चतुर्थांश: Difference between revisions
(Created page with "{{Short description|Statistic which divides data into four same-sized parts for analysis}} {{Use mdy dates|date=May 2020}} आंकड़े में, एक चतु...") |
(text) |
||
Line 1: | Line 1: | ||
{{Short description|Statistic which divides data into four same-sized parts for analysis}} | {{Short description|Statistic which divides data into four same-sized parts for analysis}} | ||
[[आंकड़े|सांख्यिकी]] में, चतुर्थांश एक प्रकार का परिमाण है जो अधिक-या-कम समान आकार का दत्तानुसारी बिन्दु की संख्या को चार भागों में विभाजित करता है, या 'तिमाही', है। चतुर्थांश की गणना करने के लिए आँकड़े को सबसे छोटे से सबसे बड़े क्रम में क्रमबद्ध किया जाना चाहिए; इस प्रकार, चतुर्थांश [[आदेश आँकड़ा|क्रम सांख्यिकी]] का एक रूप है। तीन मुख्य चतुर्थांश इस प्रकार हैं: | |||
* पहला चतुर्थांश (''Q''<sub>1</sub>) को सबसे छोटी संख्या ([[नमूना न्यूनतम]]) और आँकड़ा समुच्चय के माध्यिका के बीच की मध्य संख्या के रूप में परिभाषित किया गया है। इसे निम्न या 25वें अनुभवजन्य चतुर्थांश के रूप में भी जाना जाता है, क्योंकि 25% आँकड़े इस बिंदु से नीचे है। | |||
* दूसरा चतुर्थांश (''Q''<sub>2</sub>) आँकड़ा समुच्चय का माध्यिका है; इस प्रकार 50% आँकड़े इस बिंदु के नीचे स्थित है। | |||
* तीसरा चतुर्थांश (''Q''<sub>3</sub>) माध्यिका और आँकड़ा समुच्चय के उच्चतम मान ([[नमूना अधिकतम और न्यूनतम]]) के बीच का मध्य मान है। इसे ऊपरी या 75वें अनुभवजन्य चतुर्थांश के रूप में जाना जाता है, क्योंकि 75% आँकड़े इस बिंदु के नीचे स्थित है।<ref name=":0">{{Cite book|title=A modern introduction to probability and statistics: understanding why and how|url=https://archive.org/details/modernintroducti0000unse_h6a1|url-access=limited|date=2005|publisher=Springer|others=Dekking, Michel, 1946–|isbn=978-1-85233-896-1|location=London|pages=[https://archive.org/details/modernintroducti0000unse_h6a1/page/236/ 236-238]|oclc=262680588}}</ref> | |||
न्यूनतम और अधिकतम आँकड़े (जो चतुर्थांश भी हैं) के साथ, ऊपर वर्णित तीन चतुर्थांश आँकड़े का पांच-संख्या सारांश प्रदान करते हैं। यह सारांश आँकड़ों में महत्वपूर्ण है क्योंकि यह [[माध्य (सांख्यिकी)]] और आँकड़े के [[सांख्यिकीय फैलाव|सांख्यिकीय प्रसार]] दोनों के बारे में जानकारी प्रदान करता है। यदि आँकड़ा समुच्चय एक तरफ तिरछा है तो निचले और ऊपरी चतुर्थांश को जानने से इस बात की जानकारी मिलती है कि प्रसार कितना बड़ा है । चूँकि चतुर्थांश दत्तानुसारी बिन्दु की संख्या को समान रूप से विभाजित करते हैं, श्रेणी (सांख्यिकी) चतुर्थांश (अर्थात्, ''Q''<sub>3</sub>-''Q''<sub>2</sub> ≠ ''Q''<sub>2</sub>-''Q''<sub>1</sub>) के बीच समान नहीं होती है। और इसके बजाय [[अन्तःचतुर्थक श्रेणी]] (आईक्यूआर) के रूप में जाना जाता है। जबकि अधिकतम और न्यूनतम भी आँकड़े के प्रसार को दिखाते हैं, आँकड़े में [[ग़ैर|पुरान्त:शायी]] की उपस्थिति, और मध्य 50% के बीच प्रसार में अंतर आँकड़े और बाहरी दत्तानुसारी बिन्दु ऊपरी और निचले चतुर्थांश विशिष्ट दत्तानुसारी बिन्दु के स्थान पर अधिक विस्तृत जानकारी प्रदान कर सकते हैं।<ref>{{Cite web |url=https://magoosh.com/statistics/quartiles-used-statistics/ |archive-url=https://web.archive.org/web/20191210060305/https://magoosh.com/statistics/quartiles-used-statistics/ |archive-date=2019-12-10 |url-status=deviated |title=How are Quartiles Used in Statistics? |last=Knoch |first=Jessica |date=February 23, 2018 |website=[[Magoosh]] |access-date=February 24, 2023}}{{cbignore}}</ref> | |||
== परिभाषाएँ == | == परिभाषाएँ == | ||
