अंक प्रणाली: Difference between revisions
No edit summary |
No edit summary |
||
Line 18: | Line 18: | ||
== मुख्य अंक प्रणाली == | == मुख्य अंक प्रणाली == | ||
{{main| | {{main|संख्या प्रणालियों की सूची}} | ||
अंकों की सबसे अधिक इस्तेमाल की जाने वाली प्रणाली [[दशमलव]] है।[[भारतीय गणितज्ञ]] | अंकों की सबसे अधिक इस्तेमाल की जाने वाली प्रणाली [[दशमलव]] है। और [[भारतीय गणितज्ञ|भारतीय गणितज्ञों]] को पूर्णांक संस्करण, हिंदू -अरबिक अंक प्रणाली विकसित करने का श्रेय दिया जाता है।<ref>{{cite book |author=David Eugene Smith |author2=Louis Charles Karpinski |title=The Hindu-Arabic numerals |url=https://archive.org/details/hinduarabicnume05karpgoog |year=1911 |publisher=Ginn and Company}}</ref> [[पटना]] के आर्यभट्ट ने 5वीं शताब्दी में [[स्थान-मूल्य संकेतन]] विकसित किया और एक शताब्दी बाद [[ब्रह्मगुप्त]] ने [[शून्य]] के लिए प्रतीक पेश किया। यह प्रणाली धीरे -धीरे भारत के साथ अपनी वाणिज्यिक और सैन्य गतिविधियों के कारण अरब जैसे अन्य आसपास के क्षेत्रों में फैल गई थी। मध्य-पूर्वी गणितज्ञों ने 10 ([[अंशों]]) की नकारात्मक शक्तियों को शामिल करने के लिए प्रणाली को बढ़ाया, जैसा कि 952-953 में [[सीरियाई]] गणितज्ञ अबू-हसन अल-उक्लिडिसी द्वारा एक ग्रंथ में दर्ज किया गया था, और [[दशमलव बिंदु]] अंकन पेश किया गया था{{when|date=February 2021}} [[सिंध इब्न अली]], जिसने अरबी अंकों पर सबसे पहला ग्रंथ भी लिखा था। हिंदू-अरबिक अंक प्रणाली तब व्यापारियों के व्यापार के कारण यूरोप में फैल गई, और यूरोप में उपयोग किए जाने वाले अंकों को अरबी अंक कहा जाता है, जैसा कि उन्होंने उन्हें अरबों से सीखा था। | ||
सबसे सरल अंक प्रणाली | सबसे सरल अंक प्रणाली यूनरी संख्या प्रणाली है, जिसमें प्रत्येक प्राकृतिक संख्या को इसी संख्या के प्रतीकों द्वारा दर्शाया जाता है। उदाहरण के लिए, यदि प्रतीक {{mono|/}} चुना जाता है, तो संख्या सात को {{mono|///////}} द्वारा दर्शाया जाता है। टैली के निशान एक ऐसी प्रणाली का प्रतिनिधित्व करते हैं जो अभी भी सामान्य उपयोग में है। एकल (यूनरी) प्रणाली केवल छोटी संख्या के लिए उपयोगी है, हालांकि यह [[सैद्धांतिक कंप्यूटर विज्ञान]] में एक महत्वपूर्ण भूमिका निभाता है। [[एलियास गामा कोडिंग]], जो आमतौर पर डेटा संपीड़न में उपयोग किया जाता है, एक बाइनरी अंक की लंबाई को इंगित करने के लिए यूनरी का उपयोग करके मनमाने आकार की संख्या व्यक्त करता है। | ||
कुछ नए मूल्यों के लिए अलग -अलग प्रतीकों को पेश करके | कुछ नए मूल्यों के लिए अलग-अलग प्रतीकों को पेश करके यूनरी अंकन को संक्षिप्त किया जा सकता है। आमतौर पर, ये मान 10 की शक्तियाँ हैं; इसलिए उदाहरण के लिए, यदि / एक के लिए खड़ा है, - दस के लिए और + 100 के लिए, तो संख्या 304 को {{mono|+++ ////}} और नंबर 123 कों {{mono|+ − − ///}} के रूप में शून्य की आवश्यकता के बिना प्रदर्शित किया जा सकता है। इसे [[साइन-वैल्यू नोटेशन]] कहा जाता है। प्राचीन [[मिस्र की संख्या]] इस प्रकार की थी, और [[रोमन अंक प्रणाली]] इस विचार का एक संशोधन था। | ||
अधिक | अधिक उपयोगी अभी भी ऐसी प्रणालियाँ हैं जो प्रतीकों की पुनरावृत्ति के लिए विशेष संक्षिप्त रूपों को नियोजित करती हैं; उदाहरण के लिए, इन संक्षिप्ताक्षरों के लिए वर्णमाला के पहले नौ अक्षरों का उपयोग करते हुए, A "एक घटना", B "दो घटनाएँ", और इसी तरह, संख्या 304 के लिए C+ D/ लिख सकता है। [[चीनी अंक|चीनी अंकों]] और चीनी पर आधारित अन्य पूर्वी एशियाई अंकों को लिखते समय इस प्रणाली का उपयोग किया जाता है। [[अंग्रेजी भाषा]] की संख्या प्रणाली इस प्रकार (तीन सौ [और] चार) की है, जैसा कि अन्य बोली जाने वाली भाषाओं में से है, चाहे उन्होंने जो भी लिखित प्रणालियों को अपनाया हो। हालांकि, कई भाषाएं ठिकानों के मिश्रण का उपयोग करती हैं, और अन्य विशेषताओं, उदाहरण के लिए 79 फ्रेंच में सोइक्सांटे डिक्स-नेफ ({{nowrap|60 + 10 + 9}}) और वेल्श में उन्नीस ({{nowrap|4 + (5 + 10) + (3 × 20)}}) या (कुछबवात पुरातन) अस्सी माइनस एक ({{nowrap|4 × 20 − 1}}) है। अंग्रेजी में, कोई भी चार स्कोर कम कह सकता है, जैसा कि प्रसिद्ध गेटीसबर्ग पते में "87 साल पहले" को "चार अंक और सात साल पहले" के रूप में दर्शाया गया है। | ||
