कार्टेशियन समन्वय प्रणाली: Difference between revisions
No edit summary |
No edit summary |
||
Line 6: | Line 6: | ||
तीन कार्टेशियन निर्देशांक द्वारा त्रि-[[ आयाम ]]ी अंतरिक्ष में किसी भी बिंदु की स्थिति को निर्दिष्ट करने के लिए एक ही सिद्धांत का उपयोग कर सकते हैं, तीन परस्पर लंबवत विमानों के लिए इसकी हस्ताक्षरित दूरी (या, समकक्ष, इसके लंबवत प्रक्षेपण द्वारा तीन परस्पर लंबवत रेखाओं पर)। सामान्यतः, एन कार्टेशियन निर्देशांक (वास्तविक एन-स्पेस का एक तत्व | वास्तविक एन-स्पेस) किसी भी आयाम एन के लिए एन-आयामी [[ यूक्लिडियन स्पेस ]] में बिंदु निर्दिष्ट करता है। ये निर्देशांक बराबर हैं, साइन अप करने के लिए (गणित), बिंदु से n परस्पर लंबवत [[ हाइपरप्लेन ]] तक की दूरी तक। | तीन कार्टेशियन निर्देशांक द्वारा त्रि-[[ आयाम ]]ी अंतरिक्ष में किसी भी बिंदु की स्थिति को निर्दिष्ट करने के लिए एक ही सिद्धांत का उपयोग कर सकते हैं, तीन परस्पर लंबवत विमानों के लिए इसकी हस्ताक्षरित दूरी (या, समकक्ष, इसके लंबवत प्रक्षेपण द्वारा तीन परस्पर लंबवत रेखाओं पर)। सामान्यतः, एन कार्टेशियन निर्देशांक (वास्तविक एन-स्पेस का एक तत्व | वास्तविक एन-स्पेस) किसी भी आयाम एन के लिए एन-आयामी [[ यूक्लिडियन स्पेस ]] में बिंदु निर्दिष्ट करता है। ये निर्देशांक बराबर हैं, साइन अप करने के लिए (गणित), बिंदु से n परस्पर लंबवत [[ हाइपरप्लेन ]] तक की दूरी तक। | ||
[[File:Cartesian-coordinate-system-with-circle.svg|thumb|right|250px|लाल रंग में चिह्नित मूल बिंदु पर केन्द्रित त्रिज्या 2 के एक वृत्त के साथ कार्तीय समन्वय प्रणाली। एक वृत्त का समीकरण है {{nowrap|1=(''x'' − ''a'')<sup>2</sup> + (''y'' − ''b'')<sup>2</sup> = ''r''<sup>2</sup>}} जहाँ a और b केंद्र के निर्देशांक हैं {{nowrap|(''a'', ''b'')}} और r त्रिज्या है।]]17 वीं शताब्दी में रेने डेसकार्टेस (लैटिनिज़ेशन (साहित्य) नाम: कार्टेसियस) द्वारा कार्टेशियन निर्देशांक के आविष्कार ने [[ यूक्लिडियन ज्यामिति ]] और [[ बीजगणित ]] के बीच पहला व्यवस्थित लिंक प्रदान करके गणित में क्रांति ला दी। कार्तीय समन्वय प्रणाली का उपयोग करते हुए, ज्यामितीय आकृतियों (जैसे [[ वक्र ]]) को 'कार्टेशियन [[ समीकरण ]]' द्वारा वर्णित किया जा सकता है: बीजीय समीकरण जिसमें आकृति पर स्थित बिंदुओं के निर्देशांक | [[File:Cartesian-coordinate-system-with-circle.svg|thumb|right|250px|लाल रंग में चिह्नित मूल बिंदु पर केन्द्रित त्रिज्या 2 के एक वृत्त के साथ कार्तीय समन्वय प्रणाली। एक वृत्त का समीकरण है {{nowrap|1=(''x'' − ''a'')<sup>2</sup> + (''y'' − ''b'')<sup>2</sup> = ''r''<sup>2</sup>}} जहाँ a और b केंद्र के निर्देशांक हैं {{nowrap|(''a'', ''b'')}} और r त्रिज्या है।]]17 वीं शताब्दी में रेने डेसकार्टेस (लैटिनिज़ेशन (साहित्य) नाम: कार्टेसियस) द्वारा कार्टेशियन निर्देशांक के आविष्कार ने [[ यूक्लिडियन ज्यामिति ]] और [[ बीजगणित ]] के बीच पहला व्यवस्थित लिंक प्रदान करके गणित में क्रांति ला दी। कार्तीय समन्वय प्रणाली का उपयोग करते हुए, ज्यामितीय आकृतियों (जैसे [[ वक्र ]]) को 'कार्टेशियन [[ समीकरण ]]' द्वारा वर्णित किया जा सकता है: बीजीय समीकरण जिसमें आकृति पर स्थित बिंदुओं के निर्देशांक सम्मिलित होते हैं। उदाहरण के लिए, तल के मूल बिंदु पर केन्द्रित त्रिज्या 2 का एक वृत्त, उन सभी बिंदुओं के समुच्चय (गणित) के रूप में वर्णित किया जा सकता है, जिनके निर्देशांक x और y समीकरण को संतुष्ट करते हैं। {{nowrap|1=''x''<sup>2</sup> + ''y''<sup>2</sup> = 4}}. | ||
कार्टेशियन निर्देशांक [[ विश्लेषणात्मक ज्यामिति ]] की नींव हैं, और गणित की कई अन्य शाखाओं के लिए ज्ञानवर्धक ज्यामितीय व्याख्याएं प्रदान करते हैं, जैसे कि रैखिक बीजगणित, [[ जटिल विश्लेषण ]], [[ अंतर ज्यामिति ]], बहुभिन्नरूपी कलन, [[ समूह सिद्धांत ]] और बहुत कुछ। एक परिचित उदाहरण एक फ़ंक्शन के ग्राफ़ की अवधारणा है। कार्तीय निर्देशांक भी अधिकांश अनुप्रयुक्त विषयों के लिए आवश्यक उपकरण हैं जो ज्यामिति से संबंधित हैं, जिसमें [[ खगोल ]] विज्ञान, भौतिकी, [[ अभियांत्रिकी ]] और कई अन्य | कार्टेशियन निर्देशांक [[ विश्लेषणात्मक ज्यामिति ]] की नींव हैं, और गणित की कई अन्य शाखाओं के लिए ज्ञानवर्धक ज्यामितीय व्याख्याएं प्रदान करते हैं, जैसे कि रैखिक बीजगणित, [[ जटिल विश्लेषण ]], [[ अंतर ज्यामिति ]], बहुभिन्नरूपी कलन, [[ समूह सिद्धांत ]] और बहुत कुछ। एक परिचित उदाहरण एक फ़ंक्शन के ग्राफ़ की अवधारणा है। कार्तीय निर्देशांक भी अधिकांश अनुप्रयुक्त विषयों के लिए आवश्यक उपकरण हैं जो ज्यामिति से संबंधित हैं, जिसमें [[ खगोल ]] विज्ञान, भौतिकी, [[ अभियांत्रिकी ]] और कई अन्य सम्मिलित हैं। वे [[ कंप्यूटर ग्राफिक्स ]], [[ कंप्यूटर एडेड ज्यामितीय डिजाइन ]] और अन्य [[ कम्प्यूटेशनल ज्यामिति ]] | ज्यामिति से संबंधित डेटा प्रोसेसिंग में उपयोग की जाने वाली सबसे आम समन्वय प्रणाली हैं। | ||
==इतिहास== | ==इतिहास== | ||
Line 20: | Line 20: | ||
=== एक आयाम {{Anchor|Cartesian coordinates in one dimension}}=== | === एक आयाम {{Anchor|Cartesian coordinates in one dimension}}=== | ||
{{Main|Number line}} | {{Main|Number line}} | ||
एक-आयामी अंतरिक्ष के लिए एक कार्टेशियन समन्वय प्रणाली का चयन करना - जो कि एक सीधी रेखा के लिए है - इसमें रेखा का एक बिंदु O (मूल), लंबाई की एक इकाई और रेखा के लिए एक अभिविन्यास चुनना | एक-आयामी अंतरिक्ष के लिए एक कार्टेशियन समन्वय प्रणाली का चयन करना - जो कि एक सीधी रेखा के लिए है - इसमें रेखा का एक बिंदु O (मूल), लंबाई की एक इकाई और रेखा के लिए एक अभिविन्यास चुनना सम्मिलित है। एक अभिविन्यास चुनता है कि O द्वारा निर्धारित दो अर्ध-रेखाओं में से कौन सी सकारात्मक है और कौन सी ऋणात्मक है; फिर हम कहते हैं कि रेखा ऋणात्मक आधे से धनात्मक आधे की ओर उन्मुख (या अंक) है। फिर रेखा के प्रत्येक बिंदु P को O से उसकी दूरी द्वारा निर्दिष्ट किया जा सकता है, जिसे + या - चिह्न के साथ लिया जाता है, जिसके आधार पर आधी रेखा में P होता है। | ||
चुनी हुई कार्तीय प्रणाली वाली रेखा को 'संख्या रेखा' कहा जाता है। रेखा पर प्रत्येक वास्तविक संख्या का एक विशिष्ट स्थान होता है। इसके विपरीत, रेखा के प्रत्येक बिंदु की व्याख्या एक क्रमित सातत्य में एक संख्या के रूप में की जा सकती है, जैसे कि वास्तविक संख्याएँ। | चुनी हुई कार्तीय प्रणाली वाली रेखा को 'संख्या रेखा' कहा जाता है। रेखा पर प्रत्येक वास्तविक संख्या का एक विशिष्ट स्थान होता है। इसके विपरीत, रेखा के प्रत्येक बिंदु की व्याख्या एक क्रमित सातत्य में एक संख्या के रूप में की जा सकती है, जैसे कि वास्तविक संख्याएँ। | ||
Line 30: | Line 30: | ||
पहले और दूसरे निर्देशांक को क्रमशः [[ सूच्याकार आकृति का भुज ]] और पी की कोटि कहा जाता है; और वह बिंदु जहां कुल्हाड़ियां मिलती हैं, समन्वय प्रणाली का उद्गम स्थल कहलाता है। निर्देशांक सामान्यतः कोष्ठक में दो संख्याओं के रूप में लिखे जाते हैं, उस क्रम में, अल्पविराम द्वारा अलग किए जाते हैं, जैसे कि {{nowrap|(3, −10.5)}}. इस प्रकार मूल के निर्देशांक हैं {{nowrap|(0, 0)}}, और मूल से एक इकाई दूर धनात्मक अर्ध-अक्ष पर स्थित बिंदुओं के निर्देशांक होते हैं {{nowrap|(1, 0)}} तथा {{nowrap|(0, 1)}}. | पहले और दूसरे निर्देशांक को क्रमशः [[ सूच्याकार आकृति का भुज ]] और पी की कोटि कहा जाता है; और वह बिंदु जहां कुल्हाड़ियां मिलती हैं, समन्वय प्रणाली का उद्गम स्थल कहलाता है। निर्देशांक सामान्यतः कोष्ठक में दो संख्याओं के रूप में लिखे जाते हैं, उस क्रम में, अल्पविराम द्वारा अलग किए जाते हैं, जैसे कि {{nowrap|(3, −10.5)}}. इस प्रकार मूल के निर्देशांक हैं {{nowrap|(0, 0)}}, और मूल से एक इकाई दूर धनात्मक अर्ध-अक्ष पर स्थित बिंदुओं के निर्देशांक होते हैं {{nowrap|(1, 0)}} तथा {{nowrap|(0, 1)}}. | ||