[[File:Boxplot vs PDF.svg|thumb|[[ रेखा - चित्र ]] ( | [[File:Boxplot vs PDF.svg|thumb|[[ रेखा - चित्र ]] (चतुर्थांश और एक [[अन्तःचतुर्थक श्रेणी]] के साथ) और एक सामान्य N(0,1σ) का प्रायिकता घनत्व फ़ंक्शन (pdf)<sup>2</sup>) आबादी]] | ||
{| class="wikitable" | {| class="wikitable" | ||
Line 41: | Line 41: | ||
| splits off the highest 25% of data from the lowest 75% | | splits off the highest 25% of data from the lowest 75% | ||
|} | |} | ||
== कंप्यूटिंग के तरीके == | == कंप्यूटिंग के तरीके == | ||
=== असतत वितरण === | === असतत वितरण === | ||
असतत वितरण के लिए, | असतत वितरण के लिए, चतुर्थांश मानो के चयन पर कोई सार्वभौमिक सहमति नहीं है।<ref>{{cite journal |title=सांख्यिकीय पैकेज में नमूना मात्राएँ|journal=American Statistician |date=November 1996 |volume=50 |issue=4 |pages=361–365 |first1=Rob J |last1=Hyndman |author1-link=Rob J. Hyndman |first2=Yanan |last2=Fan |url=http://robjhyndman.com/papers/quantiles/ |doi=10.2307/2684934|jstor=2684934}}</ref> | ||
==== विधि 1 ==== | ==== विधि 1 ==== | ||
# | # क्रमित आँकड़ा समुच्चय को दो-हिस्सों में विभाजित करने के लिए माध्यिका का उपयोग करें। | ||
#* यदि मूल | #* यदि मूल क्रमित आँकड़ा समुच्चय में विषम संख्या में दत्तानुसारी बिन्दु हैं, तो माध्यिका (क्रमित सूची में केंद्रीय मान) को आधे में शामिल न करें। | ||
#* यदि मूल क्रमित | #* यदि मूल क्रमित आँकड़ा समुच्चय में दत्तानुसारी बिन्दु की संख्या सम है, तो इस आँकड़ा समुच्चय को ठीक आधे में विभाजित करें। | ||
# निचला | # निचला चतुर्थांश मान आँकड़े के निचले आधे हिस्से का माध्यिका है। ऊपरी चतुर्थांश मान आँकड़े के ऊपरी आधे हिस्से का माध्यिका है। | ||
यह नियम [[TI-83]] कैलकुलेटर बॉक्सप्लॉट और 1-वार स्टैट्स फ़ंक्शंस द्वारा नियोजित है। | यह नियम [[TI-83|टीआई-83]] कैलकुलेटर बॉक्सप्लॉट और 1-वार स्टैट्स फ़ंक्शंस द्वारा नियोजित है। | ||
==== विधि 2 ==== | ==== विधि 2 ==== | ||
# | # क्रमित आँकड़ा समुच्चय को दो-हिस्सों में विभाजित करने के लिए माध्यिका का उपयोग करें। | ||
#* यदि मूल | #* यदि मूल क्रमित आँकड़ा समुच्चय में विषम संख्या में दत्तानुसारी बिन्दु हैं, तो दोनों हिस्सों में माध्यिका (क्रमित सूची में केंद्रीय मान) शामिल करें। | ||
#* यदि मूल | #* यदि मूल क्रमित आँकड़ा समुच्चय में सम संख्या में दत्तानुसारी बिन्दु हैं, तो इस आँकड़ा समुच्चय को ठीक आधे में विभाजित करें। | ||
# निचला | # निचला चतुर्थांश मान आँकड़े के निचले आधे हिस्से का माध्यिका है। ऊपरी चतुर्थांश मान आँकड़े के ऊपरी आधे हिस्से का माध्यिका है। | ||
इस पद्धति द्वारा प्राप्त | इस पद्धति द्वारा प्राप्त मानो को [[ जॉन टुकी |जॉन टुकी]] के हिंज के रूप में भी जाना जाता है;<ref>{{Cite book|isbn=978-0-201-07616-5|title=अन्वेषणात्मक डेटा विश्लेषण|last1=Tukey|first1=John Wilder|author-link=John Tukey|date=1977|url-access=registration|url=https://archive.org/details/exploratorydataa00tuke_0}}</ref> [[पीछा करना|मिडहिन्ज]] भी देखें। | ||
==== विधि 3 ==== | ==== विधि 3 ==== | ||
# यदि | # यदि दत्तानुसारी बिन्दु की संख्या सम है, तो विधि 3 उपरोक्त विधि 1 या विधि 2 के समान ही प्रारम्भ होती है और आप माध्यिका को दत्तानुसारी बिन्दु के रूप में शामिल करना या न करना चुन सकते हैं। यदि आप माध्यिका को नए दत्तानुसारी बिन्दु के रूप में शामिल करना चुनते हैं, तो विधि 3 के चरण 2 या 3 पर आगे बढ़ें क्योंकि अब आपके पास विषम संख्या में दत्तानुसारी बिन्दु हैं। | ||
# यदि (4n+1) | # यदि (4n+1) दत्तानुसारी बिन्दु हैं, तो निचला चतुर्थांश ''n'' वें आँकड़े मान का 25% और (''n+1'')वें आँकड़े मान का 75% है; ऊपरी चतुर्थांश (''3n+1'')वें दत्तानुसारी बिन्दु का 75% और (''3n+2'')वें दत्तानुसारी बिन्दु का 25% है। | ||
# यदि (4n+3) | # यदि (''4n+3'') दत्तानुसारी बिन्दु हैं, तो निम्न चतुर्थांश (''n+1'')वें आँकड़े मान का 75% और ''(n+2)''वें आँकड़े मान का 25% है; ऊपरी चतुर्थांश (''3n+2)''वें दत्तानुसारी बिन्दु का 25% और ''(3n+3)''वें दत्तानुसारी बिन्दु का 75% है। | ||
==== विधि 4 ==== | ==== विधि 4 ==== | ||
