ऊर्जा संरक्षण: Difference between revisions
No edit summary |
|||
(18 intermediate revisions by 6 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Law of physics and chemistry}} | {{Short description|Law of physics and chemistry}} | ||
{{Continuum mechanics |laws}} | {{Continuum mechanics |laws}} | ||
भौतिकी और रसायन विज्ञान में, ऊर्जा के | [[भौतिक विज्ञान|भौतिकी]] और रसायन विज्ञान में, '''ऊर्जा संरक्षण''' नियम के अनुसार किसी विलगित निकाय की कुल ऊर्जा नियत रहती है, इसे समय के साथ संरक्षित कहा जाता है।<ref name=Feynman2Ch1S2>{{cite book |author=Richard Feynman |title=The Feynman Lectures on Physics Vol I |publisher=Addison Wesley |year=1970 |isbn=978-0-201-02115-8 |url=https://feynmanlectures.caltech.edu/I_04.html}}</ref> यह नियम, सर्वप्रथम एमिली डु चेटेलेट द्वारा प्रस्तावित और परीक्षण किया गया।<ref name="Arianrhod" /><ref name=Hagengruber/> ऊर्जा न तो उत्पन्न की जा सकती है और न ही नष्ट किया जा सकती है, इसे केवल एक रूप से दूसरे रूप में रूपांतरित या स्थानांतरित किया जा सकता है। उदाहरण के लिए, डायनामाइट की एक छड़ के विस्फोटित होने पर रासायनिक ऊर्जा गतिज ऊर्जा में परिवर्तित हो जाती है। यदि विस्फोट में उत्सर्जित ऊर्जा के सभी रूप एकत्रित हो जाये, जैसे गतिज ऊर्जा और टुकड़ों की स्थतिज ऊर्जा, साथ ही ऊष्मा और ध्वनि, तो डायनामाइट के दहन में रासायनिक ऊर्जा की कमी प्राप्त होगी। | ||
उत्कृष्ट रूप से, ऊर्जा का संरक्षण [[द्रव्यमान]] के संरक्षण से अलग था। हालाँकि, विशेष सापेक्षता के E=mc<sup>2</sup> अनुसार, ऊर्जा तथा द्रव्यमान से सम्बंधित है तथा इसी प्रकार द्रव्यमान ऊर्जा से सम्बंधित है औरअब विज्ञान का यह मानना है कि द्रव्यमान-ऊर्जा समग्र रूप से संरक्षित है। सैद्धांतिक रूप से, इसका तात्पर्य यह है कि द्रव्यमान वाली कोई भी वस्तु स्वयं शुद्ध ऊर्जा में परिवर्तित हो सकती है, और इसके विपरीत भी। हालांकि यह माना जाता है कि यह केवल सबसे अधिकतम भौतिक परिस्थितियों में ही संभव है, जैसे कि ब्रह्मांड में बिग बैंग के तुरंत बाद या जब कृष्ण विवर (ब्लैक होल) हॉकिंग विकिरण उत्सर्जित करते हैं। | |||
निरंतर समय | निरंतर समय अंतरण समरूपता के परिणामस्वरूप नोथर के प्रमेय द्वारा ऊर्जा के संरक्षण को सिद्ध किया जा सकता है, अर्थात इस तथ्य से कि भौतिकी के नियम समय के साथ नहीं बदलते हैं। | ||
ऊर्जा के संरक्षण के | ऊर्जा के संरक्षण के नियम का एक परिणाम यह है कि पहली तरह की एक सतत गति मशीन मौजूद नहीं हो सकती है, यानी बाहरी ऊर्जा आपूर्ति के बिना कोई भी प्रणाली अपने परिवेश में असीमित मात्रा में ऊर्जा नहीं पहुंचा सकती है।<ref>Planck, M. (1923/1927). ''Treatise on Thermodynamics'', third English edition translated by A. Ogg from the seventh German edition, Longmans, Green & Co., London, page 40.