गणित, भौतिकी और इंजीनियरिंग में, पहली धुरी को सामान्यतः क्षैतिज और दाईं ओर उन्मुख के रूप में परिभाषित या चित्रित किया जाता है, और दूसरा अक्ष लंबवत और ऊपर की ओर उन्मुख होता है। (हालांकि, कुछ कंप्यूटर ग्राफिक्स संदर्भों में, समन्वय अक्ष नीचे की ओर उन्मुख हो सकता है।) मूल को | गणित, भौतिकी और इंजीनियरिंग में, पहली धुरी को सामान्यतः क्षैतिज और दाईं ओर उन्मुख के रूप में परिभाषित या चित्रित किया जाता है, और दूसरा अक्ष लंबवत और ऊपर की ओर उन्मुख होता है। (हालांकि, कुछ कंप्यूटर ग्राफिक्स संदर्भों में, समन्वय अक्ष नीचे की ओर उन्मुख हो सकता है।) मूल को प्रायः ओ लेबल किया जाता है, और दो निर्देशांक प्रायः एक्स और वाई, या एक्स और वाई अक्षरों द्वारा दर्शाए जाते हैं। अक्षों को तब एक्स-अक्ष और वाई-अक्ष के रूप में संदर्भित किया जा सकता है। अक्षरों के विकल्प मूल परंपरा से आते हैं, जो अज्ञात मूल्यों को इंगित करने के लिए वर्णमाला के बाद के भाग का उपयोग करना है। ज्ञात मूल्यों को निर्दिष्ट करने के लिए वर्णमाला के पहले भाग का उपयोग किया गया था। | ||
चुने हुए कार्तीय निर्देशांक प्रणाली वाले [[ यूक्लिडियन विमान ]] को 'कहा जाता है'{{vanchor|Cartesian plane}}. एक कार्टेशियन विमान में कुछ ज्यामितीय आकृतियों के विहित प्रतिनिधियों को परिभाषित किया जा सकता है, जैसे कि [[ यूनिट सर्कल ]] (लंबाई की इकाई के बराबर त्रिज्या के साथ, और मूल में केंद्र), [[ इकाई वर्ग ]] (जिसके विकर्ण में अंत बिंदु हैं {{nowrap|(0, 0)}} तथा {{nowrap|(1, 1)}}), [[ इकाई अतिपरवलय ]], और इसी तरह। | चुने हुए कार्तीय निर्देशांक प्रणाली वाले [[ यूक्लिडियन विमान ]] को 'कहा जाता है'{{vanchor|Cartesian plane}}. एक कार्टेशियन विमान में कुछ ज्यामितीय आकृतियों के विहित प्रतिनिधियों को परिभाषित किया जा सकता है, जैसे कि [[ यूनिट सर्कल ]] (लंबाई की इकाई के बराबर त्रिज्या के साथ, और मूल में केंद्र), [[ इकाई वर्ग ]] (जिसके विकर्ण में अंत बिंदु हैं {{nowrap|(0, 0)}} तथा {{nowrap|(1, 1)}}), [[ इकाई अतिपरवलय ]], और इसी तरह। | ||
Line 55: | Line 55: | ||
निर्देशांक सामान्यतः तीन संख्याओं (या बीजगणितीय सूत्रों) के रूप में लिखे जाते हैं जो कोष्ठक से घिरे होते हैं और अल्पविराम से अलग होते हैं, जैसे कि {{math|(3, −2.5, 1)}} या {{math|(''t'', ''u'' + ''v'', ''π''/2)}}. इस प्रकार, मूल के निर्देशांक हैं {{math|(0, 0, 0)}}, और तीन अक्षों पर इकाई बिंदु हैं {{math|(1, 0, 0)}}, {{math|(0, 1, 0)}}, तथा {{math|(0, 0, 1)}}. | निर्देशांक सामान्यतः तीन संख्याओं (या बीजगणितीय सूत्रों) के रूप में लिखे जाते हैं जो कोष्ठक से घिरे होते हैं और अल्पविराम से अलग होते हैं, जैसे कि {{math|(3, −2.5, 1)}} या {{math|(''t'', ''u'' + ''v'', ''π''/2)}}. इस प्रकार, मूल के निर्देशांक हैं {{math|(0, 0, 0)}}, और तीन अक्षों पर इकाई बिंदु हैं {{math|(1, 0, 0)}}, {{math|(0, 1, 0)}}, तथा {{math|(0, 0, 1)}}. | ||
तीन अक्षों में निर्देशांक के लिए कोई मानक नाम नहीं हैं (हालांकि, एब्सिस्सा, ऑर्डिनेट और एप्लीकेट शब्द कभी-कभी उपयोग किए जाते हैं)। निर्देशांक | तीन अक्षों में निर्देशांक के लिए कोई मानक नाम नहीं हैं (हालांकि, एब्सिस्सा, ऑर्डिनेट और एप्लीकेट शब्द कभी-कभी उपयोग किए जाते हैं)। निर्देशांक प्रायः X, Y, और Z, या x, y, और z अक्षरों द्वारा निरूपित किए जाते हैं। अक्षों को क्रमशः एक्स-अक्ष, वाई-अक्ष और जेड-अक्ष के रूप में संदर्भित किया जा सकता है। फिर निर्देशांक हाइपरप्लेन को XY-प्लेन, YZ-प्लेन और XZ-प्लेन के रूप में संदर्भित किया जा सकता है। | ||
गणित, भौतिकी और इंजीनियरिंग संदर्भों में, पहले दो अक्षों को | गणित, भौतिकी और इंजीनियरिंग संदर्भों में, पहले दो अक्षों को प्रायः क्षैतिज के रूप में परिभाषित या चित्रित किया जाता है, जिसमें तीसरा अक्ष ऊपर की ओर इशारा करता है। उस स्थिति में तीसरे निर्देशांक को ऊँचाई या ऊँचाई कहा जा सकता है। अभिविन्यास सामान्यतः चुना जाता है ताकि पहली धुरी से दूसरी धुरी तक 90 डिग्री का कोण बिंदु से देखे जाने पर वामावर्त दिखे {{math|(0, 0, 1)}}; एक सम्मेलन जिसे सामान्यतः [[ दाहिने हाथ का नियम ]] कहा जाता है। | ||
[[File:Cartesian coordinate surfaces.png|thumb|240px|right| निर्देशांक प्रणाली#कार्तीय निर्देशांक की समन्वय सतह {{math|(''x'', ''y'', ''z'')}}. z-अक्ष लंबवत है और x-अक्ष हरे रंग में हाइलाइट किया गया है। इस प्रकार, लाल हाइपरप्लेन बिंदुओं को दिखाता है {{math|1=''x'' = 1}}, नीला हाइपरप्लेन बिंदुओं को दिखाता है {{math|1=''z'' = 1}}, और पीला हाइपरप्लेन बिंदुओं को दिखाता है {{math|1=''y'' = −1}}. तीन सतह कार्तीय निर्देशांक के साथ बिंदु P (एक काले गोले के रूप में दिखाया गया है) पर प्रतिच्छेद करती हैं {{math|(1, −1, 1}}).]] | [[File:Cartesian coordinate surfaces.png|thumb|240px|right| निर्देशांक प्रणाली#कार्तीय निर्देशांक की समन्वय सतह {{math|(''x'', ''y'', ''z'')}}. z-अक्ष लंबवत है और x-अक्ष हरे रंग में हाइलाइट किया गया है। इस प्रकार, लाल हाइपरप्लेन बिंदुओं को दिखाता है {{math|1=''x'' = 1}}, नीला हाइपरप्लेन बिंदुओं को दिखाता है {{math|1=''z'' = 1}}, और पीला हाइपरप्लेन बिंदुओं को दिखाता है {{math|1=''y'' = −1}}. तीन सतह कार्तीय निर्देशांक के साथ बिंदु P (एक काले गोले के रूप में दिखाया गया है) पर प्रतिच्छेद करती हैं {{math|(1, −1, 1}}).]] | ||
Line 68: | Line 68: | ||
==सूचनाएं और परंपराएं==<!-- [[Abscissa]] redirects here --> | ==सूचनाएं और परंपराएं==<!-- [[Abscissa]] redirects here --> | ||
एक बिंदु के कार्टेशियन निर्देशांक सामान्यतः कोष्ठक में लिखे जाते हैं और अल्पविराम द्वारा अलग किए जाते हैं, जैसे कि {{nowrap|(10, 5)}} या {{nowrap|(3, 5, 7)}}. उत्पत्ति को | एक बिंदु के कार्टेशियन निर्देशांक सामान्यतः कोष्ठक में लिखे जाते हैं और अल्पविराम द्वारा अलग किए जाते हैं, जैसे कि {{nowrap|(10, 5)}} या {{nowrap|(3, 5, 7)}}. उत्पत्ति को प्रायः बड़े अक्षर O के साथ लेबल किया जाता है। विश्लेषणात्मक ज्यामिति में, अज्ञात या सामान्य निर्देशांक प्रायः विमान में अक्षरों (x, y) और त्रि-आयामी अंतरिक्ष में (x, y, z) द्वारा निरूपित होते हैं। यह रिवाज बीजगणित के एक सम्मेलन से आता है, जो अज्ञात मानों के लिए वर्णमाला के अंत के पास अक्षरों का उपयोग करता है (जैसे कि कई ज्यामितीय समस्याओं में बिंदुओं के निर्देशांक), और दी गई मात्राओं के लिए शुरुआत के निकट के अक्षरों का उपयोग करता है। | ||
ये पारंपरिक नाम | ये पारंपरिक नाम प्रायः अन्य डोमेन में उपयोग किए जाते हैं, जैसे कि भौतिकी और इंजीनियरिंग, हालांकि अन्य अक्षरों का उपयोग किया जा सकता है। उदाहरण के लिए, एक ग्राफ में यह दर्शाता है कि [[ समय ]] के साथ [[ दबाव ]] कैसे बदलता है, ग्राफ निर्देशांक को पी और टी द्वारा दर्शाया जा सकता है। प्रत्येक अक्ष को सामान्यतः उस निर्देशांक के नाम पर रखा जाता है जिसे उसके साथ मापा जाता है; तो कोई एक्स-अक्ष, वाई-अक्ष, टी-अक्ष इत्यादि कहता है। | ||
समन्वय नामकरण के लिए एक अन्य आम परंपरा सबस्क्रिप्ट का उपयोग करना है, जैसे (x<sub>1</sub>, एक्स<sub>2</sub>, ..., एक्स<sub>''n''</sub>) एक n-आयामी अंतरिक्ष में n निर्देशांक के लिए, खासकर जब n 3 से अधिक या अनिर्दिष्ट हो। कुछ लेखक नंबरिंग पसंद करते हैं (x<sub>0</sub>, एक्स<sub>1</sub>, ..., एक्स<sub>''n''−1</sub>) [[ कंप्यूटर प्रोग्रामिंग ]] में ये संकेतन विशेष रूप से लाभप्रद हैं: एक बिंदु के निर्देशांक को एक [[ रिकॉर्ड (कंप्यूटर विज्ञान) ]] के अतिरिक्त एक ऐरे डेटा प्रकार के रूप में संग्रहीत करके, [[ सबस्क्रिप्ट ]] निर्देशांक को अनुक्रमित करने का काम कर सकता है। | समन्वय नामकरण के लिए एक अन्य आम परंपरा सबस्क्रिप्ट का उपयोग करना है, जैसे (x<sub>1</sub>, एक्स<sub>2</sub>, ..., एक्स<sub>''n''</sub>) एक n-आयामी अंतरिक्ष में n निर्देशांक के लिए, खासकर जब n 3 से अधिक या अनिर्दिष्ट हो। कुछ लेखक नंबरिंग पसंद करते हैं (x<sub>0</sub>, एक्स<sub>1</sub>, ..., एक्स<sub>''n''−1</sub>) [[ कंप्यूटर प्रोग्रामिंग ]] में ये संकेतन विशेष रूप से लाभप्रद हैं: एक बिंदु के निर्देशांक को एक [[ रिकॉर्ड (कंप्यूटर विज्ञान) ]] के अतिरिक्त एक ऐरे डेटा प्रकार के रूप में संग्रहीत करके, [[ सबस्क्रिप्ट ]] निर्देशांक को अनुक्रमित करने का काम कर सकता है। | ||