अगर हमारे पास | अगर हमारे पास क्रमित आँकड़ा समुच्चय है <math>x_1, x_2, ..., x_n</math>, हम खोजने के लिए दत्तानुसारी बिन्दु के बीच प्रक्षेपित कर सकते हैं <math>p</math>वें अनुभवजन्य मात्रा यदि <math>x_i</math> में है <math>i/(n+1)</math> मात्रा हैं। यदि हम किसी संख्या के पूर्णांक भाग को निरूपित <math>a</math> करते हैं द्वारा <math>\lfloor a \rfloor</math>, तो अनुभवजन्य क्वांटाइल फ़ंक्शन द्वारा दिया जाता है, | ||
<math>q(p/4) = x_{k} + \alpha(x_{k+1} - x_{k})</math>, | <math>q(p/4) = x_{k} + \alpha(x_{k+1} - x_{k})</math>, | ||
Line 78: | Line 74: | ||
कहाँ <math>k = \lfloor p(n+1)/4 \rfloor</math> और <math>\alpha = p(n+1)/4 - \lfloor p(n+1)/4 \rfloor</math>.<ref name=":0" /> | कहाँ <math>k = \lfloor p(n+1)/4 \rfloor</math> और <math>\alpha = p(n+1)/4 - \lfloor p(n+1)/4 \rfloor</math>.<ref name=":0" /> | ||
आँकड़ा समुच्चय के पहले, दूसरे और तीसरे चतुर्थांश को खोजने के लिए हम मूल्यांकन करेंगे <math>q(0.25)</math>, <math>q(0.5)</math>, और <math>q(0.75)</math> क्रमश। | |||
==== उदाहरण 1 ==== | ==== उदाहरण 1 ==== | ||
क्रमित | क्रमित आँकड़ा समुच्चय: 6, 7, 15, 36, 39, 40, 41, 42, 43, 47, 49 | ||
{| class="wikitable" | {| class="wikitable" | ||
|- | |- | ||
Line 111: | Line 107: | ||
==== उदाहरण 2 ==== | ==== उदाहरण 2 ==== | ||
क्रमित आँकड़ा समुच्चय: 7, 15, 36, 39, 40, 41 | |||
चूंकि | चूंकि दत्तानुसारी बिन्दु की संख्या सम है, इसलिए पहले तीन तरीके समान परिणाम देते हैं। | ||
{| class="wikitable" | {| class="wikitable" | ||
|- | |- | ||
Line 143: | Line 139: | ||
=== निरंतर संभाव्यता वितरण === | === निरंतर संभाव्यता वितरण === | ||
[[File:NormalCDFQuartile3.svg|thumb|सामान्य बंटन के संचयी बंटन फलन पर | [[File:NormalCDFQuartile3.svg|thumb|सामान्य बंटन के संचयी बंटन फलन पर चतुर्थांश]]यदि हम [[निरंतर संभाव्यता वितरण]] को परिभाषित करते हैं <math>P(X)</math> कहाँ <math>X</math> एक [[वास्तविक संख्या]] यादृच्छिक चर है, इसका संचयी वितरण फलन (CDF) द्वारा दिया जाता है, | ||
<math>F_X(x) = P(X \leq x)</math>.<ref name=":0" /> | <math>F_X(x) = P(X \leq x)</math>.<ref name=":0" /> | ||
संचयी बंटन फलन प्रायिकता देता है कि यादृच्छिक चर <math>X</math> मान से कम है <math>x</math>. इसलिए, पहला | संचयी बंटन फलन प्रायिकता देता है कि यादृच्छिक चर <math>X</math> मान से कम है <math>x</math>. इसलिए, पहला चतुर्थांश का मान है <math>x</math> कब <math>F_X(x) = 0.25</math>, दूसरा चतुर्थांश है <math>x</math> कब <math>F_X(x) = 0.5</math>, और तीसरा चतुर्थांश है <math>x</math> कब <math>F_X(x) = 0.75</math>.<ref>{{Cite web|url=https://math.bme.hu/~nandori/Virtual_lab/stat/dist/CDF.pdf|title=6. Distribution and Quantile Functions|website=math.bme.hu}}</ref> के मान <math>x</math> [[मात्रात्मक समारोह]] के साथ पाया जा सकता है <math>Q(p)</math> कहाँ <math>p = 0.25</math> पहले चतुर्थांश के लिए, <math>p = 0.5</math> दूसरी चतुर्थांश के लिए, और <math>p = 0.75</math> तीसरे चतुर्थांश के लिए। क्वांटाइल फ़ंक्शन संचयी वितरण फ़ंक्शन का व्युत्क्रम है यदि संचयी वितरण फ़ंक्शन [[मोनोटोनिक फ़ंक्शन]] है। | ||
== [[बाहरी कारकों के कारण]] == | == [[बाहरी कारकों के कारण]] == | ||