</ref> उन प्रणालियों के लिए जिनमें समय अंतरण समरूपता नहीं है, ऊर्जा के संरक्षण को परिभाषित करना संभव नहीं हो सकता है। सामान्य सापेक्षता में घुमावदार स्पेसटाइम<ref>{{cite journal|last1=Witten|first1=Edward|title=A new proof of the positive energy theorem|journal=Communications in Mathematical Physics|volume=80|issue=3|year=1981|pages=381–402|issn=0010-3616|doi=10.1007/BF01208277|bibcode=1981CMaPh..80..381W|s2cid=1035111|url=https://www.sns.ias.edu/ckfinder/userfiles/files/%5B32%5DCMP_80_1981.pdf|access-date=12 December 2017|archive-date=25 November 2016|archive-url=https://web.archive.org/web/20161125044504/https://www.sns.ias.edu/ckfinder/userfiles/files/%5B32%5DCMP_80_1981.pdf|url-status=dead}}</ref> या संघनित पदार्थ भौतिकी में समय क्रिस्टल उदाहरणों में शामिल हैं।<ref name="Grossman 2012">{{cite web|last1=Grossman|first1=Lisa|title=Death-defying time crystal could outlast the universe|url=https://www.newscientist.com/article/mg21328484-000-death-defying-time-crystal-could-outlast-the-universe/|website=newscientist.com|publisher=New Scientist|archive-url=https://archive.today/20170202104619/https://www.newscientist.com/article/mg21328484-000-death-defying-time-crystal-could-outlast-the-universe/|archive-date=2 February 2017|date=18 January 2012|url-status=dead}}</ref><ref name="Cowen 2012">{{cite web|last1=Cowen|first1=Ron|title="Time Crystals" Could Be a Legitimate Form of Perpetual Motion|url=https://www.scientificamerican.com/article/time-crystals-could-be-legitimate-form-perpetual-motion/|website=scientificamerican.com|publisher=Scientific American|archive-url=https://archive.today/20170202101455/https://www.scientificamerican.com/article/time-crystals-could-be-legitimate-form-perpetual-motion/|archive-date=2 February 2017|date=27 February 2012|url-status=dead}}</ref><ref name="Powell 2013">{{cite journal|last1=Powell|first1=Devin|title=Can matter cycle through shapes eternally?|journal=Nature|year=2013|issn=1476-4687|doi=10.1038/nature.2013.13657|s2cid=181223762|url=http://www.nature.com/news/can-matter-cycle-through-shapes-eternally-1.13657|archive-url=https://archive.today/20170203080014/http://www.nature.com/news/can-matter-cycle-through-shapes-eternally-1.13657|archive-date=3 February 2017|url-status=dead}}</ref><ref name="Gibney 2017">{{cite journal|last1=Gibney|first1=Elizabeth|title=The quest to crystallize time|journal=Nature|volume=543|issue=7644|year=2017|pages=164–166|issn=0028-0836|doi=10.1038/543164a|pmid=28277535|url=http://www.nature.com/news/the-quest-to-crystallize-time-1.21595|archive-url=https://archive.today/20170313115721/http://www.nature.com/news/the-quest-to-crystallize-time-1.21595|archive-date=13 March 2017|url-status=dead|bibcode=2017Natur.543..164G|s2cid=4460265}}</ref> | ||
