूह M के डिफियोमोर्फिज्म के आइसोटोपी क्लास का समूह है। जब भी किसी ऑब्जेक्ट 'X' के ऑटोमोर्फिज्म के समूह में प्राकृतिक सांस्थितिक समष्टि होता है, तो 'X' के प्रतिचित्रण कक्षा समूह को परिभाषित किया जाता है , कहाँ जुड़ा हुआ स्थान है, पहचान का पथ-घटक . (ध्यान दें कि कॉम्पैक्ट-ओपन सांस्थिति विज्ञान में, पथ घटक और समस्थानिक वर्ग समानता रखते हैं, अर्थात, दो मानचित्र f और g एक ही पथ-घटक में हैं यदि वे समस्थानिक हैं). सांस्थितिक समष्टि के लिए, यह सामान्यतः कॉम्पैक्ट-ओपन सांस्थिति विज्ञान है। कम-आयामी सांस्थिति विज्ञान साहित्य में, X के प्रतिचित्रण वर्ग समूह को सामान्यतः एमसीजी (X) दर्शाया जाता है, हालांकि इसे प्रायः निरूपित किया जाता है , जहाँ ऑट के स्थान पर उस श्रेणी के सिद्धांत के लिए उपयुक्त समूह रखा जाता है जिससे X संबंधित है। यहाँ किसी स्थान के 0-वें होमोटॉपी समूह को दर्शाता है।

तो सामान्यतः, समूहों का एक सटीक अनुक्रम # लघु सटीक अनुक्रम सटीक अनुक्रम होता है:

प्रायः यह अनुक्रम सटीक अनुक्रम विभाजित नहीं होता है।[1]

होमोटॉपी श्रेणी में काम करने पर, X का प्रतिचित्रण कक्षा समूह X के होमोटॉपी के होमोटॉपी का समूह है।

प्रतिचित्रण वर्ग समूहों के कई उपसमूह हैं जिनका प्रायः अध्ययन किया जाता है। यदि एम एक उन्मुख कई गुना है, M का ओरिएंटेशन-प्रिज़र्विंग ऑटोमोर्फिज्म होगा और इसलिए M का प्रतिचित्रण कक्षा समूह (एक ओरिएंटेड मैनिफोल्ड के रूप में) M के प्रतिचित्रण कक्षा समूह में अनुक्रमणिका दो होगा (एक अनरिएंटेड मैनिफोल्ड के रूप में) बशर्ते M एक ओरिएंटेशन-रिवर्सिंग ऑटोमोर्फिज्म को स्वीकार करे। इसी प्रकार जो उपसमूह M के सभी समजातियों (गणित) पर सर्वसमिका का कार्य करता है, उसे M का 'टोरेली समूह' कहते हैं।

उदाहरण

क्षेत्र

किसी भी श्रेणी में (समतल, पीएल, टोपोलॉजिकल, होमोटॉपी)[2]

एक सतत प्रतिचित्रण की डिग्री के प्रतिचित्रण के अनुरूप ±1।

टोरस

होमोटॉपी श्रेणी में

ऐसा इसलिए है क्योंकि टोरस एन-डायमेंशनल टोरस एन-डायमेंशनल टोरस एक ईलेनबर्ग-मैकलेन स्थान है।

अन्य श्रेणियों के लिए यदि ,[3] one में निम्नलिखित विभाजन-सटीक क्रम हैं:

सांस्थितिक समष्टि की श्रेणी में

टुकड़े-टुकड़े रैखिक कई गुना | पीएल-श्रेणी में

(⊕ प्रत्यक्ष योग का प्रतिनिधित्व)। स्मूथ मैनिफोल्ड में

कहाँ होमोटॉपी क्षेत्र के केरवायर-मिल्नोर परिमित एबेलियन समूह हैं और क्रम 2 का समूह है।

सतहें

सतह (सांस्थिति विज्ञान) के प्रतिचित्रण वर्ग समूहों का गहन अध्ययन किया गया है, और कभी-कभी उन्हें टीचमुलर मॉड्यूलर समूह कहा जाता है (विशेष मामले पर ध्यान दें) ऊपर), चूंकि वे टीचमूलर अंतरिक्ष पर कार्य करते हैं और भागफल रिमेंन सतहों का मॉडुली स्थान है जो सतह पर होमोमोर्फिक है। ये समूह अतिशयोक्तिपूर्ण समूह और उच्च रैंक रैखिक समूहों दोनों के समान सुविधाएँ प्रदर्शित करते हैं[citation needed]. उनके पास विलियम थर्स्टन के ज्यामितीय तीन-कई गुना के सिद्धांत में कई अनुप्रयोग हैं (उदाहरण के लिए, सतह बंडल के लिए)। इस समूह के तत्वों का स्वयं भी अध्ययन किया गया है: एक महत्वपूर्ण परिणाम नीलसन-थर्स्टन वर्गीकरण प्रमेय है, और समूह के लिए एक जनक परिवार स्ट्रेच ट्विस्ट द्वारा दिया गया है जो एक अर्थ में सबसे सरल प्रतिचित्रण वर्ग हैं। प्रत्येक परिमित समूह एक बंद, उन्मुख सतह के प्रतिचित्रण वर्ग समूह का एक उपसमूह है;[4] वास्तव में किसी भी परिमित समूह को कुछ कॉम्पैक्ट रीमैन सतह के आइसोमेट्री के समूह के रूप में स्पष्ट किया जा सकता है (जिसका अर्थ है कि यह अंतर्निहित टोपोलॉजिकल सतह के प्रतिचित्रण वर्ग समूह में इंजेक्ट करता है)।