ऐसी विधियाँ हैं जिनके द्वारा सांख्यिकी और सांख्यिकीय विश्लेषण के क्षेत्र में आउटलेयर की जाँच की जा सकती है। आउटलेयर स्थान (माध्य) या ब्याज की प्रक्रिया के पैमाने (परिवर्तनशीलता) में बदलाव के परिणामस्वरूप हो सकते हैं।<ref>{{Cite journal|last=Walfish|first=Steven|date=November 2006|title=सांख्यिकीय बाह्य विधि की समीक्षा|url=http://www.statisticaloutsourcingservices.com/|journal=Pharmaceutical Technology}}</ref> आउटलेयर एक नमूना आबादी का प्रमाण भी हो सकता है जिसका वितरण असामान्य है या दूषित जनसंख्या | ऐसी विधियाँ हैं जिनके द्वारा सांख्यिकी और सांख्यिकीय विश्लेषण के क्षेत्र में आउटलेयर की जाँच की जा सकती है। आउटलेयर स्थान (माध्य) या ब्याज की प्रक्रिया के पैमाने (परिवर्तनशीलता) में बदलाव के परिणामस्वरूप हो सकते हैं।<ref>{{Cite journal|last=Walfish|first=Steven|date=November 2006|title=सांख्यिकीय बाह्य विधि की समीक्षा|url=http://www.statisticaloutsourcingservices.com/|journal=Pharmaceutical Technology}}</ref> आउटलेयर एक नमूना आबादी का प्रमाण भी हो सकता है जिसका वितरण असामान्य है या दूषित जनसंख्या आँकड़ा समुच्चय है। नतीजतन, जैसा कि वर्णनात्मक आंकड़ों का मूल विचार है, जब एक बाहरी का सामना करना पड़ता है, तो हमें इस मूल्य को बाहरी कारण या उत्पत्ति के आगे के विश्लेषण के द्वारा समझाना होगा। चरम प्रेक्षणों के मामलों में, जो एक दुर्लभ घटना नहीं हैं, विशिष्ट मानो का विश्लेषण किया जाना चाहिए। चतुर्थांश के मामले में, इंटरक्वेरटाइल रेंज (आईक्यूआर) का उपयोग आँकड़े को चिह्नित करने के लिए किया जा सकता है जब आँकड़े को तिरछा करने वाले चरम हो सकते हैं; श्रेणी (सांख्यिकी) और [[मानक विचलन]] की तुलना में इंटरक्वेर्टाइल रेंज एक अपेक्षाकृत मजबूत आंकड़ा है (जिसे कभी-कभी प्रतिरोध भी कहा जाता है)। आउटलेयर की जांच करने और बाड़, ऊपरी और निचली सीमाओं को निर्धारित करने के लिए एक गणितीय विधि भी है जिससे आउटलेयर की जांच की जा सके। | ||
पहले और तीसरे | पहले और तीसरे चतुर्थांश और इंटरक्वेर्टाइल रेंज को ऊपर बताए अनुसार निर्धारित करने के बाद, निम्नलिखित सूत्र का उपयोग करके बाड़ की गणना की जाती है: | ||
: <math>\text{Lower fence} = Q_1 - 1.5(\mathrm{IQR}) \, </math> | : <math>\text{Lower fence} = Q_1 - 1.5(\mathrm{IQR}) \, </math> | ||
: <math>\text{Upper fence} = Q_3 + 1.5(\mathrm{IQR}), \,</math>[[File:Boxplot outliers example.jpg|thumb|आउटलेयर्स के साथ बॉक्सप्लॉट आरेख]]जहां क्यू<sub>1</sub> और क्यू<sub>3</sub> क्रमशः प्रथम और तृतीय | : <math>\text{Upper fence} = Q_3 + 1.5(\mathrm{IQR}), \,</math>[[File:Boxplot outliers example.jpg|thumb|आउटलेयर्स के साथ बॉक्सप्लॉट आरेख]]जहां क्यू<sub>1</sub> और क्यू<sub>3</sub> क्रमशः प्रथम और तृतीय चतुर्थांश हैं। निचली बाड़ निचली सीमा है और ऊपरी बाड़ आँकड़े की ऊपरी सीमा है, और इन परिभाषित सीमाओं के बाहर मौजूद किसी भी आँकड़े को बाहरी माना जा सकता है। निचली बाड़ के नीचे या ऊपरी बाड़ के ऊपर कुछ भी ऐसा मामला माना जा सकता है। बाड़ एक दिशानिर्देश प्रदान करते हैं जिसके द्वारा एक बाहरी परिभाषित किया जा सकता है, जिसे अन्य तरीकों से परिभाषित किया जा सकता है। बाड़ एक सीमा को परिभाषित करती है जिसके बाहर एक बाहरी मौजूद होता है; इसे चित्रित करने का एक तरीका एक बाड़ की सीमा है, जिसके बाहर बाहरी लोगों के विपरीत बाहरी लोग हैं। निचले और ऊपरी बाड़ के साथ-साथ आउटलेयर को [[ रेखा - चित्र ]] द्वारा दर्शाया जाना आम है। एक बॉक्सप्लॉट के लिए, केवल लंबवत ऊंचाई विज़ुअलाइज़ किए गए आँकड़ा समुच्चय से मेल खाती है जबकि बॉक्स की क्षैतिज चौड़ाई अप्रासंगिक है। बॉक्सप्लॉट में बाड़ के बाहर स्थित आउटलेयर को प्रतीक के किसी भी विकल्प के रूप में चिह्नित किया जा सकता है, जैसे कि x या o। बाड़ को कभी-कभी मूंछ के रूप में भी जाना जाता है, जबकि पूरे भूखंड दृश्य को बॉक्स-एंड-व्हिस्कर प्लॉट कहा जाता है। | ||