द्वि-आयामी कार्टेशियन प्रणालियों के गणितीय दृष्टांतों में, पहले निर्देशांक (पारंपरिक रूप से एब्सिसा कहा जाता है) को एक क्षैतिज समतल अक्ष के साथ मापा जाता है, जो बाएं से दाएं की ओर उन्मुख होता है। दूसरा निर्देशांक (कोर्डिनेट) तब एक [[ ऊर्ध्वाधर दिशा ]] अक्ष के साथ मापा जाता है, सामान्यतः नीचे से ऊपर की ओर उन्मुख होता है। कार्टेशियन प्रणाली सीखने वाले छोटे बच्चे सामान्यतः एक्स-, वाई-, और जेड-अक्ष अवधारणाओं को मजबूत करने से पहले मूल्यों को पढ़ने का क्रम सीखते हैं, 2 डी निमोनिक्स से शुरू करते हैं (उदाहरण के लिए, 'हॉल के साथ चलो फिर सीढ़ियों तक' जैसे सीधे x-अक्ष के आर-पार और फिर y-अक्ष के अनुदिश ऊर्ध्वमुखी)।<ref>{{Cite web|url=https://www.mindtools.com/pages/article/Charts_and_Diagrams.htm|title=चार्ट और ग्राफ: सही प्रारूप चुनना|website=www.mindtools.com|language=en|access-date=2017-08-29}}</ref> | द्वि-आयामी कार्टेशियन प्रणालियों के गणितीय दृष्टांतों में, पहले निर्देशांक (पारंपरिक रूप से एब्सिसा कहा जाता है) को एक क्षैतिज समतल अक्ष के साथ मापा जाता है, जो बाएं से दाएं की ओर उन्मुख होता है। दूसरा निर्देशांक (कोर्डिनेट) तब एक [[ ऊर्ध्वाधर दिशा ]] अक्ष के साथ मापा जाता है, सामान्यतः नीचे से ऊपर की ओर उन्मुख होता है। कार्टेशियन प्रणाली सीखने वाले छोटे बच्चे सामान्यतः एक्स-, वाई-, और जेड-अक्ष अवधारणाओं को मजबूत करने से पहले मूल्यों को पढ़ने का क्रम सीखते हैं, 2 डी निमोनिक्स से शुरू करते हैं (उदाहरण के लिए, 'हॉल के साथ चलो फिर सीढ़ियों तक' जैसे सीधे x-अक्ष के आर-पार और फिर y-अक्ष के अनुदिश ऊर्ध्वमुखी)।<ref>{{Cite web|url=https://www.mindtools.com/pages/article/Charts_and_Diagrams.htm|title=चार्ट और ग्राफ: सही प्रारूप चुनना|website=www.mindtools.com|language=en|access-date=2017-08-29}}</ref> | ||
कंप्यूटर ग्राफिक्स और [[ मूर्ति प्रोद्योगिकी ]], हालांकि, | कंप्यूटर ग्राफिक्स और [[ मूर्ति प्रोद्योगिकी ]], हालांकि, प्रायः कंप्यूटर डिस्प्ले पर नीचे की ओर y-अक्ष के साथ एक समन्वय प्रणाली का उपयोग करते हैं। यह सम्मेलन 1960 के दशक (या पहले) में विकसित हुआ था, जिस तरह से छवियों को मूल रूप से [[ फ्रेम बफर ]] में संग्रहीत किया गया था। | ||
त्रि-आयामी प्रणालियों के लिए, एक सम्मेलन एक्स-प्लेन को क्षैतिज रूप से चित्रित करना है, जिसमें जेड-अक्ष को ऊंचाई (सकारात्मक ऊपर) का प्रतिनिधित्व करने के लिए जोड़ा गया है। इसके | त्रि-आयामी प्रणालियों के लिए, एक सम्मेलन एक्स-प्लेन को क्षैतिज रूप से चित्रित करना है, जिसमें जेड-अक्ष को ऊंचाई (सकारात्मक ऊपर) का प्रतिनिधित्व करने के लिए जोड़ा गया है। इसके अतिरिक्त , एक्स-अक्ष को दर्शक की ओर उन्मुख करने के लिए एक परंपरा है, जो दाएं या बाएं पक्षपाती है। यदि एक आरेख (3D प्रक्षेपण या परिप्रेक्ष्य (ग्राफ़िकल)) क्रमशः x- और y-अक्ष को क्षैतिज और लंबवत रूप से दिखाता है, तो z-अक्ष को पृष्ठ के बाहर व्यूअर या कैमरे की ओर इंगित करते हुए दिखाया जाना चाहिए। एक 3D समन्वय प्रणाली के ऐसे 2D आरेख में, z-अक्ष प्रकल्पित व्यूअर या कैमरा परिप्रेक्ष्य (ग्राफ़िकल) के आधार पर नीचे और बाईं या नीचे और दाईं ओर इंगित करने वाली एक रेखा या किरण के रूप में दिखाई देगा। किसी भी आरेख या प्रदर्शन में, तीन अक्षों का उन्मुखीकरण, समग्र रूप से, मनमाना होता है। हालांकि, एक दूसरे के सापेक्ष कुल्हाड़ियों का उन्मुखीकरण हमेशा दाहिने हाथ के नियम का पालन करना चाहिए, जब तक कि विशेष रूप से अन्यथा न कहा गया हो। भौतिकी और गणित के सभी नियम इस #ओरिएंटेशन और हैंडनेस | राइट-हैंडनेस को मानते हैं, जो निरंतरता सुनिश्चित करता है। | ||
3डी आरेखों के लिए, एब्सिस्सा और कोर्डिनेट नाम क्रमशः x और y के लिए शायद ही कभी उपयोग किए जाते हैं। जब वे होते हैं, तो z-निर्देशांक को कभी-कभी 'एप्लिकेट' कहा जाता है। एब्सिस्सा, ऑर्डिनेट और एप्लिकेट शब्द कभी-कभी समन्वय मूल्यों के अतिरिक्त समन्वय अक्षों को संदर्भित करने के लिए उपयोग किए जाते हैं।<ref name=":0">{{Cite web|url=https://www.encyclopediaofmath.org/index.php/Cartesian_orthogonal_coordinate_system|title=कार्टेशियन ऑर्थोगोनल कोऑर्डिनेट सिस्टम|website=Encyclopedia of Mathematics|language=en|access-date=2017-08-06}}</ref> | 3डी आरेखों के लिए, एब्सिस्सा और कोर्डिनेट नाम क्रमशः x और y के लिए शायद ही कभी उपयोग किए जाते हैं। जब वे होते हैं, तो z-निर्देशांक को कभी-कभी 'एप्लिकेट' कहा जाता है। एब्सिस्सा, ऑर्डिनेट और एप्लिकेट शब्द कभी-कभी समन्वय मूल्यों के अतिरिक्त समन्वय अक्षों को संदर्भित करने के लिए उपयोग किए जाते हैं।<ref name=":0">{{Cite web|url=https://www.encyclopediaofmath.org/index.php/Cartesian_orthogonal_coordinate_system|title=कार्टेशियन ऑर्थोगोनल कोऑर्डिनेट सिस्टम|website=Encyclopedia of Mathematics|language=en|access-date=2017-08-06}}</ref> | ||
Line 84: | Line 84: | ||
{{Main|Octant (solid geometry)|Quadrant (plane geometry)}} | {{Main|Octant (solid geometry)|Quadrant (plane geometry)}} | ||
<!-- This section is linked from [[Heraldry]] and from [[Quadrant (Cartesian coordinate system)]]--> | <!-- This section is linked from [[Heraldry]] and from [[Quadrant (Cartesian coordinate system)]]--> | ||
[[File:Cartesian coordinates 2D.svg|thumb|240px|कार्तीय निर्देशांक प्रणाली के चार चतुर्थांश]]द्विविमीय कार्तीय प्रणाली की कुल्हाड़ियाँ समतल को चार अनंत क्षेत्रों में विभाजित करती हैं, जिन्हें चतुर्थांश कहते हैं,<ref name=":0" />प्रत्येक दो अर्ध-कुल्हाड़ियों से घिरा हुआ है। इन्हें | [[File:Cartesian coordinates 2D.svg|thumb|240px|कार्तीय निर्देशांक प्रणाली के चार चतुर्थांश]]द्विविमीय कार्तीय प्रणाली की कुल्हाड़ियाँ समतल को चार अनंत क्षेत्रों में विभाजित करती हैं, जिन्हें चतुर्थांश कहते हैं,<ref name=":0" />प्रत्येक दो अर्ध-कुल्हाड़ियों से घिरा हुआ है। इन्हें प्रायः 1 से 4 तक गिना जाता है और [[ रोमन अंक ]]ों द्वारा निरूपित किया जाता है: I (जहां निर्देशांक दोनों में सकारात्मक संकेत होते हैं), II (जहां भुज ऋणात्मक है - और कोटि सकारात्मक है +), III (जहां भुज और कोर्डिनेट दोनों हैं) हैं -), और IV (भुजा +, कोटि -)। जब गणितीय रिवाज के अनुसार कुल्हाड़ियों को खींचा जाता है, तो नंबरिंग [[ दक्षिणावर्त ]] जाती है | काउंटर-क्लॉकवाइज ऊपरी दाएं (उत्तर-पूर्व) चतुर्थांश से शुरू होती है। | ||
इसी तरह, एक त्रि-आयामी कार्टेशियन प्रणाली अंतरिक्ष के विभाजन को आठ क्षेत्रों या अष्टक में परिभाषित करती है,<ref name=":0" />बिंदुओं के निर्देशांक के संकेतों के अनुसार। एक विशिष्ट अष्टक का नामकरण करने के लिए | इसी तरह, एक त्रि-आयामी कार्टेशियन प्रणाली अंतरिक्ष के विभाजन को आठ क्षेत्रों या अष्टक में परिभाषित करती है,<ref name=":0" />बिंदुओं के निर्देशांक के संकेतों के अनुसार। एक विशिष्ट अष्टक का नामकरण करने के लिए उपयोग की जाने वाली परंपरा इसके संकेतों को सूचीबद्ध करना है; उदाहरण के लिए, {{nowrap|(+ + +)}} या {{nowrap|(− + −)}}. चतुर्भुज और अष्टक का एक मनमाना संख्या में आयामों का सामान्यीकरण [[ orthant ]] है, और एक समान नामकरण प्रणाली लागू होती है। | ||
== समतल के लिए कार्तीय सूत्र== | == समतल के लिए कार्तीय सूत्र== | ||
Line 162: | Line 162: | ||
एक परावर्तन या सरकना प्रतिबिंब प्राप्त होता है जब, | एक परावर्तन या सरकना प्रतिबिंब प्राप्त होता है जब, | ||
<math display=block> A_{1, 1} A_{2, 2} - A_{2, 1} A_{1, 2} = -1 .</math> | <math display=block> A_{1, 1} A_{2, 2} - A_{2, 1} A_{1, 2} = -1 .</math> | ||
यह मानते हुए कि अनुवादों का उपयोग नहीं किया जाता है (अर्थात, <math>b_1=b_2=0</math>) रूपांतरण केवल संबंधित परिवर्तन मैट्रिक्स को गुणा करके कार्य संरचना हो सकते हैं। सामान्य स्थिति में, परिवर्तन के [[ संवर्धित मैट्रिक्स ]] का उपयोग करना उपयोगी होता है; | यह मानते हुए कि अनुवादों का उपयोग नहीं किया जाता है (अर्थात, <math>b_1=b_2=0</math>) रूपांतरण केवल संबंधित परिवर्तन मैट्रिक्स को गुणा करके कार्य संरचना हो सकते हैं। सामान्य स्थिति में, परिवर्तन के [[ संवर्धित मैट्रिक्स ]] का उपयोग करना उपयोगी होता है; अर्थात परिवर्तन सूत्र को फिर से लिखना | ||