अधिक सुरुचिपूर्ण एक स्थितीय प्रणाली है, जिसे स्थान-मूल्य संकेतन के रूप में भी जाना जाता है। और फिर से आधार 10 में काम करते हुए, दस अलग-अलग अंक 0, ..., 9 का उपयोग किया जाता है और एक अंक की स्थिति का उपयोग दस की शक्ति को इंगित करने के लिए किया जाता है कि अंक को गुणा किया जाना है, जैसा कि {{nowrap|304 {{=}} 3×100 + 0×10 + 4×1}} या अधिक सटीक रूप से {{nowrap|3×10<sup>2</sup> + 0×10<sup>1</sup> + 4×10<sup>0</sup>}}। किसी शक्ति को "छोड़ने" में सक्षम होने के लिए, शून्य, जिसकी अन्य प्रणालियों में आवश्यकता नहीं है, यहां महत्वपूर्ण महत्व है। हिंदू -अरबिक अंक प्रणाली, जो भारत में उत्पन्न हुई थी और अब दुनिया भर में उपयोग की जाती है, एक स्थितीय आधार 10 प्रणाली है। | |||
स्थितीय प्रणालियों में अंकगणित पहले के योगात्मक प्रणालियों की तुलना में बहुत आसान है; इसके अलावा, योगात्मक प्रणालियों को 10 की विभिन्न शक्तियों के लिए बड़ी संख्या में विभिन्न प्रतीकों की आवश्यकता होती है; एक स्थितीय प्रणाली को केवल दस अलग-अलग प्रतीकों की आवश्यकता होती है (यह मानते हुए कि यह आधार 10 का उपयोग करता है)।<ref>{{Cite book|last=Chowdhury|first=Arnab|url=https://books.google.com/books?id=WXn-mT3K6dgC&q=Arithmetic+is+much+easier+in+positional+systems+than+in+the+earlier+additive+ones;+furthermore,+additive+systems+need+a+large+number+of+different+symbols+for+the+different+powers+of+10;+a+positional+system+needs+only+ten+different+symbols+(assuming+that+it+uses+base+10).&pg=PA2|title=Design of an Efficient Multiplier using DBNS|publisher=GIAP Journals|isbn=978-93-83006-18-2|language=en}}</ref> | |||
स्थितीय दशमलव प्रणाली वर्तमान में मानव लेखन में सार्वभौमिक रूप से उपयोग की जाती है। आधार 1000 का भी उपयोग किया जाता है (यद्यपि सार्वभौमिक रूप से नहीं) अंकों को समूहीकृत करके और तीन दशमलव अंकों के अनुक्रम को एक अंक के रूप में माना जाता है। यह सामान्य संकेतन 1,000,234,567 का अर्थ है जो बहुत बड़ी संख्या के लिए उपयोग किया जाता है। | |||
[[कंप्यूटर|कंप्यूटरों]] में, मुख्य अंक प्रणाली आधार 2 (बाइनरी अंक प्रणाली) में स्थितीय प्रणाली पर आधारित होती है, जिसमें दो बाइनरी अंकों के साथ, 0 और 1 होते हैं। बाइनरी अंकों कों तीन (अष्टक संख्यात्मक प्रणाली) या चार (हेक्साडेसिमल) द्वारा समूहबद्ध करके स्थितीय प्रणाली प्राप्त की जाती है। आमतौर पर उपयोग की जाती है। बहुत बड़े पूर्णांक के लिए, आधार 2<sup>32 </sup> या 2<sup>64 </sup> (32 या 64 द्वारा बाइनरी अंकों को समूहित करना, [[मशीन शब्द]] की लंबाई) का उपयोग उदाहरण के लिए, जीएमपी प्रयोग किया जाता हैं। | |||
कंप्यूटर विज्ञान के कुछ क्षेत्रों में, एक संशोधित आधार k स्थितीय प्रणाली का उपयोग किया जाता है, जिसे [[द्विध्रुवीय संख्या]] कहा जाता है, जिसमें अंक 1, 2, | कुछ जैविक प्रणालियों में, Unary कोडिंग प्रणाली कार्यरत है। न्यूरल सर्किट में प्रयुक्त यूनरी अंक जो [[बर्डसॉन्ग]] प्रोडक्शन के लिए जिम्मेदार हैं।<ref> Fiete, I. R.; Seung, H. S. (2007). "Neural network models of birdsong production, learning, and coding". In Squire, L.; Albright, T.; Bloom, F.; Gage, F.; Spitzer, N. New Encyclopedia of Neuroscience.</ref> गीतकारों के मस्तिष्क में नाभिक जो सीखने और पक्षी गीत के उत्पादन दोनों में एक भूमिका निभाता है, वह एचवीसी ([[उच्च मुखर केंद्र]]) है। बर्डसॉन्ग में अलग -अलग नोटों के लिए कमांड सिग्नल एचवीसी में विभिन्न बिंदुओं से निकलते हैं। यह कोडिंग अंतरिक्ष कोडिंग के रूप में काम करता है जो कि इसकी अंतर्निहित सादगी और मजबूती के कारण जैविक सर्किट के लिए एक कुशल रणनीति है। | ||