इंटरक्वेर्टाइल रेंज और बॉक्सप्लॉट सुविधाओं की गणना करके सेट किए गए | इंटरक्वेर्टाइल रेंज और बॉक्सप्लॉट सुविधाओं की गणना करके सेट किए गए आँकड़े में एक आउटलाइयर को स्पॉट करते समय, गलती से इसे साक्ष्य के रूप में देखना आसान हो सकता है कि जनसंख्या गैर-सामान्य है या नमूना दूषित है। हालाँकि, इस विधि को जनसंख्या की सामान्यता निर्धारित करने के लिए एक [[परिकल्पना परीक्षण]] का स्थान नहीं लेना चाहिए। नमूना आकार के आधार पर आउटलेयर का महत्व अलग-अलग होता है। यदि नमूना छोटा है, तो अंतःचतुर्थक श्रेणियां प्राप्त करने की अधिक संभावना है जो गैर-प्रतिनिधित्वात्मक रूप से छोटी हैं, जिससे बाड़ संकरी हो जाती है। इसलिए, आउटलेयर के रूप में चिह्नित किए गए आँकड़े को खोजने की अधिक संभावना होगी।<ref>{{Cite journal|last=Dawson|first=Robert|date=July 1, 2011|title=How Significant is a Boxplot Outlier?|journal=Journal of Statistics Education|volume=19|issue=2|doi=10.1080/10691898.2011.11889610|doi-access=free}}</ref> | ||
== | == चतुर्थांश के लिए कंप्यूटर सॉफ्टवेयर == | ||
{| class="wikitable" | {| class="wikitable" | ||
|+ | |+ | ||
Line 175: | Line 171: | ||
|Method 3 | |Method 3 | ||
|- | |- | ||
| | |टीआई-8X series calculators | ||
|1-Var Stats | |1-Var Stats | ||
|Method 1 | |Method 1 | ||
Line 193: | Line 189: | ||
एक्सेल: | एक्सेल: | ||
एक्सेल फ़ंक्शन QUARTILE(सरणी, क्वार्ट) ऊपर से विधि 3 का उपयोग करते हुए | एक्सेल फ़ंक्शन QUARTILE(सरणी, क्वार्ट) ऊपर से विधि 3 का उपयोग करते हुए आँकड़े की दी गई सरणी के लिए वांछित चतुर्थांश मान प्रदान करता है। चतुर्थांश फ़ंक्शन में, सरणी संख्याओं का आँकड़ा समुच्चय है जिसका विश्लेषण किया जा रहा है और क्वार्ट निम्नलिखित 5 मानों में से कोई भी है जिसके आधार पर चतुर्थांश की गणना की जा रही है। <ref>{{Cite web|url=https://exceljet.net/excel-functions/excel-quartile-function|title=How to use the Excel QUARTILE function {{!}} Exceljet|website=exceljet.net|access-date=December 11, 2019}}</ref> | ||
{| class="wikitable" | {| class="wikitable" | ||
|+ | |+ | ||
Line 216: | Line 212: | ||
मतलब: | मतलब: | ||
मैटलैब में | मैटलैब में चतुर्थांश की गणना करने के लिए, फ़ंक्शन क्वांटाइल (ए, पी) का उपयोग किया जा सकता है। जहाँ A विश्लेषण किए जा रहे आँकड़े का सदिश है और p वह प्रतिशत है जो नीचे बताए अनुसार चतुर्थांश से संबंधित है। <ref>{{Cite web|url=https://www.mathworks.com/help/stats/quantile.html|title=Quantiles of a data set – MATLAB quantile|website=www.mathworks.com|access-date=December 11, 2019}}</ref> | ||
{| class="wikitable" | {| class="wikitable" | ||
|+ | |+ |
Revision as of 10:11, 29 March 2023
सांख्यिकी में, चतुर्थांश एक प्रकार का परिमाण है जो अधिक-या-कम समान आकार का दत्तानुसारी बिन्दु की संख्या को चार भागों में विभाजित करता है, या 'तिमाही', है। चतुर्थांश की गणना करने के लिए आँकड़े को सबसे छोटे से सबसे बड़े क्रम में क्रमबद्ध किया जाना चाहिए; इस प्रकार, चतुर्थांश क्रम सांख्यिकी का एक रूप है। तीन मुख्य चतुर्थांश इस प्रकार हैं:
- पहला चतुर्थांश (Q1) को सबसे छोटी संख्या (नमूना न्यूनतम) और आँकड़ा समुच्चय के माध्यिका के बीच की मध्य संख्या के रूप में परिभाषित किया गया है। इसे निम्न या 25वें अनुभवजन्य चतुर्थांश के रूप में भी जाना जाता है, क्योंकि 25% आँकड़े इस बिंदु से नीचे है।
- दूसरा चतुर्थांश (Q2) आँकड़ा समुच्चय का माध्यिका है; इस प्रकार 50% आँकड़े इस बिंदु के नीचे स्थित है।
- तीसरा चतुर्थांश (Q3) माध्यिका और आँकड़ा समुच्चय के उच्चतम मान (नमूना अधिकतम और न्यूनतम) के बीच का मध्य मान है। इसे ऊपरी या 75वें अनुभवजन्य चतुर्थांश के रूप में जाना जाता है, क्योंकि 75% आँकड़े इस बिंदु के नीचे स्थित है।[1]