== इतिहास == | == इतिहास == | ||
थेल्स ऑफ़ मिलेटस के रूप में प्राचीन दार्शनिक 550 ईसा पूर्व में कुछ मूलभूत पदार्थ के संरक्षण के संकेत थे जिनसे सब कुछ बना है। हालांकि, आज हम जिसे "द्रव्यमान-ऊर्जा" के रूप में जानते हैं, उनके सिद्धांतों की पहचान करने का कोई विशेष कारण नहीं है (उदाहरण के लिए, थेल्स ने सोचा कि यह जल था)। एम्पेडोकल्स (490-430 ईसा पूर्व) ने लिखा है कि चार जड़ों (पृथ्वी, वायु, जल, अग्नि) से बनी उनकी सार्वभौमिक निकाय में, "कुछ भी नहीं आता या नष्ट नहीं होता"<ref>{{cite journal|last=Janko|first=Richard|title=Empedocles, "On Nature"|journal=Zeitschrift für Papyrologie und Epigraphik|year=2004 |volume=150 |pages=1–26|url=http://ancphil.lsa.umich.edu/-/downloads/faculty/janko/empedocles-nature.pdf }}</ref> इसके बजाय, इन तत्वों को निरंतर पुनर्व्यवस्थापन का सामना करना पड़ता है। दूसरी ओर एपिकुरस (350 ईसा पूर्व) का मानना था कि ब्रह्मांड में सब कुछ पदार्थ की अविभाज्य इकाइयों से बना है ('परमाणुओं' के प्राचीन अग्रदूत) और उन्हें भी संरक्षण की आवश्यकता के बारे में कुछ विचार था, जिसमें कहा गया था कि "योग कुल चीजें हमेशा वैसी ही थीं जैसी अभी हैं, और ऐसी ही रहेंगी।"<ref>{{cite book|last=Laertius|first=Diogenes|title=Lives of Eminent Philosophers: Epicurus|url=https://www-loebclassics.com/view/diogenes_laertius-lives_eminent_philosophers_book_x_epicurus/1925/pb_LCL185.569.xml?result=1&rskey=YoU4V6}}{{Dead link|date=March 2021 |bot=InternetArchiveBot |fix-attempted=yes }}. This passage comes from a letter quoted in full by Diogenes, and purportedly written by Epicurus himself in which he lays out the tenets of his philosophy.</ref> | |||
1605 में, साइमन स्टीविनस इस सिद्धांत के आधार पर | 1605 में, साइमन स्टीविनस इस सिद्धांत के आधार पर सांख्यिकी में कई समस्याओं को हल करने में सक्षम था कि सतत गति असंभव थी। | ||
1639 में, गैलीलियो ने कई स्थितियों के अपने विश्लेषण को प्रकाशित किया | 1639 में, गैलीलियो ने कई स्थितियों के अपने विश्लेषण को प्रकाशित किया (जिसमें प्रसिद्ध "बाधित लोलक" भी शामिल है) जिसे (आधुनिक भाषा में) दकियानूसी ढंग से स्थितिज ऊर्जा को गतिज ऊर्जा में परिवर्तित करने के रूप में वर्णित किया जा सकता है। अनिवार्य रूप से, उन्होंने बताया कि एक गतिमान पिंड जिस ऊंचाई से गिरता है, वह उस ऊंचाई के बराबर होता है जिससे वह गिरता है, और इस अवलोकन का उपयोग जड़ता के विचार का अनुमान लगाने के लिए किया। इस अवलोकन का उल्लेखनीय पहलू यह है कि एक गतिमान पिंड जिस ऊंचाई तक घर्षण रहित सतह पर चढ़ता है, वह सतह के आकार पर निर्भर नहीं करता है। | ||