अंकों या प्रतीकों के साथ संख्या लिखते समय उपयोग किए जाने वाले अंकों को दो प्रकारों में विभाजित किया जा सकता है जिन्हें क्रमशः अंकगणितीय अनुक्रम अंक (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) और (1, 10, 100, 1000, 10000 ...) ज्यामितीय अनुक्रम अंक कहा जा सकता है। साइन-वैल्यू सिस्टम केवल ज्यामितीय अंकों का उपयोग करते हैं और स्थितिगत सिस्टम केवल अंकगणितीय अंकों का उपयोग करते हैं। एक साइन-वैल्यू सिस्टम को अंकगणितीय अंकों की आवश्यकता नहीं होती है क्योंकि वे पुनरावृत्ति ([[ग्रीक अंक|ग्रीक अंकों]] को छोड़कर) द्वारा बनाए जाते हैं, और एक स्थिति प्रणाली को ज्यामितीय अंकों की आवश्यकता नहीं होती है क्योंकि वे स्थिति द्वारा बनाए जाते हैं। हालांकि, बोली जाने वाली भाषा अंकगणित और ज्यामितीय अंकों का उपयोग करती है। | |||
कंप्यूटर विज्ञान के कुछ क्षेत्रों में, एक संशोधित आधार k स्थितीय प्रणाली का उपयोग किया जाता है, जिसे [[द्विध्रुवीय संख्या]] कहा जाता है, जिसमें अंक 1, 2, ..., k (k (k (k ({{nowrap|''k'' ≥ 1}}), और शून्य एक खाली स्ट्रिंग द्वारा प्रतिनिधित्व किया जा रहा है। यह अग्रणी शून्यों के कारण होने वाली गैर-विशिष्टता से बचने के लिए ऐसे सभी अंक-तारों के सेट और गैर-नकारात्मक पूर्णांकों के सेट के बीच एक आक्षेप स्थापित करता है। विशेषण बेस-के संख्या को के-एडिक नोटेशन भी कहा जाता है, पी-एडिक नंबरों के साथ भ्रमित नहीं होना चाहिए। विशेषण आधार 1 यूनरी के समान है। | |||
== पोजिशनल सिस्टम विस्तार से == | == पोजिशनल सिस्टम विस्तार से == | ||
{{See also|Positional notation}} | {{See also|Positional notation}} | ||
एक स्थितीय आधार बी अंक प्रणाली में (बी के साथ 1 से अधिक 1 से अधिक एक प्राकृतिक संख्या के रूप में जाना जाता है), बी बेसिक प्रतीकों (या अंक) के अनुरूप पहले बी प्राकृतिक संख्याओं के लिए शून्य का उपयोग किया जाता | एक स्थितीय आधार बी अंक प्रणाली में (बी के साथ 1 से अधिक 1 से अधिक एक प्राकृतिक संख्या के रूप में जाना जाता है), बी बेसिक प्रतीकों (या अंक) के अनुरूप पहले बी प्राकृतिक संख्याओं के लिए शून्य का उपयोग किया जाता है। बाकी अंकों को उत्पन्न करने के लिए, आकृति में प्रतीक की स्थिति का उपयोग किया जाता है। अंतिम स्थिति में प्रतीक का अपना मूल्य है, और जैसे -जैसे यह बाईं ओर जाता है, उसके मूल्य को बी से गुणा किया जाता है। | ||
उदाहरण के लिए, दशमलव प्रणाली (आधार 10) में, अंक 4327 का अर्थ है {{math|('''4'''×10<sup>3</sup>) + ('''3'''×10<sup>2</sup>) + ('''2'''×10<sup>1</sup>) + ('''7'''×10<sup>0</sup>)}}, नोट किया कि {{math|10<sup>0</sup> {{=}} 1}}। | उदाहरण के लिए, दशमलव प्रणाली (आधार 10) में, अंक 4327 का अर्थ है {{math|('''4'''×10<sup>3</sup>) + ('''3'''×10<sup>2</sup>) + ('''2'''×10<sup>1</sup>) + ('''7'''×10<sup>0</sup>)}}, नोट किया कि {{math|10<sup>0</sup> {{=}} 1}}। | ||