न्यूनतम और अधिकतम आँकड़े (जो चतुर्थांश भी हैं) के साथ, ऊपर वर्णित तीन चतुर्थांश आँकड़े का पांच-संख्या सारांश प्रदान करते हैं। यह सारांश आँकड़ों में महत्वपूर्ण है क्योंकि यह माध्य (सांख्यिकी) और आँकड़े के सांख्यिकीय प्रसार दोनों के बारे में जानकारी प्रदान करता है। यदि आँकड़ा समुच्चय एक तरफ तिरछा है तो निचले और ऊपरी चतुर्थांश को जानने से इस बात की जानकारी मिलती है कि प्रसार कितना बड़ा है । चूँकि चतुर्थांश दत्तानुसारी बिन्दु की संख्या को समान रूप से विभाजित करते हैं, श्रेणी (सांख्यिकी) चतुर्थांश (अर्थात्, Q3-Q2 ≠ Q2-Q1) के बीच समान नहीं होती है। और इसके बजाय अन्तःचतुर्थक श्रेणी (आईक्यूआर) के रूप में जाना जाता है। जबकि अधिकतम और न्यूनतम भी आँकड़े के प्रसार को दिखाते हैं, आँकड़े में पुरान्त:शायी की उपस्थिति, और मध्य 50% के बीच प्रसार में अंतर आँकड़े और बाहरी दत्तानुसारी बिन्दु ऊपरी और निचले चतुर्थांश विशिष्ट दत्तानुसारी बिन्दु के स्थान पर अधिक विस्तृत जानकारी प्रदान कर सकते हैं।[2]
परिभाषाएँ
Symbol | Names | Definition |
---|---|---|
Q1 |
|
splits off the lowest 25% of data from the highest 75% |
Q2 |
|
cuts data set in half |
Q3 |
|
splits off the highest 25% of data from the lowest 75% |
कंप्यूटिंग के तरीके
असतत वितरण
असतत वितरण के लिए, चतुर्थांश मानो के चयन पर कोई सार्वभौमिक सहमति नहीं है।[3]
विधि 1
- क्रमित आँकड़ा समुच्चय को दो-हिस्सों में विभाजित करने के लिए माध्यिका का उपयोग करें।
- यदि मूल क्रमित आँकड़ा समुच्चय में विषम संख्या में दत्तानुसारी बिन्दु हैं, तो माध्यिका (क्रमित सूची में केंद्रीय मान) को आधे में शामिल न करें।
- यदि मूल क्रमित आँकड़ा समुच्चय में दत्तानुसारी बिन्दु की संख्या सम है, तो इस आँकड़ा समुच्चय को ठीक आधे में विभाजित करें।
- निचला चतुर्थांश मान आँकड़े के निचले आधे हिस्से का माध्यिका है। ऊपरी चतुर्थांश मान आँकड़े के ऊपरी आधे हिस्से का माध्यिका है।
यह नियम टीआई-83 कैलकुलेटर बॉक्सप्लॉट और 1-वार स्टैट्स फ़ंक्शंस द्वारा नियोजित है।
विधि 2
- क्रमित आँकड़ा समुच्चय को दो-हिस्सों में विभाजित करने के लिए माध्यिका का उपयोग करें।
- यदि मूल क्रमित आँकड़ा समुच्चय में विषम संख्या में दत्तानुसारी बिन्दु हैं, तो दोनों हिस्सों में माध्यिका (क्रमित सूची में केंद्रीय मान) शामिल करें।
- यदि मूल क्रमित आँकड़ा समुच्चय में सम संख्या में दत्तानुसारी बिन्दु हैं, तो इस आँकड़ा समुच्चय को ठीक आधे में विभाजित करें।
- निचला चतुर्थांश मान आँकड़े के निचले आधे हिस्से का माध्यिका है। ऊपरी चतुर्थांश मान आँकड़े के ऊपरी आधे हिस्से का माध्यिका है।
इस पद्धति द्वारा प्राप्त मानो को जॉन टुकी के हिंज के रूप में भी जाना जाता है;[4] मिडहिन्ज भी देखें।
विधि 3
- यदि दत्तानुसारी बिन्दु की संख्या सम है, तो विधि 3 उपरोक्त विधि 1 या विधि 2 के समान ही प्रारम्भ होती है और आप माध्यिका को दत्तानुसारी बिन्दु के रूप में शामिल करना या न करना चुन सकते हैं। यदि आप माध्यिका को नए दत्तानुसारी बिन्दु के रूप में शामिल करना चुनते हैं, तो विधि 3 के चरण 2 या 3 पर आगे बढ़ें क्योंकि अब आपके पास विषम संख्या में दत्तानुसारी बिन्दु हैं।
- यदि (4n+1) दत्तानुसारी बिन्दु हैं, तो निचला चतुर्थांश n वें आँकड़े मान का 25% और (n+1)वें आँकड़े मान का 75% है; ऊपरी चतुर्थांश (3n+1)वें दत्तानुसारी बिन्दु का 75% और (3n+2)वें दत्तानुसारी बिन्दु का 25% है।
- यदि (4n+3) दत्तानुसारी बिन्दु हैं, तो निम्न चतुर्थांश (n+1)वें आँकड़े मान का 75% और (n+2)वें आँकड़े मान का 25% है; ऊपरी चतुर्थांश (3n+2)वें दत्तानुसारी बिन्दु का 25% और (3n+3)वें दत्तानुसारी बिन्दु का 75% है।
विधि 4
अगर हमारे पास क्रमित आँकड़ा समुच्चय है , हम खोजने के लिए दत्तानुसारी बिन्दु के बीच प्रक्षेपित कर सकते हैं वें अनुभवजन्य मात्रा यदि में है मात्रा हैं। यदि हम किसी संख्या के पूर्णांक भाग को निरूपित करते हैं द्वारा , तो अनुभवजन्य क्वांटाइल फ़ंक्शन द्वारा दिया जाता है,
,
कहाँ और .[1]