1669 में, क्रिस्टियान ह्यूजेंस ने | 1669 में, क्रिस्टियान ह्यूजेंस ने टकराव के अपने नियमों को प्रकाशित किया। पिंडों के टकराने से पहले और बाद में अपरिवर्तनीय होने के रूप में उन्होंने जिन मात्राओं को सूचीबद्ध किया, उनमें उनके रैखिक गति के योग के साथ-साथ उनकी गतिज ऊर्जाओं का योग भी है। हालांकि, प्रत्यस्थ और अप्रत्यस्थ टक्कर के बीच का अंतर उस समय समझ में नहीं आया था। इससे बाद के शोधकर्ताओं के बीच विवाद पैदा हो गया कि इनमें से कौन सी संरक्षित मात्रा अधिक मौलिक थी। अपने होरोलोगियम ऑसिलेटोरियम में, उन्होंने एक गतिमान पिंड की चढ़ाई की ऊंचाई के बारे में बहुत स्पष्ट बयान दिया, और इस विचार को सतत गति की असंभवता से जोड़ा। लोलक गति की गतिशीलता का ह्यूजेंस का अध्ययन एक ही सिद्धांत पर आधारित था, कि भारी वस्तु का गुरुत्वाकर्षण केंद्र खुद को नहीं उठा सकता है। | ||
[[File:Gottfried Wilhelm Leibniz.jpg|thumb|150px|गॉटफ्रीड लिबनिज़]] | [[File:Gottfried Wilhelm Leibniz.jpg|thumb|150px|गॉटफ्रीड लिबनिज़]] | ||
यह 1676-1689 के दौरान | यह 1676-1689 के दौरान लाइबनिज थे जिन्होंने पहली बार गति (गतिज ऊर्जा) से जुड़ी ऊर्जा के गणितीय सूत्रीकरण का प्रयास किया था। टक्कर पर ह्यूजेन्स के कार्य का उपयोग करते हुए, लीबनिज़ ने देखा कि कई यांत्रिक प्रणालियों में (कई द्रव्यमानों का, m<sub>i</sub> प्रत्येक वेग के साथ v<sub>i</sub>), | ||
:<math>\sum_{i} m_i v_i^2</math> | :<math>\sum_{i} m_i v_i^2</math> | ||
द्रव्यमानो के परस्पर प्रभावित होने तक संरक्षित किया गया। उन्होंने इस मात्रा को निकाय की विस वाइवा या जीवित शक्ति कहा। यह सिद्धांत उन स्थितियों में गतिज ऊर्जा के अनुमानित संरक्षण के सटीक विवरण का प्रतिनिधित्व करता है जहां कोई घर्षण नहीं होता है। उस समय के कई भौतिकविदों, जैसे न्यूटन, ने माना कि संवेग का संरक्षण, जो कि घर्षण के साथ निकायों में भी होता है, जैसा कि संवेग द्वारा परिभाषित किया गया है: | |||
:<math>\sum_{i} m_i v_i</math> | :<math>\sum_{i} m_i v_i</math> | ||
संरक्षित | संरक्षित विज़ वाइवा था। बाद में यह दिखाया गया कि प्रत्यस्थ टक्कर जैसी उचित परिस्थितियों को देखते हुए दोनों मात्राओं को एक साथ संरक्षित किया जाता है। | ||
1687 में, | 1687 में, आइजैक न्यूटन ने अपना प्रिंसिपिया प्रकाशित किया, जो बल और गति की अवधारणा के आसपास आयोजित किया गया था। हालांकि, शोधकर्ताओं को यह पहचानने की जल्दी थी कि पुस्तक में निर्धारित सिद्धांत, जबकि बिंदु द्रव्यमान के लिए ठीक हैं, कठोर और द्रव निकायों की गति से निपटने के लिए पर्याप्त नहीं थे। कुछ अन्य सिद्धांतों की भी आवश्यकता थी। | ||
[[File:Daniel Bernoulli 001.jpg|thumb|left|150px|डैनियल बर्नौली]] | [[File:Daniel Bernoulli 001.jpg|thumb|left|150px|डैनियल बर्नौली]] | ||