सामान्य तौर पर, यदि बी आधार है, तो कोई भी आधार बी के अंक प्रणाली में एक संख्या लिखता है। {{math|''a''<sub>''n''</sub>''b''<sup>''n''</sup> + ''a''<sub>''n'' − 1</sub>''b''<sup>''n'' − 1</sup> + ''a''<sub>''n'' − 2</sub>''b''<sup>''n'' − 2</sup> + ... + ''a''<sub>0</sub>''b''<sup>0</sup>}} और अंकित अंक लिखना {{math|''a''<sub>''n''</sub>''a''<sub>''n'' − 1</sub>''a''<sub>''n'' − 2</sub> ... ''a''<sub>0</sub>}} घटते क्रम | सामान्य तौर पर, यदि बी आधार है, तो कोई भी आधार बी के अंक प्रणाली में एक संख्या लिखता है। {{math|''a''<sub>''n''</sub>''b''<sup>''n''</sup> + ''a''<sub>''n'' − 1</sub>''b''<sup>''n'' − 1</sup> + ''a''<sub>''n'' − 2</sub>''b''<sup>''n'' − 2</sup> + ... + ''a''<sub>0</sub>''b''<sup>0</sup>}} और अंकित अंक लिखना {{math|''a''<sub>''n''</sub>''a''<sub>''n'' − 1</sub>''a''<sub>''n'' − 2</sub> ... ''a''<sub>0</sub>}} घटते क्रम में। अंक 0 और के बीच प्राकृतिक संख्याएं हैं {{math|''b'' − 1}}, सहित। | ||
यदि एक पाठ (जैसे कि यह) कई ठिकानों पर चर्चा करता है, और यदि अस्पष्टता मौजूद है, तो आधार (स्वयं आधार & nbsp; 10 में प्रतिनिधित्व किया जाता है; 10) को संख्या के दाईं ओर जोड़ा जाता है, इस तरह: संख्या: संख्या<sub>base</sub> | यदि एक पाठ (जैसे कि यह) कई ठिकानों पर चर्चा करता है, और यदि अस्पष्टता मौजूद है, तो आधार (स्वयं आधार & nbsp; 10 में प्रतिनिधित्व किया जाता है; 10) को संख्या के दाईं ओर जोड़ा जाता है, इस तरह: संख्या: संख्या<sub>base</sub>। जब तक संदर्भ द्वारा निर्दिष्ट नहीं किया जाता है, सबस्क्रिप्ट के बिना संख्या को दशमलव माना जाता है। | ||
अंकों को दो समूहों में विभाजित करने के लिए एक डॉट का उपयोग करके, कोई भी स्थिति प्रणाली में अंश भी लिख सकता है।उदाहरण के लिए, आधार & nbsp; 2 अंक 10.11 निरूपित करता है {{math|1×2<sup>1</sup> + 0×2<sup>0</sup> + 1×2<sup>−1</sup> + 1×2<sup>−2</sup> {{=}} 2.75}}। | अंकों को दो समूहों में विभाजित करने के लिए एक डॉट का उपयोग करके, कोई भी स्थिति प्रणाली में अंश भी लिख सकता है।उदाहरण के लिए, आधार & nbsp; 2 अंक 10.11 निरूपित करता है {{math|1×2<sup>1</sup> + 0×2<sup>0</sup> + 1×2<sup>−1</sup> + 1×2<sup>−2</sup> {{=}} 2.75}}। |
Revision as of 21:12, 6 February 2023
Part of a series on |
Numeral systems |
---|
List of numeral systems |
एक अंक प्रणाली (या संख्या की प्रणाली) संख्याओं को व्यक्त करने के लिए लेखन प्रणाली है जो अंकों या अन्य प्रतीकों का एक सुसंगत तरीके से उपयोग करके दिए गए सेट की संख्यात्मक अंक या अन्य प्रतीकों का प्रतिनिधित्व करने के लिए एक गणितीय संकेतन है।
प्रतीकों का एक ही अनुक्रम विभिन्न संख्याओं में विभिन्न संख्याओं का प्रतिनिधित्व कर सकता है। उदाहरण के लिए, 11 दशमलव अंक प्रणाली (आज, विश्व स्तर पर सबसे आम प्रणाली) में संख्या ग्यारह , बाइनरी अंक प्रणाली में तीन संख्या (संगणक में उपयोग किया जाता है), और यूनरी अंक प्रणाली में (अंकों का मिलान करें स्कोर में उपयोग किया जाता है) संख्या दो का प्रतिनिधित्व करता है।
अंक जिस संख्या का प्रतिनिधित्व करता है उसे उसका मान कहा जाता है। सभी संख्या प्रणालियाँ संख्याओं के समान समूह का प्रतिनिधित्व नहीं कर सकती हैं; उदाहरण के लिए, रोमन अंक हिंदू-अरबी अंक 0 द्वारा दर्शाई गई संख्या का प्रतिनिधित्व नहीं कर सकते हैं।
आदर्श रूप से, एक अंक प्रणाली होगी:
- संख्याओं के एक उपयोगी सेट का प्रतिनिधित्व करें (जैसे सभी पूर्णांक, या तर्कसंगत संख्याएं)
- हर संख्या को एक अद्वितीय प्रतिनिधित्व का प्रतिनिधित्व करें (या कम से कम एक मानक प्रतिनिधित्व)
- संख्याओं के बीजगणित और अंकगणितीय संरचना को प्रतिबिंबित करें।
उदाहरण के लिए, सामान्य दशमलव प्रतिनिधित्व प्रत्येक नॉनज़ेरो प्राकृतिक संख्या को एक गैर-शून्य अंक के साथ शुरू होने वाले संख्यात्मक अंक के एक परिमित सेट अनुक्रम के रूप में एक अद्वितीय प्रतिनिधित्व देता है।