<math display=block>\begin{pmatrix}x'\\y'\\1\end{pmatrix} = A' \begin{pmatrix}x\\y\\1\end{pmatrix},</math> | |||
कहाँ पे | कहाँ पे | ||
<math display=block>A' = \begin{pmatrix} A_{1,1} & A_{1,2}&b_1 \\ A_{2,1} & A_{2,2}&b_2\\0&0&1 \end{pmatrix}.</math> | <math display=block>A' = \begin{pmatrix} A_{1,1} & A_{1,2}&b_1 \\ A_{2,1} & A_{2,2}&b_2\\0&0&1 \end{pmatrix}.</math> | ||
Line 204: | Line 204: | ||
समतल को ओरिएंट करने का सामान्य तरीका, धनात्मक x-अक्ष की ओर इशारा करते हुए दाईं ओर और धनात्मक y-अक्ष की ओर इशारा करते हुए (और x-अक्ष पहला और y-अक्ष दूसरा अक्ष है), को सकारात्मक या मानक अभिविन्यास माना जाता है , जिसे दाहिने हाथ का अभिविन्यास भी कहा जाता है। | समतल को ओरिएंट करने का सामान्य तरीका, धनात्मक x-अक्ष की ओर इशारा करते हुए दाईं ओर और धनात्मक y-अक्ष की ओर इशारा करते हुए (और x-अक्ष पहला और y-अक्ष दूसरा अक्ष है), को सकारात्मक या मानक अभिविन्यास माना जाता है , जिसे दाहिने हाथ का अभिविन्यास भी कहा जाता है। | ||
सकारात्मक अभिविन्यास को परिभाषित करने के लिए सामान्यतः | सकारात्मक अभिविन्यास को परिभाषित करने के लिए सामान्यतः उपयोग किया जाने वाला स्मरक दाहिने हाथ का नियम है। एक सकारात्मक रूप से उन्मुख समन्वय प्रणाली में, अंगूठे के साथ विमान पर कुछ हद तक बंद दाहिने हाथ को रखकर, उंगलियां एक्स-अक्ष से वाई-अक्ष की ओर इशारा करती हैं। | ||
विमान को उन्मुख करने का दूसरा तरीका बाएं हाथ के नियम का पालन करना है, बाएं हाथ को अंगूठे के साथ विमान पर रखना। | विमान को उन्मुख करने का दूसरा तरीका बाएं हाथ के नियम का पालन करना है, बाएं हाथ को अंगूठे के साथ विमान पर रखना। | ||
Line 235: | Line 235: | ||
== आवेदन == | == आवेदन == | ||
कार्टेशियन निर्देशांक एक अमूर्तता है जिसमें वास्तविक दुनिया में कई संभावित अनुप्रयोग होते हैं। हालांकि, एक समस्या आवेदन पर निर्देशांक को सुपरइम्पोज़ करने में तीन रचनात्मक चरण | कार्टेशियन निर्देशांक एक अमूर्तता है जिसमें वास्तविक दुनिया में कई संभावित अनुप्रयोग होते हैं। हालांकि, एक समस्या आवेदन पर निर्देशांक को सुपरइम्पोज़ करने में तीन रचनात्मक चरण सम्मिलित हैं। | ||
# निर्देशांक के रूप में उपयोग की जाने वाली संख्याओं द्वारा दर्शाए गए स्थानिक आकार को परिभाषित करते हुए दूरी की इकाइयों को तय किया जाना चाहिए। | # निर्देशांक के रूप में उपयोग की जाने वाली संख्याओं द्वारा दर्शाए गए स्थानिक आकार को परिभाषित करते हुए दूरी की इकाइयों को तय किया जाना चाहिए। | ||
# एक मूल स्थान एक विशिष्ट स्थानिक स्थान या स्थलचिह्न को सौंपा जाना चाहिए, और | # एक मूल स्थान एक विशिष्ट स्थानिक स्थान या स्थलचिह्न को सौंपा जाना चाहिए, और | ||
# अक्षों के अभिविन्यास को एक अक्ष को छोड़कर सभी के लिए उपलब्ध दिशात्मक संकेतों का उपयोग करके परिभाषित किया जाना चाहिए। | # अक्षों के अभिविन्यास को एक अक्ष को छोड़कर सभी के लिए उपलब्ध दिशात्मक संकेतों का उपयोग करके परिभाषित किया जाना चाहिए। | ||
एक उदाहरण के रूप में विचार करें कि पृथ्वी पर सभी बिंदुओं ( | एक उदाहरण के रूप में विचार करें कि पृथ्वी पर सभी बिंदुओं (अर्थात , भू-स्थानिक 3D) पर 3D कार्टेशियन निर्देशांक को सुपरइम्पोज़ करना है। किलोमीटर इकाइयों का एक अच्छा विकल्प है, क्योंकि किलोमीटर की मूल परिभाषा भू-स्थानिक थी, जिसमें {{val|10000|u=km|fmt=commas}} भूमध्य रेखा से उत्तरी ध्रुव तक सतह की दूरी के बराबर। समरूपता के आधार पर, पृथ्वी का गुरुत्वाकर्षण केंद्र उत्पत्ति के एक प्राकृतिक स्थान का सुझाव देता है (जिसे उपग्रह कक्षाओं के माध्यम से महसूस किया जा सकता है)। पृथ्वी के घूमने की धुरी X, Y और Z अक्षों के लिए एक प्राकृतिक अभिविन्यास प्रदान करती है, जो दृढ़ता से ऊपर बनाम नीचे से जुड़ी होती है, इसलिए सकारात्मक Z भू-केंद्र से उत्तरी ध्रुव की दिशा को अपना सकता है। एक्स-अक्ष को परिभाषित करने के लिए भूमध्य रेखा पर एक स्थान की आवश्यकता होती है, और [[ प्रधानमंत्री मध्याह्न ]] एक संदर्भ अभिविन्यास के रूप में खड़ा होता है, इसलिए एक्स-अक्ष भू-केंद्र से अभिविन्यास लेता है {{val|0|u=degrees}} देशांतर, {{val|0|u=degrees}} अक्षांश। ध्यान दें कि एक्स और जेड के लिए तीन आयामों और दो लंबवत अक्षों के झुकाव के साथ, वाई-अक्ष पहले दो विकल्पों द्वारा निर्धारित किया जाता है। दाहिने हाथ के नियम का पालन करने के लिए, Y-अक्ष को भू-केंद्र से इंगित करना चाहिए {{val|90|u=degrees}} देशांतर, {{val|0|u=degrees}} अक्षांश। के देशांतर से {{val|−73.985656|u=degrees}}, एक अक्षांश {{val|40.748433|u=degrees}}, और 40,000 / 2π किमी की पृथ्वी त्रिज्या, और गोलाकार से कार्टेशियन निर्देशांक में परिवर्तित होकर, एम्पायर स्टेट बिल्डिंग के भू-केंद्रीय निर्देशांक का अनुमान लगाया जा सकता है, {{math|1=(''x'', ''y'', ''z'') = ({{val|1330.53|u=km|fmt=commas}}, {{val|4635.75|u=km|fmt=commas}}, {{val|4155.46|u=km|fmt=commas}})}}. जीपीएस नेविगेशन ऐसे भूगर्भीय निर्देशांक पर निर्भर करता है। | ||
इंजीनियरिंग परियोजनाओं में, निर्देशांक की परिभाषा पर समझौता एक महत्वपूर्ण आधार है। कोई यह नहीं मान सकता है कि निर्देशांक एक उपन्यास अनुप्रयोग के लिए पूर्वनिर्धारित होते हैं, इसलिए रेने डेसकार्टेस की सोच को लागू करने के लिए एक समन्वय प्रणाली को कैसे खड़ा किया जाए, जहां पहले ऐसी कोई समन्वय प्रणाली नहीं थी, इसका ज्ञान आवश्यक है। | इंजीनियरिंग परियोजनाओं में, निर्देशांक की परिभाषा पर समझौता एक महत्वपूर्ण आधार है। कोई यह नहीं मान सकता है कि निर्देशांक एक उपन्यास अनुप्रयोग के लिए पूर्वनिर्धारित होते हैं, इसलिए रेने डेसकार्टेस की सोच को लागू करने के लिए एक समन्वय प्रणाली को कैसे खड़ा किया जाए, जहां पहले ऐसी कोई समन्वय प्रणाली नहीं थी, इसका ज्ञान आवश्यक है। | ||
जबकि स्थानिक अनुप्रयोग व्यवसाय और वैज्ञानिक अनुप्रयोगों में सभी अक्षों के साथ समान इकाइयों को नियोजित करते हैं, प्रत्येक अक्ष में माप की अलग-अलग इकाइयाँ हो सकती हैं (जैसे किलोग्राम, सेकंड, पाउंड, आदि)। यद्यपि चार- और उच्च-आयामी रिक्त स्थान की कल्पना करना मुश्किल है, कार्टेशियन निर्देशांक के बीजगणित को अपेक्षाकृत आसानी से चार या अधिक चरों तक बढ़ाया जा सकता है, ताकि कई चर वाले कुछ गणनाएं की जा सकें। (इस प्रकार का बीजीय विस्तार वह है जो उच्च-आयामी रिक्त स्थान की ज्यामिति को परिभाषित करने के लिए उपयोग किया जाता है।) इसके विपरीत, दो या तीन आयामों में दो या तीन आयामों में दो या तीन के बीच बीजगणितीय संबंधों की कल्पना करने के लिए | जबकि स्थानिक अनुप्रयोग व्यवसाय और वैज्ञानिक अनुप्रयोगों में सभी अक्षों के साथ समान इकाइयों को नियोजित करते हैं, प्रत्येक अक्ष में माप की अलग-अलग इकाइयाँ हो सकती हैं (जैसे किलोग्राम, सेकंड, पाउंड, आदि)। यद्यपि चार- और उच्च-आयामी रिक्त स्थान की कल्पना करना मुश्किल है, कार्टेशियन निर्देशांक के बीजगणित को अपेक्षाकृत आसानी से चार या अधिक चरों तक बढ़ाया जा सकता है, ताकि कई चर वाले कुछ गणनाएं की जा सकें। (इस प्रकार का बीजीय विस्तार वह है जो उच्च-आयामी रिक्त स्थान की ज्यामिति को परिभाषित करने के लिए उपयोग किया जाता है।) इसके विपरीत, दो या तीन आयामों में दो या तीन आयामों में दो या तीन के बीच बीजगणितीय संबंधों की कल्पना करने के लिए प्रायः कार्टेशियन निर्देशांक की ज्यामिति का उपयोग करना सहायक होता है। -स्थानिक चर। | ||