गैर-उन्मुख सतहें

कुछ उन्मुखीकरण गैर-उन्मुख सतहों में सरल प्रस्तुतियों के साथ वर्ग समूहों का प्रतिचित्रण होता है। उदाहरण के लिए, वास्तविक प्रक्षेपी तल का प्रत्येक होमोमोर्फिज्म पहचान के लिए समस्थानिक है:

क्लेन बोतल K का प्रतिचित्रण वर्ग समूह है:

चार तत्व पहचान हैं, दो तरफा वक्र पर एक देह मोड़ जो मोबियस पट्टी, लिकोरिश के y-होमियोमोर्फिज्म, और मोड़ और वाई-होमियोमोर्फिज्म के उत्पाद को बाध्य नहीं करता है। यह दिखाने के लिए एक अच्छा अभ्यास है कि देह मोड़ का वर्ग पहचान के लिए समस्थानिक है।

हम यह भी टिप्पणी करते हैं कि बंद जीनस (गणित) तीन गैर-उन्मुख सतह एन3 (तीन प्रोजेक्टिव विमानों का जुड़ा हुआ योग) है:

ऐसा इसलिए है क्योंकि सतह N में एकतरफा वक्रों का एक अनूठा वर्ग है, जैसे कि, जब N को इस तरह के वक्र C के साथ खोला जाता है, तो परिणामी सतह एक डिस्क के साथ एक टोरस है जिसे हटा दिया गया है। एक गैर-उन्मुख सतह के रूप में, इसका प्रतिचित्रण वर्ग समूह है . (प्रमेयिका 2.1[5]).

3-कई गुना

3-मेनिफोल्ड्स के प्रतिचित्रण क्लास ग्रुप्स ने भी काफी अध्ययन प्राप्त किया है, और 2-मैनीफोल्ड्स के प्रतिचित्रण क्लास ग्रुप्स से निकटता से संबंधित हैं। उदाहरण के लिए, किसी भी परिमित समूह को कॉम्पैक्ट हाइपरबोलिक 3-मैनिफ़ोल्ड के प्रतिचित्रण कक्षा समूह (और आइसोमेट्री ग्रुप) के रूप में स्पष्ट किया जा सकता है।[6]


जोड़े के वर्ग समूहों का प्रतिचित्रण

रिक्त स्थान (X, ए) की एक जोड़ी को देखते हुए जोड़ी का प्रतिचित्रण वर्ग समूह जोड़ी के ऑटोमोर्फिज्म का आइसोटोपी-वर्ग है, जहां (X, ए) के ऑटोमोर्फिज्म को X के ऑटोमोर्फिज्म के रूप में परिभाषित किया जाता है जो ए को संरक्षित करता है, अर्थात एफ : X → X व्युत्क्रमणीय है और f(A) = A.

समूह और कड़ियों का सममिति समूह

यदि K ⊂ 'S'3 एक समूह (गणित) या एक लिंक (समूह सिद्धांत) है, समूह के समरूपता समूह (प्रतिक्रिया लिंक) को जोड़ी के प्रतिचित्रण वर्ग समूह (एस) के रूप में परिभाषित किया गया है) अतिशयोक्तिपूर्ण समूह समूह के समरूपता समूह को डायहेड्रल समूह या चक्रीय समूह के रूप में जाना जाता है, इसके अतिरिक्त प्रत्येक डायहेड्रल और चक्रीय समूह को समूहों के समरूपता समूह के रूप में स्पष्ट किया जा सकता है। एक टोरस समूह का समरूपता समूह क्रम दो 'Z2' के रूप में जाना जाता है।

टोरेली समूह

ध्यान दें कि स्पेस X के सह-समरूपता (गणित) (और कोहोलॉजी) पर प्रतिचित्रण कक्षा समूह की एक प्रेरित क्रिया है। ऐसा इसलिए है क्योंकि (सह) होमोलॉजी फंक्शनोरियल और होमियो है0 तुच्छ रूप से कार्य करता है (क्योंकि सभी तत्व समस्थानिक हैं, इसलिए पहचान के लिए होमोटोपिक हैं, जो तुच्छ रूप से कार्य करता है, और (सह) होमोलॉजी पर कार्रवाई समरूपता के अंतर्गत अपरिवर्तनीय है)। इस क्रिया का मूल टोरेली समूह है, जिसका नाम टोरेली प्रमेय के नाम पर रखा गया है।