अंक प्रणालियों को कभी-कभी संख्या प्रणाली कहा जाता है, लेकिन यह नाम अस्पष्ट है, क्योंकि यह संख्याओं की विभिन्न प्रणालियों को संदर्भित कर सकता है, जैसे कि वास्तविक संख्याओं की प्रणाली, जटिल संख्याओं की प्रणाली, पी-एडिक संख्याओं की प्रणाली आदि। ऐसी प्रणालियाँ हालाँकि, इस लेख का विषय नहीं हैं।
मुख्य अंक प्रणाली
अंकों की सबसे अधिक इस्तेमाल की जाने वाली प्रणाली दशमलव है। और भारतीय गणितज्ञों को पूर्णांक संस्करण, हिंदू -अरबिक अंक प्रणाली विकसित करने का श्रेय दिया जाता है।[1] पटना के आर्यभट्ट ने 5वीं शताब्दी में स्थान-मूल्य संकेतन विकसित किया और एक शताब्दी बाद ब्रह्मगुप्त ने शून्य के लिए प्रतीक पेश किया। यह प्रणाली धीरे -धीरे भारत के साथ अपनी वाणिज्यिक और सैन्य गतिविधियों के कारण अरब जैसे अन्य आसपास के क्षेत्रों में फैल गई थी। मध्य-पूर्वी गणितज्ञों ने 10 (अंशों) की नकारात्मक शक्तियों को शामिल करने के लिए प्रणाली को बढ़ाया, जैसा कि 952-953 में सीरियाई गणितज्ञ अबू-हसन अल-उक्लिडिसी द्वारा एक ग्रंथ में दर्ज किया गया था, और दशमलव बिंदु अंकन पेश किया गया था[when?] सिंध इब्न अली, जिसने अरबी अंकों पर सबसे पहला ग्रंथ भी लिखा था। हिंदू-अरबिक अंक प्रणाली तब व्यापारियों के व्यापार के कारण यूरोप में फैल गई, और यूरोप में उपयोग किए जाने वाले अंकों को अरबी अंक कहा जाता है, जैसा कि उन्होंने उन्हें अरबों से सीखा था।
सबसे सरल अंक प्रणाली यूनरी संख्या प्रणाली है, जिसमें प्रत्येक प्राकृतिक संख्या को इसी संख्या के प्रतीकों द्वारा दर्शाया जाता है। उदाहरण के लिए, यदि प्रतीक / चुना जाता है, तो संख्या सात को /////// द्वारा दर्शाया जाता है। टैली के निशान एक ऐसी प्रणाली का प्रतिनिधित्व करते हैं जो अभी भी सामान्य उपयोग में है। एकल (यूनरी) प्रणाली केवल छोटी संख्या के लिए उपयोगी है, हालांकि यह सैद्धांतिक कंप्यूटर विज्ञान में एक महत्वपूर्ण भूमिका निभाता है। एलियास गामा कोडिंग, जो आमतौर पर डेटा संपीड़न में उपयोग किया जाता है, एक बाइनरी अंक की लंबाई को इंगित करने के लिए यूनरी का उपयोग करके मनमाने आकार की संख्या व्यक्त करता है।
कुछ नए मूल्यों के लिए अलग-अलग प्रतीकों को पेश करके यूनरी अंकन को संक्षिप्त किया जा सकता है। आमतौर पर, ये मान 10 की शक्तियाँ हैं; इसलिए उदाहरण के लिए, यदि / एक के लिए खड़ा है, - दस के लिए और + 100 के लिए, तो संख्या 304 को +++ //// और नंबर 123 कों + − − /// के रूप में शून्य की आवश्यकता के बिना प्रदर्शित किया जा सकता है। इसे साइन-वैल्यू नोटेशन कहा जाता है। प्राचीन मिस्र की संख्या इस प्रकार की थी, और रोमन अंक प्रणाली इस विचार का एक संशोधन था।
अधिक उपयोगी अभी भी ऐसी प्रणालियाँ हैं जो प्रतीकों की पुनरावृत्ति के लिए विशेष संक्षिप्त रूपों को नियोजित करती हैं; उदाहरण के लिए, इन संक्षिप्ताक्षरों के लिए वर्णमाला के पहले नौ अक्षरों का उपयोग करते हुए, A "एक घटना", B "दो घटनाएँ", और इसी तरह, संख्या 304 के लिए C+ D/ लिख सकता है। चीनी अंकों और चीनी पर आधारित अन्य पूर्वी एशियाई अंकों को लिखते समय इस प्रणाली का उपयोग किया जाता है। अंग्रेजी भाषा की संख्या प्रणाली इस प्रकार (तीन सौ [और] चार) की है, जैसा कि अन्य बोली जाने वाली भाषाओं में से है, चाहे उन्होंने जो भी लिखित प्रणालियों को अपनाया हो। हालांकि, कई भाषाएं ठिकानों के मिश्रण का उपयोग करती हैं, और अन्य विशेषताओं, उदाहरण के लिए 79 फ्रेंच में सोइक्सांटे डिक्स-नेफ (60 + 10 + 9) और वेल्श में उन्नीस (4 + (5 + 10) + (3 × 20)) या (कुछबवात पुरातन) अस्सी माइनस एक (4 × 20 − 1) है। अंग्रेजी में, कोई भी चार स्कोर कम कह सकता है, जैसा कि प्रसिद्ध गेटीसबर्ग पते में "87 साल पहले" को "चार अंक और सात साल पहले" के रूप में दर्शाया गया है।