किसी फलन या संबंध का ग्राफ (गणित) उस फलन या संबंध को संतुष्ट करने वाले सभी बिंदुओं का समुच्चय है। एक चर के फलन के लिए, f, सभी बिंदुओं का समुच्चय {{math|(''x'', ''y'')}}, कहाँ पे {{math|1=''y'' = ''f''(''x'')}} फ़ंक्शन f का ग्राफ़ है। दो चरों के फलन g के लिए, सभी बिंदुओं का समुच्चय {{math|(''x'', ''y'', ''z'')}}, कहाँ पे {{math|1=''z'' = ''g''(''x'', ''y'')}} फंक्शन g का ग्राफ है। इस तरह के एक फ़ंक्शन या संबंध के ग्राफ के एक स्केच में फ़ंक्शन या संबंध के सभी मुख्य भाग | किसी फलन या संबंध का ग्राफ (गणित) उस फलन या संबंध को संतुष्ट करने वाले सभी बिंदुओं का समुच्चय है। एक चर के फलन के लिए, f, सभी बिंदुओं का समुच्चय {{math|(''x'', ''y'')}}, कहाँ पे {{math|1=''y'' = ''f''(''x'')}} फ़ंक्शन f का ग्राफ़ है। दो चरों के फलन g के लिए, सभी बिंदुओं का समुच्चय {{math|(''x'', ''y'', ''z'')}}, कहाँ पे {{math|1=''z'' = ''g''(''x'', ''y'')}} फंक्शन g का ग्राफ है। इस तरह के एक फ़ंक्शन या संबंध के ग्राफ के एक स्केच में फ़ंक्शन या संबंध के सभी मुख्य भाग सम्मिलित होंगे जिसमें इसके सापेक्ष चरम, इसके [[ अवतल कार्य ]] और विभक्ति के बिंदु, असंततता के किसी भी बिंदु और इसके अंतिम व्यवहार सम्मिलित होंगे। इन सभी शर्तों को कैलकुलस में पूरी तरह से परिभाषित किया गया है। इस तरह के ग्राफ़ किसी फ़ंक्शन या संबंध की प्रकृति और व्यवहार को समझने के लिए कैलकुलस में उपयोगी होते हैं। | ||
==यह भी देखें== | ==यह भी देखें== |
Revision as of 21:55, 14 March 2023
This article needs additional citations for verification. (June 2012) (Learn how and when to remove this template message) |
एक कार्टेशियन समन्वय प्रणाली (UK: /kɑːˈtiːzjən/, US: /kɑːrˈtiʒən/) एक समतल (ज्यामिति) में एक समन्वय प्रणाली है जो प्रत्येक बिंदु (ज्यामिति) को विशिष्ट रूप से संख्या निर्देशांक की एक जोड़ी द्वारा निर्दिष्ट करती है, जो एक ही इकाई लंबाई में मापी गई दो निश्चित लंबवत उन्मुख रेखाओं से बिंदु तक सकारात्मक और नकारात्मक संख्या दूरी हैं। . प्रत्येक संदर्भ समन्वय रेखा को सिस्टम का एक समन्वय अक्ष या सिर्फ अक्ष (बहुवचन अक्ष) कहा जाता है, और जिस बिंदु पर वे मिलते हैं वह उसका मूल (गणित) होता है। क्रमित युग्म (0, 0). निर्देशांक को दो अक्षों पर बिंदु के ओर्थोगोनल प्रक्षेपण की स्थिति के रूप में भी परिभाषित किया जा सकता है, जिसे मूल से हस्ताक्षरित दूरी के रूप में व्यक्त किया जाता है।
तीन कार्टेशियन निर्देशांक द्वारा त्रि-आयाम ी अंतरिक्ष में किसी भी बिंदु की स्थिति को निर्दिष्ट करने के लिए एक ही सिद्धांत का उपयोग कर सकते हैं, तीन परस्पर लंबवत विमानों के लिए इसकी हस्ताक्षरित दूरी (या, समकक्ष, इसके लंबवत प्रक्षेपण द्वारा तीन परस्पर लंबवत रेखाओं पर)। सामान्यतः, एन कार्टेशियन निर्देशांक (वास्तविक एन-स्पेस का एक तत्व | वास्तविक एन-स्पेस) किसी भी आयाम एन के लिए एन-आयामी यूक्लिडियन स्पेस में बिंदु निर्दिष्ट करता है। ये निर्देशांक बराबर हैं, साइन अप करने के लिए (गणित), बिंदु से n परस्पर लंबवत हाइपरप्लेन तक की दूरी तक।
17 वीं शताब्दी में रेने डेसकार्टेस (लैटिनिज़ेशन (साहित्य) नाम: कार्टेसियस) द्वारा कार्टेशियन निर्देशांक के आविष्कार ने यूक्लिडियन ज्यामिति और बीजगणित के बीच पहला व्यवस्थित लिंक प्रदान करके गणित में क्रांति ला दी। कार्तीय समन्वय प्रणाली का उपयोग करते हुए, ज्यामितीय आकृतियों (जैसे वक्र ) को 'कार्टेशियन समीकरण ' द्वारा वर्णित किया जा सकता है: बीजीय समीकरण जिसमें आकृति पर स्थित बिंदुओं के निर्देशांक सम्मिलित होते हैं। उदाहरण के लिए, तल के मूल बिंदु पर केन्द्रित त्रिज्या 2 का एक वृत्त, उन सभी बिंदुओं के समुच्चय (गणित) के रूप में वर्णित किया जा सकता है, जिनके निर्देशांक x और y समीकरण को संतुष्ट करते हैं। x2 + y2 = 4.
कार्टेशियन निर्देशांक विश्लेषणात्मक ज्यामिति की नींव हैं, और गणित की कई अन्य शाखाओं के लिए ज्ञानवर्धक ज्यामितीय व्याख्याएं प्रदान करते हैं, जैसे कि रैखिक बीजगणित, जटिल विश्लेषण , अंतर ज्यामिति , बहुभिन्नरूपी कलन, समूह सिद्धांत और बहुत कुछ। एक परिचित उदाहरण एक फ़ंक्शन के ग्राफ़ की अवधारणा है। कार्तीय निर्देशांक भी अधिकांश अनुप्रयुक्त विषयों के लिए आवश्यक उपकरण हैं जो ज्यामिति से संबंधित हैं, जिसमें खगोल विज्ञान, भौतिकी, अभियांत्रिकी और कई अन्य सम्मिलित हैं। वे कंप्यूटर ग्राफिक्स , कंप्यूटर एडेड ज्यामितीय डिजाइन और अन्य कम्प्यूटेशनल ज्यामिति | ज्यामिति से संबंधित डेटा प्रोसेसिंग में उपयोग की जाने वाली सबसे आम समन्वय प्रणाली हैं।
इतिहास
विशेषण कार्टेशियन फ्रांसीसी गणितज्ञ और दार्शनिक रेने डेसकार्टेस को संदर्भित करता है, जिन्होंने इस विचार को 1637 में प्रकाशित किया था, जबकि वह नीदरलैंड में निवासी थे। यह स्वतंत्र रूप से पियरे डी फ़र्माटा द्वारा खोजा गया था, जिन्होंने तीन आयामों में भी काम किया था, हालांकि फ़र्मेट ने खोज को प्रकाशित नहीं किया था।[1] फ्रांसीसी मौलवी निकोल ओरेस्मे # गणित ने डेसकार्टेस और फ़र्मेट के समय से पहले कार्टेशियन निर्देशांक के समान निर्माण का उपयोग किया था।[2] डेसकार्टेस और फ़र्मेट दोनों ने अपने उपचार में एक ही अक्ष का उपयोग किया और इस अक्ष के संदर्भ में मापी गई एक चर लंबाई है। कुल्हाड़ियों की एक जोड़ी का उपयोग करने की अवधारणा को बाद में पेश किया गया था, जब डेसकार्टेस की ला जियोमेट्री का 1649 में फ्रैंस वैन शूटेन और उनके छात्रों द्वारा लैटिन में अनुवाद किया गया था। डेसकार्टेस के काम में निहित विचारों को स्पष्ट करने की कोशिश करते हुए इन टिप्पणीकारों ने कई अवधारणाएं पेश कीं।[3] कार्टेशियन समन्वय प्रणाली का विकास आइजैक न्यूटन और गॉटफ्राइड विल्हेम लिबनिज़ो द्वारा कलन के विकास में एक मौलिक भूमिका निभाएगा।[4] विमान के दो-समन्वित विवरण को बाद में वेक्टर रिक्त स्थान की अवधारणा में सामान्यीकृत किया गया था।[5] डेसकार्टेस के बाद से कई अन्य समन्वय प्रणाली विकसित की गई हैं, जैसे विमान के लिए ध्रुवीय समन्वय प्रणाली , और गोलाकार समन्वय प्रणाली और त्रि-आयामी अंतरिक्ष के लिए बेलनाकार समन्वय प्रणाली ।
विवरण
एक आयाम
एक-आयामी अंतरिक्ष के लिए एक कार्टेशियन समन्वय प्रणाली का चयन करना - जो कि एक सीधी रेखा के लिए है - इसमें रेखा का एक बिंदु O (मूल), लंबाई की एक इकाई और रेखा के लिए एक अभिविन्यास चुनना सम्मिलित है। एक अभिविन्यास चुनता है कि O द्वारा निर्धारित दो अर्ध-रेखाओं में से कौन सी सकारात्मक है और कौन सी ऋणात्मक है; फिर हम कहते हैं कि रेखा ऋणात्मक आधे से धनात्मक आधे की ओर उन्मुख (या अंक) है। फिर रेखा के प्रत्येक बिंदु P को O से उसकी दूरी द्वारा निर्दिष्ट किया जा सकता है, जिसे + या - चिह्न के साथ लिया जाता है, जिसके आधार पर आधी रेखा में P होता है।
चुनी हुई कार्तीय प्रणाली वाली रेखा को 'संख्या रेखा' कहा जाता है। रेखा पर प्रत्येक वास्तविक संख्या का एक विशिष्ट स्थान होता है। इसके विपरीत, रेखा के प्रत्येक बिंदु की व्याख्या एक क्रमित सातत्य में एक संख्या के रूप में की जा सकती है, जैसे कि वास्तविक संख्याएँ।
दो आयाम
दो आयामों में एक कार्टेशियन समन्वय प्रणाली (जिसे आयताकार समन्वय प्रणाली या ऑर्थोगोनल समन्वय प्रणाली भी कहा जाता है)[6] लंबवत रेखाओं (कुल्हाड़ियों) की एक क्रमबद्ध जोड़ी द्वारा परिभाषित किया गया है, दोनों अक्षों के लिए लंबाई की एक इकाई, और प्रत्येक अक्ष के लिए एक अभिविन्यास। वह बिंदु जहां कुल्हाड़ियां मिलती हैं, दोनों के लिए मूल बिंदु के रूप में लिया जाता है, इस प्रकार प्रत्येक अक्ष को एक संख्या रेखा में बदल दिया जाता है। किसी भी बिंदु P के लिए, प्रत्येक अक्ष पर P लंबवत के माध्यम से एक रेखा खींची जाती है, और वह स्थिति जहाँ वह अक्ष से मिलती है, एक संख्या के रूप में व्याख्या की जाती है। उस चुने हुए क्रम में दो संख्याएँ, P के कार्तीय निर्देशांक हैं। विपरीत निर्माण किसी को उसके निर्देशांक दिए गए बिंदु P को निर्धारित करने की अनुमति देता है।
पहले और दूसरे निर्देशांक को क्रमशः सूच्याकार आकृति का भुज और पी की कोटि कहा जाता है; और वह बिंदु जहां कुल्हाड़ियां मिलती हैं, समन्वय प्रणाली का उद्गम स्थल कहलाता है। निर्देशांक सामान्यतः कोष्ठक में दो संख्याओं के रूप में लिखे जाते हैं, उस क्रम में, अल्पविराम द्वारा अलग किए जाते हैं, जैसे कि (3, −10.5). इस प्रकार मूल के निर्देशांक हैं (0, 0), और मूल से एक इकाई दूर धनात्मक अर्ध-अक्ष पर स्थित बिंदुओं के निर्देशांक होते हैं (1, 0) तथा (0, 1).