विज़ | विज़ वाइवा के संरक्षण के नियम को पिता और पुत्र की जोड़ी, जोहान और डैनियल बर्नौली ने चैंपियन बनाया था। पूर्व ने आभासी कार्य के सिद्धांत को 1715 में अपनी पूर्ण व्यापकता में उपयोग किए जाने के रूप में प्रतिपादित किया, जबकि बाद वाले ने 1738 में प्रकाशित अपने हाइड्रोडायनामिका को इस एकल विज़ वाइवा संरक्षण सिद्धांत पर आधारित किया। डेनियल के बहते पानी के विज़ वाइवा के नुकसान के अध्ययन ने उन्हें बर्नौली के सिद्धांत को तैयार करने के लिए प्रेरित किया, जो नुकसान को हाइड्रोडायनामिक दाब में परिवर्तन के आनुपातिक होने का दावा करता है। डैनियल ने हाइड्रोलिक मशीनों के लिए कार्य और दक्षता की धारणा भी तैयार की और उन्होंने गैसों का गतिज सिद्धांत दिया, और गैस के अणुओं की गतिज ऊर्जा को गैस के तापमान से जोड़ा। | ||
महाद्वीपीय भौतिकविदों द्वारा विज़ | महाद्वीपीय भौतिकविदों द्वारा विज़ वाइवा पर इस फोकस ने अंततः यांत्रिकी को नियंत्रित करने वाले स्थिरता सिद्धांतों की खोज की, जैसे डी'अलेम्बर्ट के सिद्धांत, लैग्रैंगियन और यांत्रिकी के हैमिल्टनियन फॉर्मूलेशन। | ||
[[File:Emilie Chatelet portrait by Latour.jpg|thumb|right|150px|एमिली डु चेटेलेट]] | [[File:Emilie Chatelet portrait by Latour.jpg|thumb|right|150px|एमिली डु चेटेलेट]] | ||
एमिली डू चेटेलेट (1706-1749) ने संवेग से अलग, कुल ऊर्जा के संरक्षण की परिकल्पना का प्रस्ताव और परीक्षण किया। गॉटफ्रीड लाइबनिज़ के सिद्धांतों से प्रेरित होकर, उन्होंने 1722 में मूल रूप से विलेम के ग्रेवेसंडे द्वारा तैयार किए गए प्रयोग को दोहराया और प्रचारित किया जिसमें गेंदों को विभिन्न ऊंचाइयों से नरम मिट्टी की परत में गिराया गया। प्रत्येक गेंद की गतिज ऊर्जा (जैसा कि विस्थापित पदार्थ की मात्रा से संकेत मिलता है) को वेग के वर्ग के समानुपाती दिखाया गया था। मिट्टी का विरूपण उस ऊंचाई के सीधे आनुपातिक पाया गया जहां से गेंदों को गिराया गया था, प्रारंभिक स्थितिज ऊर्जा के बराबर। न्यूटन और वोल्टेयर सहित पहले के सभी श्रमिकों का मानना था कि "ऊर्जा" (जहां तक वे अवधारणा को बिल्कुल भी समझते हैं) गति से अलग नहीं थी और इसलिए वेग के समानुपाती थी। इस समझ के अनुसार, मिट्टी का विरूपण उस ऊंचाई के वर्गमूल के समानुपाती होना चाहिए जिससे गेंदें गिराई गई थीं। चिरसम्मत भौतिकी में सही सूत्र <math>E_k = \frac12 mv^2</math> है, जहां <math>E_k</math> वस्तु की गतिज ऊर्जा है, इसका द्रव्यमान <math>m</math> है और इसकी गति <math>v</math> है। इस आधार पर, डु चेटेलेट ने प्रस्तावित किया कि ऊर्जा का हमेशा किसी भी रूप में समान आयाम होना चाहिए, जो इसे विभिन्न रूपों (गतिज, स्थितिज, ऊष्मा) में विचार करने में सक्षम होने के लिए आवश्यक है।<ref name=Hagengruber>Hagengruber, Ruth, editor (2011) ''Émilie du Chatelet between Leibniz and Newton''. Springer. {{ISBN|978-94-007-2074-9}}.</ref><ref name=Arianrhod>{{cite book|last1=Arianrhod|first1=Robyn|title=Seduced by logic : Émilie du Châtelet, Mary Somerville, and the Newtonian revolution|date=2012|publisher=Oxford University Press|location=New York|isbn=978-0-19-993161-3|edition=US|url=http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=9444991}}</ref> | |||