अधिक सुरुचिपूर्ण एक स्थितीय प्रणाली है, जिसे स्थान-मूल्य संकेतन के रूप में भी जाना जाता है। और फिर से आधार 10 में काम करते हुए, दस अलग-अलग अंक 0, ..., 9 का उपयोग किया जाता है और एक अंक की स्थिति का उपयोग दस की शक्ति को इंगित करने के लिए किया जाता है कि अंक को गुणा किया जाना है, जैसा कि 304 = 3×100 + 0×10 + 4×1 या अधिक सटीक रूप से 3×102 + 0×101 + 4×100। किसी शक्ति को "छोड़ने" में सक्षम होने के लिए, शून्य, जिसकी अन्य प्रणालियों में आवश्यकता नहीं है, यहां महत्वपूर्ण महत्व है। हिंदू -अरबिक अंक प्रणाली, जो भारत में उत्पन्न हुई थी और अब दुनिया भर में उपयोग की जाती है, एक स्थितीय आधार 10 प्रणाली है।
स्थितीय प्रणालियों में अंकगणित पहले के योगात्मक प्रणालियों की तुलना में बहुत आसान है; इसके अलावा, योगात्मक प्रणालियों को 10 की विभिन्न शक्तियों के लिए बड़ी संख्या में विभिन्न प्रतीकों की आवश्यकता होती है; एक स्थितीय प्रणाली को केवल दस अलग-अलग प्रतीकों की आवश्यकता होती है (यह मानते हुए कि यह आधार 10 का उपयोग करता है)।[2]
स्थितीय दशमलव प्रणाली वर्तमान में मानव लेखन में सार्वभौमिक रूप से उपयोग की जाती है। आधार 1000 का भी उपयोग किया जाता है (यद्यपि सार्वभौमिक रूप से नहीं) अंकों को समूहीकृत करके और तीन दशमलव अंकों के अनुक्रम को एक अंक के रूप में माना जाता है। यह सामान्य संकेतन 1,000,234,567 का अर्थ है जो बहुत बड़ी संख्या के लिए उपयोग किया जाता है।
कंप्यूटरों में, मुख्य अंक प्रणाली आधार 2 (बाइनरी अंक प्रणाली) में स्थितीय प्रणाली पर आधारित होती है, जिसमें दो बाइनरी अंकों के साथ, 0 और 1 होते हैं। बाइनरी अंकों कों तीन (अष्टक संख्यात्मक प्रणाली) या चार (हेक्साडेसिमल) द्वारा समूहबद्ध करके स्थितीय प्रणाली प्राप्त की जाती है। आमतौर पर उपयोग की जाती है। बहुत बड़े पूर्णांक के लिए, आधार 232 या 264 (32 या 64 द्वारा बाइनरी अंकों को समूहित करना, मशीन शब्द की लंबाई) का उपयोग उदाहरण के लिए, जीएमपी प्रयोग किया जाता हैं।
कुछ जैविक प्रणालियों में, Unary कोडिंग प्रणाली कार्यरत है। न्यूरल सर्किट में प्रयुक्त यूनरी अंक जो बर्डसॉन्ग प्रोडक्शन के लिए जिम्मेदार हैं।[3] गीतकारों के मस्तिष्क में नाभिक जो सीखने और पक्षी गीत के उत्पादन दोनों में एक भूमिका निभाता है, वह एचवीसी (उच्च मुखर केंद्र) है। बर्डसॉन्ग में अलग -अलग नोटों के लिए कमांड सिग्नल एचवीसी में विभिन्न बिंदुओं से निकलते हैं। यह कोडिंग अंतरिक्ष कोडिंग के रूप में काम करता है जो कि इसकी अंतर्निहित सादगी और मजबूती के कारण जैविक सर्किट के लिए एक कुशल रणनीति है।
अंकों या प्रतीकों के साथ संख्या लिखते समय उपयोग किए जाने वाले अंकों को दो प्रकारों में विभाजित किया जा सकता है जिन्हें क्रमशः अंकगणितीय अनुक्रम अंक (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) और (1, 10, 100, 1000, 10000 ...) ज्यामितीय अनुक्रम अंक कहा जा सकता है। साइन-वैल्यू सिस्टम केवल ज्यामितीय अंकों का उपयोग करते हैं और स्थितिगत सिस्टम केवल अंकगणितीय अंकों का उपयोग करते हैं। एक साइन-वैल्यू सिस्टम को अंकगणितीय अंकों की आवश्यकता नहीं होती है क्योंकि वे पुनरावृत्ति (ग्रीक अंकों को छोड़कर) द्वारा बनाए जाते हैं, और एक स्थिति प्रणाली को ज्यामितीय अंकों की आवश्यकता नहीं होती है क्योंकि वे स्थिति द्वारा बनाए जाते हैं। हालांकि, बोली जाने वाली भाषा अंकगणित और ज्यामितीय अंकों का उपयोग करती है।
कंप्यूटर विज्ञान के कुछ क्षेत्रों में, एक संशोधित आधार k स्थितीय प्रणाली का उपयोग किया जाता है, जिसे द्विध्रुवीय संख्या कहा जाता है, जिसमें अंक 1, 2, ..., k (k (k (k (k ≥ 1), और शून्य एक खाली स्ट्रिंग द्वारा प्रतिनिधित्व किया जा रहा है। यह अग्रणी शून्यों के कारण होने वाली गैर-विशिष्टता से बचने के लिए ऐसे सभी अंक-तारों के सेट और गैर-नकारात्मक पूर्णांकों के सेट के बीच एक आक्षेप स्थापित करता है। विशेषण बेस-के संख्या को के-एडिक नोटेशन भी कहा जाता है, पी-एडिक नंबरों के साथ भ्रमित नहीं होना चाहिए। विशेषण आधार 1 यूनरी के समान है।