गणित, भौतिकी और इंजीनियरिंग में, पहली धुरी को सामान्यतः क्षैतिज और दाईं ओर उन्मुख के रूप में परिभाषित या चित्रित किया जाता है, और दूसरा अक्ष लंबवत और ऊपर की ओर उन्मुख होता है। (हालांकि, कुछ कंप्यूटर ग्राफिक्स संदर्भों में, समन्वय अक्ष नीचे की ओर उन्मुख हो सकता है।) मूल को प्रायः ओ लेबल किया जाता है, और दो निर्देशांक प्रायः एक्स और वाई, या एक्स और वाई अक्षरों द्वारा दर्शाए जाते हैं। अक्षों को तब एक्स-अक्ष और वाई-अक्ष के रूप में संदर्भित किया जा सकता है। अक्षरों के विकल्प मूल परंपरा से आते हैं, जो अज्ञात मूल्यों को इंगित करने के लिए वर्णमाला के बाद के भाग का उपयोग करना है। ज्ञात मूल्यों को निर्दिष्ट करने के लिए वर्णमाला के पहले भाग का उपयोग किया गया था।
चुने हुए कार्तीय निर्देशांक प्रणाली वाले यूक्लिडियन विमान को 'कहा जाता है'Cartesian plane. एक कार्टेशियन विमान में कुछ ज्यामितीय आकृतियों के विहित प्रतिनिधियों को परिभाषित किया जा सकता है, जैसे कि यूनिट सर्कल (लंबाई की इकाई के बराबर त्रिज्या के साथ, और मूल में केंद्र), इकाई वर्ग (जिसके विकर्ण में अंत बिंदु हैं (0, 0) तथा (1, 1)), इकाई अतिपरवलय , और इसी तरह।
दो अक्ष समतल को चार समकोण ों में विभाजित करते हैं, जिन्हें चतुर्थांश कहते हैं। चतुर्भुज को विभिन्न तरीकों से नाम या क्रमांकित किया जा सकता है, लेकिन जिस चतुर्थांश में सभी निर्देशांक धनात्मक होते हैं उसे सामान्यतः पहला चतुर्थांश कहा जाता है।
यदि किसी बिंदु के निर्देशांक हैं (x, y), तो एक बिंदु से X-अक्ष से एक रेखा तक और Y-अक्ष से इसकी दूरी है |y| तथा |x|, क्रमश; कहाँ पे | · | किसी संख्या के निरपेक्ष मान (बीजगणित) को दर्शाता है।
तीन आयाम
त्रि-आयामी अंतरिक्ष के लिए एक कार्टेशियन समन्वय प्रणाली में एक सामान्य बिंदु (मूल) के माध्यम से जाने वाली रेखाओं (कुल्हाड़ियों) का एक क्रमबद्ध ट्रिपलेट होता है, और जोड़ी-वार लंबवत होते हैं; प्रत्येक अक्ष के लिए एक अभिविन्यास; और तीनों अक्षों के लिए लंबाई की एक इकाई। द्वि-आयामी मामले की तरह, प्रत्येक अक्ष एक संख्या रेखा बन जाती है। अंतरिक्ष के किसी भी बिंदु P के लिए, प्रत्येक समन्वय अक्ष पर P लंबवत के माध्यम से एक हाइपरप्लेन पर विचार करता है, और उस बिंदु की व्याख्या करता है जहां वह हाइपरप्लेन अक्ष को एक संख्या के रूप में काटता है। P के कार्तीय निर्देशांक चुने हुए क्रम में वे तीन संख्याएँ हैं। रिवर्स कंस्ट्रक्शन बिंदु P को उसके तीन निर्देशांक दिए गए निर्धारित करता है।
वैकल्पिक रूप से, एक बिंदु P के प्रत्येक निर्देशांक को P से अन्य दो अक्षों द्वारा परिभाषित हाइपरप्लेन तक की दूरी के रूप में लिया जा सकता है, जिसमें संबंधित अक्ष के उन्मुखीकरण द्वारा निर्धारित संकेत होता है।
कुल्हाड़ियों की प्रत्येक जोड़ी एक समन्वय हाइपरप्लेन को परिभाषित करती है। ये हाइपरप्लेन अंतरिक्ष को आठ अष्टक (ठोस ज्यामिति) में विभाजित करते हैं। अष्टक हैं:
तीन अक्षों में निर्देशांक के लिए कोई मानक नाम नहीं हैं (हालांकि, एब्सिस्सा, ऑर्डिनेट और एप्लीकेट शब्द कभी-कभी उपयोग किए जाते हैं)। निर्देशांक प्रायः X, Y, और Z, या x, y, और z अक्षरों द्वारा निरूपित किए जाते हैं। अक्षों को क्रमशः एक्स-अक्ष, वाई-अक्ष और जेड-अक्ष के रूप में संदर्भित किया जा सकता है। फिर निर्देशांक हाइपरप्लेन को XY-प्लेन, YZ-प्लेन और XZ-प्लेन के रूप में संदर्भित किया जा सकता है।
गणित, भौतिकी और इंजीनियरिंग संदर्भों में, पहले दो अक्षों को प्रायः क्षैतिज के रूप में परिभाषित या चित्रित किया जाता है, जिसमें तीसरा अक्ष ऊपर की ओर इशारा करता है। उस स्थिति में तीसरे निर्देशांक को ऊँचाई या ऊँचाई कहा जा सकता है। अभिविन्यास सामान्यतः चुना जाता है ताकि पहली धुरी से दूसरी धुरी तक 90 डिग्री का कोण बिंदु से देखे जाने पर वामावर्त दिखे (0, 0, 1); एक सम्मेलन जिसे सामान्यतः दाहिने हाथ का नियम कहा जाता है।
उच्च आयाम
चूँकि कार्तीय निर्देशांक अद्वितीय और अस्पष्ट होते हैं, एक कार्तीय तल के बिंदुओं को वास्तविक संख्या ओं के युग्मों से पहचाना जा सकता है; वह है, कार्टेशियन उत्पाद के साथ , कहाँ पे सभी वास्तविक संख्याओं का समुच्चय है। इसी तरह, आयाम n के किसी भी यूक्लिडियन स्थान के बिंदुओं को n वास्तविक संख्याओं के टुपल्स (सूचियों) से पहचाना जाना चाहिए; वह है, कार्टेशियन उत्पाद के साथ .
सामान्यीकरण
कार्टेशियन निर्देशांक की अवधारणा उन अक्षों को अनुमति देने के लिए सामान्यीकृत करती है जो एक दूसरे के लंबवत नहीं हैं, और/या प्रत्येक अक्ष के साथ अलग-अलग इकाइयां हैं। उस स्थिति में, प्रत्येक निर्देशांक बिंदु को एक अक्ष पर एक दिशा के साथ प्रक्षेपित करके प्राप्त किया जाता है जो अन्य अक्ष के समानांतर होता है (या, सामान्य रूप से, अन्य सभी अक्षों द्वारा परिभाषित हाइपरप्लेन के लिए)। इस तरह की एक तिरछी समन्वय प्रणाली में दूरियों और कोणों की गणना को मानक कार्टेशियन प्रणालियों से संशोधित किया जाना चाहिए, और कई मानक सूत्र (जैसे दूरी के लिए पाइथागोरस सूत्र) धारण नहीं करते हैं (एफ़िन विमान देखें)।
सूचनाएं और परंपराएं
एक बिंदु के कार्टेशियन निर्देशांक सामान्यतः कोष्ठक में लिखे जाते हैं और अल्पविराम द्वारा अलग किए जाते हैं, जैसे कि (10, 5) या (3, 5, 7). उत्पत्ति को प्रायः बड़े अक्षर O के साथ लेबल किया जाता है। विश्लेषणात्मक ज्यामिति में, अज्ञात या सामान्य निर्देशांक प्रायः विमान में अक्षरों (x, y) और त्रि-आयामी अंतरिक्ष में (x, y, z) द्वारा निरूपित होते हैं। यह रिवाज बीजगणित के एक सम्मेलन से आता है, जो अज्ञात मानों के लिए वर्णमाला के अंत के पास अक्षरों का उपयोग करता है (जैसे कि कई ज्यामितीय समस्याओं में बिंदुओं के निर्देशांक), और दी गई मात्राओं के लिए शुरुआत के निकट के अक्षरों का उपयोग करता है।
ये पारंपरिक नाम प्रायः अन्य डोमेन में उपयोग किए जाते हैं, जैसे कि भौतिकी और इंजीनियरिंग, हालांकि अन्य अक्षरों का उपयोग किया जा सकता है। उदाहरण के लिए, एक ग्राफ में यह दर्शाता है कि समय के साथ दबाव कैसे बदलता है, ग्राफ निर्देशांक को पी और टी द्वारा दर्शाया जा सकता है। प्रत्येक अक्ष को सामान्यतः उस निर्देशांक के नाम पर रखा जाता है जिसे उसके साथ मापा जाता है; तो कोई एक्स-अक्ष, वाई-अक्ष, टी-अक्ष इत्यादि कहता है।
समन्वय नामकरण के लिए एक अन्य आम परंपरा सबस्क्रिप्ट का उपयोग करना है, जैसे (x1, एक्स2, ..., एक्सn) एक n-आयामी अंतरिक्ष में n निर्देशांक के लिए, खासकर जब n 3 से अधिक या अनिर्दिष्ट हो। कुछ लेखक नंबरिंग पसंद करते हैं (x0, एक्स1, ..., एक्सn−1) कंप्यूटर प्रोग्रामिंग में ये संकेतन विशेष रूप से लाभप्रद हैं: एक बिंदु के निर्देशांक को एक रिकॉर्ड (कंप्यूटर विज्ञान) के अतिरिक्त एक ऐरे डेटा प्रकार के रूप में संग्रहीत करके, सबस्क्रिप्ट निर्देशांक को अनुक्रमित करने का काम कर सकता है।
द्वि-आयामी कार्टेशियन प्रणालियों के गणितीय दृष्टांतों में, पहले निर्देशांक (पारंपरिक रूप से एब्सिसा कहा जाता है) को एक क्षैतिज समतल अक्ष के साथ मापा जाता है, जो बाएं से दाएं की ओर उन्मुख होता है। दूसरा निर्देशांक (कोर्डिनेट) तब एक ऊर्ध्वाधर दिशा अक्ष के साथ मापा जाता है, सामान्यतः नीचे से ऊपर की ओर उन्मुख होता है। कार्टेशियन प्रणाली सीखने वाले छोटे बच्चे सामान्यतः एक्स-, वाई-, और जेड-अक्ष अवधारणाओं को मजबूत करने से पहले मूल्यों को पढ़ने का क्रम सीखते हैं, 2 डी निमोनिक्स से शुरू करते हैं (उदाहरण के लिए, 'हॉल के साथ चलो फिर सीढ़ियों तक' जैसे सीधे x-अक्ष के आर-पार और फिर y-अक्ष के अनुदिश ऊर्ध्वमुखी)।[7] कंप्यूटर ग्राफिक्स और मूर्ति प्रोद्योगिकी , हालांकि, प्रायः कंप्यूटर डिस्प्ले पर नीचे की ओर y-अक्ष के साथ एक समन्वय प्रणाली का उपयोग करते हैं। यह सम्मेलन 1960 के दशक (या पहले) में विकसित हुआ था, जिस तरह से छवियों को मूल रूप से फ्रेम बफर में संग्रहीत किया गया था।
त्रि-आयामी प्रणालियों के लिए, एक सम्मेलन एक्स-प्लेन को क्षैतिज रूप से चित्रित करना है, जिसमें जेड-अक्ष को ऊंचाई (सकारात्मक ऊपर) का प्रतिनिधित्व करने के लिए जोड़ा गया है। इसके अतिरिक्त , एक्स-अक्ष को दर्शक की ओर उन्मुख करने के लिए एक परंपरा है, जो दाएं या बाएं पक्षपाती है। यदि एक आरेख (3D प्रक्षेपण या परिप्रेक्ष्य (ग्राफ़िकल)) क्रमशः x- और y-अक्ष को क्षैतिज और लंबवत रूप से दिखाता है, तो z-अक्ष को पृष्ठ के बाहर व्यूअर या कैमरे की ओर इंगित करते हुए दिखाया जाना चाहिए। एक 3D समन्वय प्रणाली के ऐसे 2D आरेख में, z-अक्ष प्रकल्पित व्यूअर या कैमरा परिप्रेक्ष्य (ग्राफ़िकल) के आधार पर नीचे और बाईं या नीचे और दाईं ओर इंगित करने वाली एक रेखा या किरण के रूप में दिखाई देगा। किसी भी आरेख या प्रदर्शन में, तीन अक्षों का उन्मुखीकरण, समग्र रूप से, मनमाना होता है। हालांकि, एक दूसरे के सापेक्ष कुल्हाड़ियों का उन्मुखीकरण हमेशा दाहिने हाथ के नियम का पालन करना चाहिए, जब तक कि विशेष रूप से अन्यथा न कहा गया हो। भौतिकी और गणित के सभी नियम इस #ओरिएंटेशन और हैंडनेस | राइट-हैंडनेस को मानते हैं, जो निरंतरता सुनिश्चित करता है।