जॉन स्मेटन, पीटर | |||
जॉन स्मेटन, पीटर इवार्ट, कार्ल होल्ट्ज़मैन, गुस्ताव-एडोल्फ हिरन और मार्क सेगुइन जैसे अभियन्त्रिको ने माना कि केवल संवेग का संरक्षण व्यावहारिक गणना के लिए पर्याप्त नहीं था और लाइबनिज़ के सिद्धांत का उपयोग किया। विलियम हाइड वोलास्टन जैसे कुछ रसायनज्ञों ने भी इस सिद्धांत का समर्थन किया था। जॉन प्लेफेयर जैसे शिक्षाविदों ने यह इंगित करने के लिए जल्दी किया कि गतिज ऊर्जा स्पष्ट रूप से संरक्षित नहीं है। उष्मागतिकी के दूसरे नियम पर आधारित एक आधुनिक विश्लेषण के लिए यह स्पष्ट है, लेकिन 18वीं और 19वीं शताब्दी में, खोई हुई ऊर्जा का भाग्य अभी भी अज्ञात था। | |||
धीरे -धीरे यह संदेह | धीरे-धीरे यह संदेह होने लगा कि घर्षण के तहत गति द्वारा अनिवार्य रूप से उत्पन्न ऊष्मा विज़ वाइवा का दूसरा रूप है। 1783 में, एंटोनी लावोज़ियर और पियरे-साइमन लाप्लास ने विवा और कैलोरी सिद्धांत के दो प्रतिस्पर्धी सिद्धांतों की समीक्षा की।<ref>Lavoisier, A.L. & Laplace, P.S. (1780) "Memoir on Heat", ''Académie Royale des Sciences'' pp. 4–355</ref><ref>{{cite journal |last1=Guerlac |first1=Henry |title=Chemistry as a Branch of Physics: Laplace's Collaboration with Lavoisier |journal=Historical Studies in the Physical Sciences |date=1976 |volume=7 |pages=193–276 |doi=10.2307/27757357 |url=https://online.ucpress.edu/hsns/article-abstract/doi/10.2307/27757357/47949/Chemistry-as-a-Branch-of-Physics-Laplace-s?redirectedFrom=fulltext |access-date=24 March 2022 |publisher=University of California Press|jstor=27757357 }}</ref> काउंट रमफोर्ड के 1798 में तोपों के प्रवेधन के दौरान ऊष्मा पैदा करने के अवलोकनों ने, यांत्रिक गति को ऊष्मा में परिवर्तित किया जा सकता है, इस विचार पर और अधिक जोर दिया और (यह महत्वपूर्ण था) कि रूपांतरण मात्रात्मक तथा अनुमान लगाया जा सकता हो (गतिज ऊर्जा और ऊष्मा के बीच एक सार्वभौमिक रूपांतरण स्थिरांक की अनुमति देता है)। 1807 में थॉमस यंग द्वारा इस अर्थ में पहली बार इस्तेमाल किए जाने के बाद विस वाइवा को ऊर्जा के रूप में जाना जाने लगा। | ||
[[File:Gaspard-Gustave de Coriolis.jpg|thumb|150px|गैपर्ड गस्टेव कोरिओलिस]] | [[File:Gaspard-Gustave de Coriolis.jpg|thumb|150px|गैपर्ड गस्टेव कोरिओलिस]] | ||
Line 49: | Line 49: | ||
जिसे काम करने के लिए गतिज ऊर्जा को परिवर्तित करने के रूप में समझा जा सकता है, बड़े पैमाने पर 1819-1839 की अवधि में गैपर्ड-गस्टेव कोरिओलिस और जीन-विक्टर पोंसेलेट का परिणाम था।पूर्व ने क्वांटिटी क्वांटिट डे ट्रैवेल (काम की मात्रा) और बाद वाले, ट्रैवेल मेकेनिक (मैकेनिकल वर्क) को कहा, और दोनों ने इंजीनियरिंग गणना में इसका उपयोग किया। | जिसे काम करने के लिए गतिज ऊर्जा को परिवर्तित करने के रूप में समझा जा सकता है, बड़े पैमाने पर 1819-1839 की अवधि में गैपर्ड-गस्टेव कोरिओलिस और जीन-विक्टर पोंसेलेट का परिणाम था।पूर्व ने क्वांटिटी क्वांटिट डे ट्रैवेल (काम की मात्रा) और बाद वाले, ट्रैवेल मेकेनिक (मैकेनिकल वर्क) को कहा, और दोनों ने इंजीनियरिंग गणना में इसका उपयोग किया। | ||