उन्मुख सतहों के मामले में, यह पहली कोहोलॉजी एच पर कार्रवाई है1(Σ) ≅ Z2जी. अभिविन्यास-संरक्षण मानचित्र ठीक वे हैं जो शीर्ष कोहोलॉजी एच पर तुच्छ रूप से कार्य करते हैं2(Σ) ≅ Z. ​​H1(Σ) में एक सहानुभूतिपूर्ण ज्यामिति संरचना है, जो कप उत्पाद से आती है; चूंकि ये प्रतिचित्रण ऑटोमोर्फिज्म हैं, और मैप्स कप उत्पाद को संरक्षित करते हैं, प्रतिचित्रण कक्षा समूह सिम्पलेक्टिक ऑटोमोर्फिज्म के रूप में कार्य करता है, और वास्तव में सभी सिम्प्लेक्टिक ऑटोमोर्फिज्म का एहसास होता है, जो संक्षिप्त सटीक अनुक्रम प्रदान करता है:

कोई इसे बढ़ा सकता है

सहानुभूतिपूर्ण समूह अच्छी तरह से समझा जाता है। इसलिए प्रतिचित्रण वर्ग समूह की बीजगणितीय संरचना को समझने से प्रायः टोरेली समूह के बारे में प्रश्न कम हो जाते हैं।

ध्यान दें कि टोरस (जीनस 1) के लिए सहानुभूति समूह का प्रतिचित्रण एक समरूपता है, और टोरेली समूह लुप्त हो जाता है।

स्थिर प्रतिचित्रण वर्ग समूह

कोई सतह एम्बेड कर सकता है जीनस जी और 1 सीमा घटक में अंत में एक अतिरिक्त संवाहिनी जोड़कर (अर्थात, एक साथ चिपकाकर और ), और इस प्रकार सीमा तय करने वाली छोटी सतह के ऑटोमोर्फिज्म बड़ी सतह तक फैल जाते हैं। इन समूहों और समावेशन की सीधी सीमा लेने से स्थिर प्रतिचित्रण वर्ग समूह प्राप्त होता है, जिसकी तर्कसंगत कोहोलॉजी रिंग डेविड ममफोर्ड द्वारा अनुमानित की गई थी (अनुमानों में से एक जिसे ममफोर्ड अनुमान (बहुविकल्पी) कहा जाता है)। समाकलन (सिर्फ तर्कसंगत नहीं) कोहोलॉजी रिंग की गणना 2002 में इब पागल और माइकल वीस (गणितज्ञ) द्वारा की गई थी, जो ममफोर्ड के अनुमान को प्रमाणित करता है।

यह भी देखें

  • ब्रेड समूह, पंचर डिस्क के प्रतिचित्रण वर्ग समूह
  • होमोटोपी समूह
  • होमेटोपी समूह
  • दीपक संबंध

संदर्भ

  1. Morita, Shigeyuki (1987). "Characteristic classes of surface bundles". Inventiones Mathematicae. 90 (3): 551–577. Bibcode:1987InMat..90..551M. doi:10.1007/bf01389178. MR 0914849.
  2. Earle, Clifford J.; Eells, James (1967), "The diffeomorphism group of a compact Riemann surface", Bulletin of the American Mathematical Society, 73 (4): 557–559, doi:10.1090/S0002-9904-1967-11746-4, MR 0212840
  3. Hatcher, A.E. (1978). "Concordance spaces, higher simple-homotopy theory, and applications". Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976), Part 1. Proceedings of Symposia in Pure Mathematics. Vol. 32. pp. 3–21. doi:10.1090/pspum/032.1/520490. ISBN 978-0-8218-9320-3. MR 0520490.
  4. Greenberg, Leon (1974). "Maximal groups and signatures". Discontinuous Groups and Riemann Surfaces: Proceedings of the 1973 Conference at the University of Maryland. Annals of Mathematics Studies. Vol. 79. Princeton University Press. pp. 207–226. ISBN 978-1-4008-8164-2. MR 0379835.
  5. Scharlemann, Martin (February 1982). "अनुरेखणीय सतहों पर वक्रों का परिसर". Journal of the London Mathematical Society. s2-25 (1): 171–184. CiteSeerX 10.1.1.591.2588. doi:10.1112/jlms/s2-25.1.171.
  6. Kojima, S. (August 1988). "Isometry transformations of hyperbolic 3-manifolds". Topology and Its Applications. 29 (3): 297–307. doi:10.1016/0166-8641(88)90027-2.



स्थिर प्रतिचित्रण वर्ग समूह

बाहरी संबंध