3डी आरेखों के लिए, एब्सिस्सा और कोर्डिनेट नाम क्रमशः x और y के लिए शायद ही कभी उपयोग किए जाते हैं। जब वे होते हैं, तो z-निर्देशांक को कभी-कभी 'एप्लिकेट' कहा जाता है। एब्सिस्सा, ऑर्डिनेट और एप्लिकेट शब्द कभी-कभी समन्वय मूल्यों के अतिरिक्त समन्वय अक्षों को संदर्भित करने के लिए उपयोग किए जाते हैं।[6]
चतुर्थांश और अष्टक
द्विविमीय कार्तीय प्रणाली की कुल्हाड़ियाँ समतल को चार अनंत क्षेत्रों में विभाजित करती हैं, जिन्हें चतुर्थांश कहते हैं,[6]प्रत्येक दो अर्ध-कुल्हाड़ियों से घिरा हुआ है। इन्हें प्रायः 1 से 4 तक गिना जाता है और रोमन अंक ों द्वारा निरूपित किया जाता है: I (जहां निर्देशांक दोनों में सकारात्मक संकेत होते हैं), II (जहां भुज ऋणात्मक है - और कोटि सकारात्मक है +), III (जहां भुज और कोर्डिनेट दोनों हैं) हैं -), और IV (भुजा +, कोटि -)। जब गणितीय रिवाज के अनुसार कुल्हाड़ियों को खींचा जाता है, तो नंबरिंग दक्षिणावर्त जाती है | काउंटर-क्लॉकवाइज ऊपरी दाएं (उत्तर-पूर्व) चतुर्थांश से शुरू होती है।
इसी तरह, एक त्रि-आयामी कार्टेशियन प्रणाली अंतरिक्ष के विभाजन को आठ क्षेत्रों या अष्टक में परिभाषित करती है,[6]बिंदुओं के निर्देशांक के संकेतों के अनुसार। एक विशिष्ट अष्टक का नामकरण करने के लिए उपयोग की जाने वाली परंपरा इसके संकेतों को सूचीबद्ध करना है; उदाहरण के लिए, (+ + +) या (− + −). चतुर्भुज और अष्टक का एक मनमाना संख्या में आयामों का सामान्यीकरण orthant है, और एक समान नामकरण प्रणाली लागू होती है।
समतल के लिए कार्तीय सूत्र
दो बिंदुओं के बीच की दूरी
कार्टेशियन निर्देशांक के साथ विमान के दो बिंदुओं के बीच यूक्लिडियन दूरी तथा है
यूक्लिडियन परिवर्तन
यूक्लिडियन प्लेन आइसोमेट्री या यूक्लिडियन मोशन यूक्लिडियन प्लेन के पॉइंट्स के खुद के लिए (विशेषण) मैपिंग हैं जो पॉइंट्स के बीच की दूरी को बनाए रखते हैं। इन मैपिंग के चार प्रकार हैं (जिन्हें आइसोमेट्री भी कहा जाता है): अनुवाद (ज्यामिति) , रोटेशन (गणित) , परावर्तन (गणित) और ग्लाइड प्रतिबिंब।[9]
अनुवाद
अनुवाद (ज्यामिति) विमान के बिंदुओं का एक सेट, उनके बीच की दूरी और दिशाओं को संरक्षित करना, संख्याओं की एक निश्चित जोड़ी जोड़ने के बराबर है (a, b) सेट में हर बिंदु के कार्तीय निर्देशांक के लिए। अर्थात्, यदि किसी बिंदु के मूल निर्देशांक हैं (x, y), अनुवाद के बाद वे होंगे
रोटेशन
किसी आकृति को मूल बिंदु के चारों ओर दक्षिणावर्त घुमाना (ज्यामिति) किसी कोण से निर्देशांक (x',y') के साथ हर बिंदु को निर्देशांक (x,y) से बदलने के बराबर है, जहां
प्रतिबिंब
यदि (x, y) एक बिंदु के कार्तीय निर्देशांक हैं, तो (−x, y) दूसरे निर्देशांक अक्ष (y-अक्ष) के आर-पार इसके निर्देशांक घूर्णन और परावर्तन के निर्देशांक हैं, मानो वह रेखा एक दर्पण हो। वैसे ही, (x, −y) प्रथम निर्देशांक अक्ष (x-अक्ष) पर इसके परावर्तन के निर्देशांक हैं। अधिक व्यापकता में, एक कोण बनाने वाली मूल रेखा के माध्यम से एक रेखा में प्रतिबिंब एक्स-अक्ष के साथ, हर बिंदु को निर्देशांक के साथ बदलने के बराबर है (x, y) निर्देशांक के साथ बिंदु से (x′,y′), कहाँ पे
ग्लाइड प्रतिबिंब
एक सरकना प्रतिबिंब एक रेखा के पार एक प्रतिबिंब की संरचना है जिसके बाद उस रेखा की दिशा में अनुवाद किया जाता है। यह देखा जा सकता है कि इन कार्यों का क्रम मायने नहीं रखता (अनुवाद पहले आ सकता है, उसके बाद प्रतिबिंब)।
परिवर्तनों का सामान्य मैट्रिक्स रूप
मैट्रिसेस का उपयोग करके विमान के सभी एफ़िन परिवर्तनों को एक समान तरीके से वर्णित किया जा सकता है। इस उद्देश्य के लिए निर्देशांक एक बिंदु को सामान्यतः कॉलम मैट्रिक्स के रूप में दर्शाया जाता है परिणाम एक बिंदु पर एक affine परिवर्तन लागू करने के लिए सूत्र द्वारा दिया जाता है
परिवर्तन एक अनुवाद है अगर और केवल अगर A पहचान मैट्रिक्स है। परिवर्तन किसी बिंदु के चारों ओर एक घूर्णन है यदि और केवल यदि A एक रोटेशन मैट्रिक्स है, जिसका अर्थ है कि यह ओर्थोगोनल है और
इस ट्रिक के साथ, संवर्धित मैट्रिक्स को गुणा करके एफ़िन ट्रांसफ़ॉर्मेशन की संरचना प्राप्त की जाती है।
एफ़िन परिवर्तन
यूक्लिडियन प्लेन के एफ़िन ट्रांसफ़ॉर्मेशन ऐसे ट्रांसफ़ॉर्मेशन हैं जो लाइनों को लाइनों में मैप करते हैं, लेकिन दूरियों और कोणों को बदल सकते हैं। जैसा कि पिछले खंड में कहा गया है, उन्हें संवर्धित मैट्रिक्स के साथ दर्शाया जा सकता है:
संवर्धित मैट्रिक्स जो दो एफ़िन परिवर्तनों की कार्य संरचना का प्रतिनिधित्व करता है, उनके संवर्धित मैट्रिक्स को गुणा करके प्राप्त किया जाता है।
कुछ एफाइन ट्रांसफॉर्मेशन जो यूक्लिडियन ट्रांसफॉर्मेशन नहीं हैं, उन्हें विशिष्ट नाम मिले हैं।
स्केलिंग
एक एफ़िन परिवर्तन का एक उदाहरण जो यूक्लिडियन नहीं है, स्केलिंग द्वारा दिया गया है। किसी आकृति को बड़ा या छोटा करना प्रत्येक बिंदु के कार्तीय निर्देशांक को उसी धनात्मक संख्या m से गुणा करने के बराबर है। यदि (x, y) मूल आकृति पर एक बिंदु के निर्देशांक हैं, स्केल की गई आकृति पर संबंधित बिंदु के निर्देशांक हैं
बाल काटना
एक कतरनी मानचित्रण एक समांतर चतुर्भुज बनाने के लिए एक वर्ग के शीर्ष पर धक्का देगा। क्षैतिज कतरनी द्वारा परिभाषित किया गया है:
ओरिएंटेशन और हैंडनेस
दो आयामों में
x-अक्ष को ठीक करना या चुनना y-अक्ष को दिशा तक निर्धारित करता है। अर्थात्, y-अक्ष अनिवार्य रूप से x-अक्ष पर 0 अंकित बिंदु के माध्यम से x-अक्ष पर लंबवत है। लेकिन एक विकल्प है कि लंबवत पर दो आधी रेखाओं में से किसे सकारात्मक और किसको नकारात्मक के रूप में नामित किया जाए। इन दो विकल्पों में से प्रत्येक कार्तीय तल के एक अलग अभिविन्यास (जिसे हैंडनेस भी कहा जाता है) को निर्धारित करता है।
समतल को ओरिएंट करने का सामान्य तरीका, धनात्मक x-अक्ष की ओर इशारा करते हुए दाईं ओर और धनात्मक y-अक्ष की ओर इशारा करते हुए (और x-अक्ष पहला और y-अक्ष दूसरा अक्ष है), को सकारात्मक या मानक अभिविन्यास माना जाता है , जिसे दाहिने हाथ का अभिविन्यास भी कहा जाता है।
सकारात्मक अभिविन्यास को परिभाषित करने के लिए सामान्यतः उपयोग किया जाने वाला स्मरक दाहिने हाथ का नियम है। एक सकारात्मक रूप से उन्मुख समन्वय प्रणाली में, अंगूठे के साथ विमान पर कुछ हद तक बंद दाहिने हाथ को रखकर, उंगलियां एक्स-अक्ष से वाई-अक्ष की ओर इशारा करती हैं।
विमान को उन्मुख करने का दूसरा तरीका बाएं हाथ के नियम का पालन करना है, बाएं हाथ को अंगूठे के साथ विमान पर रखना।
जब अंगूठे को मूल बिंदु से एक अक्ष के साथ सकारात्मक की ओर इंगित किया जाता है, तो उंगलियों की वक्रता उस अक्ष के साथ एक सकारात्मक घुमाव को इंगित करती है।
विमान को उन्मुख करने के लिए उपयोग किए जाने वाले नियम के बावजूद, समन्वय प्रणाली को घुमाने से अभिविन्यास संरक्षित रहेगा। किसी एक अक्ष को स्विच करने से ओरिएंटेशन उलट जाएगा, लेकिन दोनों को स्विच करने से ओरिएंटेशन अपरिवर्तित रहेगा।
तीन आयामों में
एक बार x- और y-अक्ष निर्दिष्ट हो जाने पर, वे उस रेखा (ज्यामिति) का निर्धारण करते हैं जिसके साथ z-अक्ष स्थित होना चाहिए, लेकिन इस रेखा के लिए दो संभावित अभिविन्यास हैं। दो संभावित समन्वय प्रणालियां जो परिणाम देती हैं उन्हें 'दाएं हाथ' और 'बाएं हाथ' कहा जाता है। मानक अभिविन्यास, जहां एक्स-प्लेन क्षैतिज है और जेड-अक्ष इंगित करता है (और एक्स- और वाई-अक्ष एक्स-प्लेन में सकारात्मक रूप से उन्मुख दो-आयामी समन्वय प्रणाली बनाते हैं यदि एक्स-प्लेन के ऊपर से देखा जाता है ) को 'दाहिने हाथ' या 'सकारात्मक' कहा जाता है।
नाम दाहिने हाथ के नियम से निकला है। यदि दाहिने हाथ की तर्जनी को आगे की ओर इंगित किया जाता है, मध्यमा को एक समकोण पर अंदर की ओर झुकाया जाता है, और अंगूठे को दोनों के समकोण पर रखा जाता है, तो तीनों उंगलियां x-, y- के सापेक्ष अभिविन्यास को दर्शाती हैं। और दाएं हाथ की प्रणाली में z-अक्ष। अंगूठा x-अक्ष, तर्जनी y-अक्ष और मध्यमा अंगुली z-अक्ष को दर्शाता है। इसके विपरीत, यदि बाएं हाथ से भी ऐसा ही किया जाता है, तो बाएं हाथ की प्रणाली का परिणाम होता है।
चित्रा 7 एक बाएं और दाएं हाथ के समन्वय प्रणाली को दर्शाता है। क्योंकि द्वि-आयामी स्क्रीन पर त्रि-आयामी वस्तु का प्रतिनिधित्व किया जाता है, विरूपण और अस्पष्टता परिणाम। नीचे की ओर (और दाईं ओर) अक्ष को प्रेक्षक की ओर इंगित करने के लिए भी है, जबकि मध्य-अक्ष पर्यवेक्षक से दूर इंगित करने के लिए है। लाल वृत्त क्षैतिज xy-तल के समानांतर है और x-अक्ष से y-अक्ष तक (दोनों स्थितियों में) घूर्णन को इंगित करता है। इसलिए लाल तीर z-अक्ष के सामने से गुजरता है।