आँकड़ा समुच्चय के पहले, दूसरे और तीसरे चतुर्थांश को खोजने के लिए हम मूल्यांकन करेंगे , , और क्रमश।
उदाहरण 1
क्रमित आँकड़ा समुच्चय: 6, 7, 15, 36, 39, 40, 41, 42, 43, 47, 49
Method 1 | Method 2 | Method 3 | Method 4 | |
---|---|---|---|---|
Q1 | 15 | 25.5 | 20.25 | 15 |
Q2 | 40 | 40 | 40 | 40 |
Q3 | 43 | 42.5 | 42.75 | 43 |
उदाहरण 2
क्रमित आँकड़ा समुच्चय: 7, 15, 36, 39, 40, 41
चूंकि दत्तानुसारी बिन्दु की संख्या सम है, इसलिए पहले तीन तरीके समान परिणाम देते हैं।
Method 1 | Method 2 | Method 3 | Method 4 | |
---|---|---|---|---|
Q1 | 15 | 15 | 15 | 13 |
Q2 | 37.5 | 37.5 | 37.5 | 37.5 |
Q3 | 40 | 40 | 40 | 40.25 |
निरंतर संभाव्यता वितरण
यदि हम निरंतर संभाव्यता वितरण को परिभाषित करते हैं कहाँ एक वास्तविक संख्या यादृच्छिक चर है, इसका संचयी वितरण फलन (CDF) द्वारा दिया जाता है,
.[1]
संचयी बंटन फलन प्रायिकता देता है कि यादृच्छिक चर मान से कम है . इसलिए, पहला चतुर्थांश का मान है कब , दूसरा चतुर्थांश है कब , और तीसरा चतुर्थांश है कब .[5] के मान मात्रात्मक समारोह के साथ पाया जा सकता है कहाँ पहले चतुर्थांश के लिए, दूसरी चतुर्थांश के लिए, और तीसरे चतुर्थांश के लिए। क्वांटाइल फ़ंक्शन संचयी वितरण फ़ंक्शन का व्युत्क्रम है यदि संचयी वितरण फ़ंक्शन मोनोटोनिक फ़ंक्शन है।
बाहरी कारकों के कारण
ऐसी विधियाँ हैं जिनके द्वारा सांख्यिकी और सांख्यिकीय विश्लेषण के क्षेत्र में आउटलेयर की जाँच की जा सकती है। आउटलेयर स्थान (माध्य) या ब्याज की प्रक्रिया के पैमाने (परिवर्तनशीलता) में बदलाव के परिणामस्वरूप हो सकते हैं।[6] आउटलेयर एक नमूना आबादी का प्रमाण भी हो सकता है जिसका वितरण असामान्य है या दूषित जनसंख्या आँकड़ा समुच्चय है। नतीजतन, जैसा कि वर्णनात्मक आंकड़ों का मूल विचार है, जब एक बाहरी का सामना करना पड़ता है, तो हमें इस मूल्य को बाहरी कारण या उत्पत्ति के आगे के विश्लेषण के द्वारा समझाना होगा। चरम प्रेक्षणों के मामलों में, जो एक दुर्लभ घटना नहीं हैं, विशिष्ट मानो का विश्लेषण किया जाना चाहिए। चतुर्थांश के मामले में, इंटरक्वेरटाइल रेंज (आईक्यूआर) का उपयोग आँकड़े को चिह्नित करने के लिए किया जा सकता है जब आँकड़े को तिरछा करने वाले चरम हो सकते हैं; श्रेणी (सांख्यिकी) और मानक विचलन की तुलना में इंटरक्वेर्टाइल रेंज एक अपेक्षाकृत मजबूत आंकड़ा है (जिसे कभी-कभी प्रतिरोध भी कहा जाता है)। आउटलेयर की जांच करने और बाड़, ऊपरी और निचली सीमाओं को निर्धारित करने के लिए एक गणितीय विधि भी है जिससे आउटलेयर की जांच की जा सके।
पहले और तीसरे चतुर्थांश और इंटरक्वेर्टाइल रेंज को ऊपर बताए अनुसार निर्धारित करने के बाद, निम्नलिखित सूत्र का उपयोग करके बाड़ की गणना की जाती है:
- जहां क्यू1 और क्यू3 क्रमशः प्रथम और तृतीय चतुर्थांश हैं। निचली बाड़ निचली सीमा है और ऊपरी बाड़ आँकड़े की ऊपरी सीमा है, और इन परिभाषित सीमाओं के बाहर मौजूद किसी भी आँकड़े को बाहरी माना जा सकता है। निचली बाड़ के नीचे या ऊपरी बाड़ के ऊपर कुछ भी ऐसा मामला माना जा सकता है। बाड़ एक दिशानिर्देश प्रदान करते हैं जिसके द्वारा एक बाहरी परिभाषित किया जा सकता है, जिसे अन्य तरीकों से परिभाषित किया जा सकता है। बाड़ एक सीमा को परिभाषित करती है जिसके बाहर एक बाहरी मौजूद होता है; इसे चित्रित करने का एक तरीका एक बाड़ की सीमा है, जिसके बाहर बाहरी लोगों के विपरीत बाहरी लोग हैं। निचले और ऊपरी बाड़ के साथ-साथ आउटलेयर को रेखा - चित्र द्वारा दर्शाया जाना आम है। एक बॉक्सप्लॉट के लिए, केवल लंबवत ऊंचाई विज़ुअलाइज़ किए गए आँकड़ा समुच्चय से मेल खाती है जबकि बॉक्स की क्षैतिज चौड़ाई अप्रासंगिक है। बॉक्सप्लॉट में बाड़ के बाहर स्थित आउटलेयर को प्रतीक के किसी भी विकल्प के रूप में चिह्नित किया जा सकता है, जैसे कि x या o। बाड़ को कभी-कभी मूंछ के रूप में भी जाना जाता है, जबकि पूरे भूखंड दृश्य को बॉक्स-एंड-व्हिस्कर प्लॉट कहा जाता है।