पोजिशनल सिस्टम विस्तार से
एक स्थितीय आधार बी अंक प्रणाली में (बी के साथ 1 से अधिक 1 से अधिक एक प्राकृतिक संख्या के रूप में जाना जाता है), बी बेसिक प्रतीकों (या अंक) के अनुरूप पहले बी प्राकृतिक संख्याओं के लिए शून्य का उपयोग किया जाता है। बाकी अंकों को उत्पन्न करने के लिए, आकृति में प्रतीक की स्थिति का उपयोग किया जाता है। अंतिम स्थिति में प्रतीक का अपना मूल्य है, और जैसे -जैसे यह बाईं ओर जाता है, उसके मूल्य को बी से गुणा किया जाता है।
उदाहरण के लिए, दशमलव प्रणाली (आधार 10) में, अंक 4327 का अर्थ है (4×103) + (3×102) + (2×101) + (7×100), नोट किया कि 100 = 1।
सामान्य तौर पर, यदि बी आधार है, तो कोई भी आधार बी के अंक प्रणाली में एक संख्या लिखता है। anbn + an − 1bn − 1 + an − 2bn − 2 + ... + a0b0 और अंकित अंक लिखना anan − 1an − 2 ... a0 घटते क्रम में। अंक 0 और के बीच प्राकृतिक संख्याएं हैं b − 1, सहित।
यदि एक पाठ (जैसे कि यह) कई ठिकानों पर चर्चा करता है, और यदि अस्पष्टता मौजूद है, तो आधार (स्वयं आधार & nbsp; 10 में प्रतिनिधित्व किया जाता है; 10) को संख्या के दाईं ओर जोड़ा जाता है, इस तरह: संख्या: संख्याbase। जब तक संदर्भ द्वारा निर्दिष्ट नहीं किया जाता है, सबस्क्रिप्ट के बिना संख्या को दशमलव माना जाता है।
अंकों को दो समूहों में विभाजित करने के लिए एक डॉट का उपयोग करके, कोई भी स्थिति प्रणाली में अंश भी लिख सकता है।उदाहरण के लिए, आधार & nbsp; 2 अंक 10.11 निरूपित करता है 1×21 + 0×20 + 1×2−1 + 1×2−2 = 2.75।
सामान्य तौर पर, बेस बी सिस्टम में संख्याएं फॉर्म की होती हैं:
संख्या bk और b−k इसी अंकों के वजन कार्य हैं।स्थिति k संबंधित वजन w का लघुगणक है, जो कि है ।उच्चतम उपयोग की जाने वाली स्थिति संख्या के परिमाण के क्रम के करीब है।
वजन का वर्णन करने के लिए Unary अंक प्रणाली में आवश्यक टैली चिह्नों की संख्या 'w' होती।स्थिति प्रणाली में, इसका वर्णन करने के लिए आवश्यक अंकों की संख्या केवल है , k of 0. के लिए, उदाहरण के लिए, वजन 1000 का वर्णन करने के लिए फिर चार अंकों की आवश्यकता होती है क्योंकि ।स्थिति का वर्णन करने के लिए आवश्यक अंकों की संख्या है (1, 10, 100 में, ... केवल दशमलव उदाहरण में सादगी के लिए)।
एक संख्या में एक समाप्ति या दोहराने का विस्तार होता है यदि और केवल अगर यह तर्कसंगत संख्या है;यह आधार पर निर्भर नहीं करता है।एक संख्या जो एक आधार में समाप्त होती है, वह दूसरे में दोहरा सकती है (इस प्रकार 0.310 = 0.0100110011001...2)।एक तर्कहीन संख्या सभी अभिन्न ठिकानों में एपेरियोडिक (गैर-दोहराने वाले अंकों की एक अनंत संख्या के साथ) रहती है।इस प्रकार, उदाहरण के लिए आधार & nbsp; 2 में, π = 3.1415926...10 Aperiodic 11.00100100000011111 के रूप में लिखा जा सकता है ...2।
उपक्रम करना डालना, n, या डॉट्स, ṅ, सामान्य अंकों के ऊपर, एक सम्मेलन है जिसका उपयोग तर्कसंगत विस्तार को दोहराने का प्रतिनिधित्व करने के लिए किया जाता है।इस प्रकार:
- 14/11 = 1.272727272727 ... = 1।27 & nbsp;या & nbsp;321.3217878787878 ... = 321.32178।
यदि b = p एक प्रमुख संख्या है, तो कोई बेस-पी अंकों को परिभाषित कर सकता है जिसका विस्तार वामपंथी कभी नहीं रुकता है;इन्हें P-Adic नंबर कहा जाता है। P-ADIC नंबर।
सामान्यीकृत चर-लंबाई पूर्णांक
अधिक सामान्य एक मिश्रित रेडिक्स संकेतन का उपयोग कर रहा है (यहाँ लिखित endianness | थोड़ा-एंडियन) की तरह के लिए , आदि।