चित्र 8 दाहिने हाथ की समन्वय प्रणाली को चित्रित करने का एक और प्रयास है। फिर से, विमान में त्रि-आयामी समन्वय प्रणाली पेश करने के कारण एक अस्पष्टता है। कई पर्यवेक्षक चित्र 8 को एक विकट: उत्तल घन और एक विकट: अवतल कोने के बीच अंदर और बाहर फ़्लिप करते हुए देखते हैं। यह अंतरिक्ष के दो संभावित झुकावों से मेल खाती है। आकृति को उत्तल के रूप में देखने से बाएं हाथ की समन्वय प्रणाली मिलती है। इस प्रकार चित्र 8 को देखने का सही तरीका यह है कि x-अक्ष को प्रेक्षक की ओर इशारा करते हुए और इस प्रकार अवतल कोने को देखकर कल्पना की जाए।
मानक आधार पर एक वेक्टर का प्रतिनिधित्व
एक कार्टेशियन समन्वय प्रणाली में अंतरिक्ष में एक बिंदु को यूक्लिडियन वेक्टर की स्थिति द्वारा भी दर्शाया जा सकता है, जिसे समन्वय प्रणाली की उत्पत्ति से बिंदु तक इंगित करने वाले तीर के रूप में माना जा सकता है।[11] यदि निर्देशांक स्थानिक स्थिति (विस्थापन) का प्रतिनिधित्व करते हैं, तो वेक्टर को मूल से रुचि के बिंदु तक का प्रतिनिधित्व करना आम है . दो आयामों में, मूल से बिंदु तक कार्तीय निर्देशांक (x, y) के साथ वेक्टर को इस प्रकार लिखा जा सकता है:
आवेदन
कार्टेशियन निर्देशांक एक अमूर्तता है जिसमें वास्तविक दुनिया में कई संभावित अनुप्रयोग होते हैं। हालांकि, एक समस्या आवेदन पर निर्देशांक को सुपरइम्पोज़ करने में तीन रचनात्मक चरण सम्मिलित हैं।
- निर्देशांक के रूप में उपयोग की जाने वाली संख्याओं द्वारा दर्शाए गए स्थानिक आकार को परिभाषित करते हुए दूरी की इकाइयों को तय किया जाना चाहिए।
- एक मूल स्थान एक विशिष्ट स्थानिक स्थान या स्थलचिह्न को सौंपा जाना चाहिए, और
- अक्षों के अभिविन्यास को एक अक्ष को छोड़कर सभी के लिए उपलब्ध दिशात्मक संकेतों का उपयोग करके परिभाषित किया जाना चाहिए।
एक उदाहरण के रूप में विचार करें कि पृथ्वी पर सभी बिंदुओं (अर्थात , भू-स्थानिक 3D) पर 3D कार्टेशियन निर्देशांक को सुपरइम्पोज़ करना है। किलोमीटर इकाइयों का एक अच्छा विकल्प है, क्योंकि किलोमीटर की मूल परिभाषा भू-स्थानिक थी, जिसमें 10,000 km भूमध्य रेखा से उत्तरी ध्रुव तक सतह की दूरी के बराबर। समरूपता के आधार पर, पृथ्वी का गुरुत्वाकर्षण केंद्र उत्पत्ति के एक प्राकृतिक स्थान का सुझाव देता है (जिसे उपग्रह कक्षाओं के माध्यम से महसूस किया जा सकता है)। पृथ्वी के घूमने की धुरी X, Y और Z अक्षों के लिए एक प्राकृतिक अभिविन्यास प्रदान करती है, जो दृढ़ता से ऊपर बनाम नीचे से जुड़ी होती है, इसलिए सकारात्मक Z भू-केंद्र से उत्तरी ध्रुव की दिशा को अपना सकता है। एक्स-अक्ष को परिभाषित करने के लिए भूमध्य रेखा पर एक स्थान की आवश्यकता होती है, और प्रधानमंत्री मध्याह्न एक संदर्भ अभिविन्यास के रूप में खड़ा होता है, इसलिए एक्स-अक्ष भू-केंद्र से अभिविन्यास लेता है 0 degrees देशांतर, 0 degrees अक्षांश। ध्यान दें कि एक्स और जेड के लिए तीन आयामों और दो लंबवत अक्षों के झुकाव के साथ, वाई-अक्ष पहले दो विकल्पों द्वारा निर्धारित किया जाता है। दाहिने हाथ के नियम का पालन करने के लिए, Y-अक्ष को भू-केंद्र से इंगित करना चाहिए 90 degrees देशांतर, 0 degrees अक्षांश। के देशांतर से −73.985656 degrees, एक अक्षांश 40.748433 degrees, और 40,000 / 2π किमी की पृथ्वी त्रिज्या, और गोलाकार से कार्टेशियन निर्देशांक में परिवर्तित होकर, एम्पायर स्टेट बिल्डिंग के भू-केंद्रीय निर्देशांक का अनुमान लगाया जा सकता है, (x, y, z) = (1,330.53 km, 4,635.75 km, 4,155.46 km). जीपीएस नेविगेशन ऐसे भूगर्भीय निर्देशांक पर निर्भर करता है।
इंजीनियरिंग परियोजनाओं में, निर्देशांक की परिभाषा पर समझौता एक महत्वपूर्ण आधार है। कोई यह नहीं मान सकता है कि निर्देशांक एक उपन्यास अनुप्रयोग के लिए पूर्वनिर्धारित होते हैं, इसलिए रेने डेसकार्टेस की सोच को लागू करने के लिए एक समन्वय प्रणाली को कैसे खड़ा किया जाए, जहां पहले ऐसी कोई समन्वय प्रणाली नहीं थी, इसका ज्ञान आवश्यक है।
जबकि स्थानिक अनुप्रयोग व्यवसाय और वैज्ञानिक अनुप्रयोगों में सभी अक्षों के साथ समान इकाइयों को नियोजित करते हैं, प्रत्येक अक्ष में माप की अलग-अलग इकाइयाँ हो सकती हैं (जैसे किलोग्राम, सेकंड, पाउंड, आदि)। यद्यपि चार- और उच्च-आयामी रिक्त स्थान की कल्पना करना मुश्किल है, कार्टेशियन निर्देशांक के बीजगणित को अपेक्षाकृत आसानी से चार या अधिक चरों तक बढ़ाया जा सकता है, ताकि कई चर वाले कुछ गणनाएं की जा सकें। (इस प्रकार का बीजीय विस्तार वह है जो उच्च-आयामी रिक्त स्थान की ज्यामिति को परिभाषित करने के लिए उपयोग किया जाता है।) इसके विपरीत, दो या तीन आयामों में दो या तीन आयामों में दो या तीन के बीच बीजगणितीय संबंधों की कल्पना करने के लिए प्रायः कार्टेशियन निर्देशांक की ज्यामिति का उपयोग करना सहायक होता है। -स्थानिक चर।
किसी फलन या संबंध का ग्राफ (गणित) उस फलन या संबंध को संतुष्ट करने वाले सभी बिंदुओं का समुच्चय है। एक चर के फलन के लिए, f, सभी बिंदुओं का समुच्चय (x, y), कहाँ पे y = f(x) फ़ंक्शन f का ग्राफ़ है। दो चरों के फलन g के लिए, सभी बिंदुओं का समुच्चय (x, y, z), कहाँ पे z = g(x, y) फंक्शन g का ग्राफ है। इस तरह के एक फ़ंक्शन या संबंध के ग्राफ के एक स्केच में फ़ंक्शन या संबंध के सभी मुख्य भाग सम्मिलित होंगे जिसमें इसके सापेक्ष चरम, इसके अवतल कार्य और विभक्ति के बिंदु, असंततता के किसी भी बिंदु और इसके अंतिम व्यवहार सम्मिलित होंगे। इन सभी शर्तों को कैलकुलस में पूरी तरह से परिभाषित किया गया है। इस तरह के ग्राफ़ किसी फ़ंक्शन या संबंध की प्रकृति और व्यवहार को समझने के लिए कैलकुलस में उपयोगी होते हैं।
यह भी देखें
- क्षैतिज और लंबवत
- जोन्स आरेख , जो दो के अतिरिक्त चार चरों को प्लॉट करता है
- ऑर्थोगोनल निर्देशांक
- ध्रुवीय समन्वय प्रणाली
- नियमित ग्रिड
- गोलाकार समन्वय प्रणाली
संदर्भ
- ↑ Bix, Robert A.; D'Souza, Harry J. "विश्लेषणात्मक ज्यामिति". Encyclopædia Britannica. Retrieved 6 August 2017.
- ↑ Kent, Alexander J.; Vujakovic, Peter (4 October 2017). मैपिंग और कार्टोग्राफी की रूटलेज हैंडबुक (in English). Routledge. ISBN 9781317568216.
- ↑ Burton 2011, p. 374.
- ↑ A Tour of the Calculus, David Berlinski.
- ↑ Axler, Sheldon (2015). रैखिक बीजगणित सही हो गया - स्प्रिंगर. Undergraduate Texts in Mathematics. p. 1. doi:10.1007/978-3-319-11080-6. ISBN 978-3-319-11079-0.
- ↑ 6.0 6.1 6.2 6.3 "कार्टेशियन ऑर्थोगोनल कोऑर्डिनेट सिस्टम". Encyclopedia of Mathematics (in English). Retrieved 6 August 2017.
- ↑ "चार्ट और ग्राफ: सही प्रारूप चुनना". www.mindtools.com (in English). Retrieved 29 August 2017.
- ↑ Hughes-Hallett, Deborah; McCallum, William G.; Gleason, Andrew M. (2013). कैलकुलस : सिंगल और मल्टीवेरिएबल (6 ed.). John wiley. ISBN 978-0470-88861-2.
- ↑ Smart 1998, Chap. 2
- ↑ Brannan, Esplen & Gray 1998, pg. 49
- ↑ Brannan, Esplen & Gray 1998, Appendix 2, pp. 377–382
- ↑ David J. Griffiths (1999). इलेक्ट्रोडायनामिक्स का परिचय. Prentice Hall. ISBN 978-0-13-805326-0.
स्रोत
- Brannan, David A.; Esplen, Matthew F.; Gray, Jeremy J. (1998), Geometry, Cambridge: Cambridge University Press, ISBN 978-0-521-59787-6
- Burton, David M. (2011), The History of Mathematics/An Introduction (7th ed.), New York: McGraw-Hill, ISBN 978-0-07-338315-6
- Smart, James R. (1998), Modern Geometries (5th ed.), Pacific Grove: Brooks/Cole, ISBN 978-0-534-35188-5
अग्रिम पठन
- Descartes, René (2001). Discourse on Method, Optics, Geometry, and Meteorology. Translated by Paul J. Oscamp (Revised ed.). Indianapolis, IN: Hackett Publishing. ISBN 978-0-87220-567-3. OCLC 488633510.
- Korn GA, Korn TM (1961). Mathematical Handbook for Scientists and Engineers (1st ed.). New York: McGraw-Hill. pp. 55–79. LCCN 59-14456. OCLC 19959906.
- Margenau H, Murphy GM (1956). The Mathematics of Physics and Chemistry. New York: D. van Nostrand. LCCN 55-10911.
- Moon P, Spencer DE (1988). "Rectangular Coordinates (x, y, z)". Field Theory Handbook, Including Coordinate Systems, Differential Equations, and Their Solutions (corrected 2nd, 3rd print ed.). New York: Springer-Verlag. pp. 9–11 (Table 1.01). ISBN 978-0-387-18430-2.
- Morse PM, Feshbach H (1953). Methods of Theoretical Physics, Part I. New York: McGraw-Hill. ISBN 978-0-07-043316-8. LCCN 52-11515.
- Sauer R, Szabó I (1967). Mathematische Hilfsmittel des Ingenieurs. New York: Springer Verlag. LCCN 67-25285.
बाहरी संबंध
- Cartesian Coordinate System
- MathWorld description of Cartesian coordinates
- Coordinate Converter – converts between polar, Cartesian and spherical coordinates
- Coordinates of a point Interactive tool to explore coordinates of a point
- open source JavaScript class for 2D/3D Cartesian coordinate system manipulation