इंटरक्वेर्टाइल रेंज और बॉक्सप्लॉट सुविधाओं की गणना करके सेट किए गए आँकड़े में एक आउटलाइयर को स्पॉट करते समय, गलती से इसे साक्ष्य के रूप में देखना आसान हो सकता है कि जनसंख्या गैर-सामान्य है या नमूना दूषित है। हालाँकि, इस विधि को जनसंख्या की सामान्यता निर्धारित करने के लिए एक परिकल्पना परीक्षण का स्थान नहीं लेना चाहिए। नमूना आकार के आधार पर आउटलेयर का महत्व अलग-अलग होता है। यदि नमूना छोटा है, तो अंतःचतुर्थक श्रेणियां प्राप्त करने की अधिक संभावना है जो गैर-प्रतिनिधित्वात्मक रूप से छोटी हैं, जिससे बाड़ संकरी हो जाती है। इसलिए, आउटलेयर के रूप में चिह्नित किए गए आँकड़े को खोजने की अधिक संभावना होगी।[7]
चतुर्थांश के लिए कंप्यूटर सॉफ्टवेयर
Environment | Function | Quartile Method |
---|---|---|
Microsoft Excel | QUARTILE.EXC | Method 4 |
Microsoft Excel | QUARTILE.INC | Method 3 |
टीआई-8X series calculators | 1-Var Stats | Method 1 |
R | fivenum | Method 2 |
Python | numpy.percentile | Method 3 |
Python | pandas.DataFrame.describe | Method 3 |
एक्सेल:
एक्सेल फ़ंक्शन QUARTILE(सरणी, क्वार्ट) ऊपर से विधि 3 का उपयोग करते हुए आँकड़े की दी गई सरणी के लिए वांछित चतुर्थांश मान प्रदान करता है। चतुर्थांश फ़ंक्शन में, सरणी संख्याओं का आँकड़ा समुच्चय है जिसका विश्लेषण किया जा रहा है और क्वार्ट निम्नलिखित 5 मानों में से कोई भी है जिसके आधार पर चतुर्थांश की गणना की जा रही है। [8]
Quart | Output QUARTILE Value |
---|---|
0 | Minimum value |
1 | Lower Quartile (25th percentile) |
2 | Median |
3 | Upper Quartile (75th percentile) |
4 | Maximum value |
मतलब:
मैटलैब में चतुर्थांश की गणना करने के लिए, फ़ंक्शन क्वांटाइल (ए, पी) का उपयोग किया जा सकता है। जहाँ A विश्लेषण किए जा रहे आँकड़े का सदिश है और p वह प्रतिशत है जो नीचे बताए अनुसार चतुर्थांश से संबंधित है। [9]
p | Output QUARTILE Value |
---|---|
0 | Minimum value |
0.25 | Lower Quartile (25th percentile) |
0.5 | Median |
0.75 | Upper Quartile (75th percentile) |
1 | Maximum value |
यह भी देखें
- पांच अंकों का सारांश
- रेंज (सांख्यिकी)
- रेखा - चित्र
- अन्तःचतुर्थक श्रेणी
- सारांश आँकड़े
- क्वांटाइल
संदर्भ
- ↑ 1.0 1.1 1.2 A modern introduction to probability and statistics: understanding why and how. Dekking, Michel, 1946–. London: Springer. 2005. pp. 236-238. ISBN 978-1-85233-896-1. OCLC 262680588.
{{cite book}}
: CS1 maint: others (link) - ↑ Knoch, Jessica (February 23, 2018). "How are Quartiles Used in Statistics?". Magoosh. Archived from the original on 2019-12-10. Retrieved February 24, 2023.
- ↑ Hyndman, Rob J; Fan, Yanan (November 1996). "सांख्यिकीय पैकेज में नमूना मात्राएँ". American Statistician. 50 (4): 361–365. doi:10.2307/2684934. JSTOR 2684934.
- ↑ Tukey, John Wilder (1977). अन्वेषणात्मक डेटा विश्लेषण. ISBN 978-0-201-07616-5.
- ↑ "6. Distribution and Quantile Functions" (PDF). math.bme.hu.
- ↑ Walfish, Steven (November 2006). "सांख्यिकीय बाह्य विधि की समीक्षा". Pharmaceutical Technology.
- ↑ Dawson, Robert (July 1, 2011). "How Significant is a Boxplot Outlier?". Journal of Statistics Education. 19 (2). doi:10.1080/10691898.2011.11889610.
- ↑ "How to use the Excel QUARTILE function | Exceljet". exceljet.net. Retrieved December 11, 2019.
- ↑ "Quantiles of a data set – MATLAB quantile". www.mathworks.com. Retrieved December 11, 2019.
बाहरी संबंध
- Quartile – from MathWorld Includes references and compares various methods to compute quartiles
- Quartiles – From MathForum.org
- Quartiles calculator – simple quartiles calculator
- Quartiles – An example how to calculate it