इसका उपयोग पुण्यकोड में किया जाता है, जिसका एक पहलू 36: ए-जेड और 0–9 के संग्रह से अंकों के बिना किसी अनुक्रम के रूप में एक अनुक्रम के रूप में मनमाने आकार के गैर-नकारात्मक पूर्णांक के अनुक्रम का प्रतिनिधित्व है।क्रमशः 0-25 और 26-35।तथाकथित दहलीज मान भी हैं () जो संख्या में हर स्थिति के लिए तय की जाती है।एक अंक (संख्या में दी गई स्थिति में) जो इसके संबंधित सीमा से कम है इसका मतलब है कि यह सबसे महत्वपूर्ण अंक है, इसलिए स्ट्रिंग में यह संख्या का अंत है, और अगला प्रतीक (यदि मौजूद है) अगले नंबर का सबसे कम महत्वपूर्ण अंक है।
उदाहरण के लिए, यदि पहले अंक के लिए दहलीज मान B (यानी 1) है तो A (यानी 0) संख्या के अंत को चिह्नित करता है (इसमें सिर्फ एक अंक होता है), इसलिए एक से अधिक अंक की संख्या में, प्रथम-अंकों की सीमाकेवल B -9 (यानी 1-35) है, इसलिए वजन B1 36 के बजाय 35 है। अधिक आम तौर पर, अगर टीnएन-वें अंक के लिए दहलीज है, यह दिखाना आसान है । मान लीजिए कि दूसरे और तीसरे अंकों के लिए दहलीज मान C (यानी 2) हैं, तो दूसरा अंकों की सीमा A-B (यानी 0–1) है जिसमें दूसरा अंक सबसे महत्वपूर्ण है, जबकि रेंज C-9 है (यानी।2-35) तीसरे अंक की उपस्थिति में।आम तौर पर, किसी भी n के लिए, (n+1) -th अंक का वजन पिछले एक बार (36-n-th अंक की सीमा) का वजन होता है।तो दूसरे प्रतीक का वजन है ।और तीसरे प्रतीक का वजन है ।
इसलिए हमारे पास अधिकांश 3 अंकों के साथ संख्याओं का निम्न अनुक्रम है:
ए (0), बा (1), सीए (2), ..., 9 ए (35), बीबी (36), सीबी (37), ..., 9 बी (70), बीसीए (71), ..।, 99 ए (1260), बीसीबी (1261), ..., 99 बी (2450)।
एक नियमित एन-आधारित अंक प्रणाली के विपरीत, 9 बी जैसी संख्याएं हैं जहां 9 और बी प्रत्येक 35 का प्रतिनिधित्व करते हैं;फिर भी प्रतिनिधित्व अद्वितीय है क्योंकि एसी और एसीए की अनुमति नहीं है - पहला ए इनमें से प्रत्येक संख्या को समाप्त कर देगा।
थ्रेशोल्ड मान चुनने में लचीलापन विभिन्न आकारों की संख्या की घटना की आवृत्ति के आधार पर अंकों की संख्या के लिए अनुकूलन की अनुमति देता है।
1 के बराबर सभी थ्रेशोल्ड मानों के साथ मामला द्विध्रुवीय संख्या से मेल खाता है, जहां शून्य अंक के साथ संख्याओं के विभाजक के अनुरूप हैं जो गैर-शून्य हैं।
यह भी देखें
संदर्भ
- ↑ David Eugene Smith; Louis Charles Karpinski (1911). The Hindu-Arabic numerals. Ginn and Company.
- ↑ Chowdhury, Arnab. Design of an Efficient Multiplier using DBNS (in English). GIAP Journals. ISBN 978-93-83006-18-2.
- ↑ Fiete, I. R.; Seung, H. S. (2007). "Neural network models of birdsong production, learning, and coding". In Squire, L.; Albright, T.; Bloom, F.; Gage, F.; Spitzer, N. New Encyclopedia of Neuroscience.
स्रोत
- जॉर्जेस इफरा।द यूनिवर्सल हिस्ट्री ऑफ नंबर्स: प्रागितिहास से लेकर कंप्यूटर के आविष्कार, विली, 1999। ISBN 0-471-37568-3।
- डोनाल्ड नुथ | डी।Knuth।कंप्यूटर प्रोग्रामिंग की कला।खंड 2, तीसरा संस्करण।एडिसन -वेस्ले।पीपी। & nbsp; 194–213, पोजिशनल नंबर सिस्टम।
- ए.एल.क्रोएबर (अल्फ्रेड लुईस क्रॉबर) (1876-1960), कैलिफोर्निया के भारतीयों की हैंडबुक, स्मिथसोनियन इंस्टीट्यूशन के अमेरिकी नृवंशविज्ञान ब्यूरो के बुलेटिन 78 (1919)
- जे.पी.मैलोरी और डी। क्यू।एडम्स, इनसाइक्लोपीडिया ऑफ इंडो-यूरोपियन कल्चर, फिट्ज़्रॉय डियरबोर्न पब्लिशर्स, लंदन और शिकागो, 1997।
- Hans J. Nissen; Peter Damerow; Robert K. Englund (1993). पुरातन बहीखाता: अर्ली राइटिंग एंड टेक्निक्स ऑफ़ इकोनॉमिक एडमिनिस्ट्रेशन इन द प्राचीन निकट पूर्व में. University of Chicago Press. ISBN 978-0-226-58659-5.
- Schmandt-Besserat, Denise (1996). कैसे लेखन के बारे में आया. University of Texas Press. ISBN 978-0-292-77704-0.
- Zaslavsky, Claudia (1999). अफ्रीका की गिनती: अफ्रीकी संस्कृतियों में संख्या और पैटर्न. Chicago Review Press. ISBN 978-1-55652-350-2.
बाहरी कड़ियाँ
- Media related to Numeral systems at Wikimedia Commons