1837 में | 1837 में जेटसक्रॉफ्ट फर फिज़िक में प्रकाशित एक पेपर उबेर डाई नेचुर डेर वेरमे (जर्मन "ऊष्मा की प्रकृति पर") में, कार्ल फ्रेडरिक मोहर ने ऊर्जा के संरक्षण के सिद्धांत के शुरुआती सामान्य बयानों में से एक दिया: " 54 ज्ञात रासायनिक तत्वों के अलावा भौतिक जगत में केवल एक कारक है, और इसे क्राफ्ट [ऊर्जा या कार्य] कहा जाता है। यह परिस्थितियों के अनुसार गति, रासायनिक आत्मीयता, सामंजस्य, बिजली, प्रकाश और चुंबकत्व के रूप में प्रकट हो सकता है तथा इन रूपों में से किसी एक से इसे किसी अन्य रूप में परिवर्तित किया जा सकता है।" | ||
=== गर्मी के यांत्रिक समकक्ष === | === गर्मी के यांत्रिक समकक्ष === | ||
आधुनिक संरक्षण सिद्धांत के विकास में एक | आधुनिक संरक्षण सिद्धांत के विकास में एक महत्वपूर्ण चरण ऊष्मा के यांत्रिक समतुल्यता का प्रदर्शन था। कैलोरी सिद्धांत के अनुसार ऊष्मा को न तो उत्पन्न किया जा सकता है और न ही नष्ट किया जा सकता है, जबकि ऊर्जा के संरक्षण में इसके विपरीत सिद्धांत शामिल है कि ऊष्मा और यांत्रिक कार्य का विनिमेय होता हैं। | ||
अठारहवीं शताब्दी के मध्य में, एक रूसी वैज्ञानिक | अठारहवीं शताब्दी के मध्य में, एक रूसी वैज्ञानिक मिखाइल लोमोनोसोव ने ऊष्मा के अपने कॉर्पुस्कुलो-गतिज सिद्धांत को प्रतिपादित किया, जिसने कैलोरी के विचार को खारिज कर दिया। प्रयोगसिद्ध अध्ययनों के परिणामों के माध्यम से, लोमोनोसोव इस निष्कर्ष पर पहुंचे कि कैलोरी द्रव के कणों के माध्यम से ऊष्मा को स्थानांतरित नहीं होती। | ||
1798 में, काउंट रमफोर्ड (बेंजामिन थॉम्पसन) ने | 1798 में, काउंट रमफोर्ड (बेंजामिन थॉम्पसन) ने प्रवेधन तोपों में उत्पन्न घर्षण-ऊष्मा का मापन किया, और इस विचार को विकसित किया कि ऊष्मा गतिज ऊर्जा का एक रूप है। उनके माप ने कैलोरी सिद्धांत का खंडन किया। | ||
[[File:SS-joule.jpg|thumb|left|130px|जेम्स प्रेस्कॉट जूल]] | [[File:SS-joule.jpg|thumb|left|130px|जेम्स प्रेस्कॉट जूल]] | ||
1842 में जर्मन सर्जन जूलियस रॉबर्ट वॉन मेयर द्वारा यांत्रिक तुल्यता सिद्धांत को सर्वप्रथम इसके आधुनिक रूप में ज्ञात किया गया।<ref>von Mayer, J.R. (1842) "Remarks on the forces of inorganic nature" in ''Annalen der Chemie und Pharmacie'', '''43''', 233</ref> मेयर, डच ईस्ट इंडीज की यात्रा पर अपने निष्कर्ष पर पहुंचे, जहां उन्होंने पाया कि उनके मरीजों का रक्त गहरा लाल था क्योंकि वे गर्म जलवायु में अपने शरीर के तापमान को बनाए रखने के लिए कम ऑक्सीजन ग्रहण करते है, और इसलिए कम ऊर्जा का उपभोग कर रहे थे। उन्होंने पाया कि ऊष्मा और यांत्रिक कार्य दोनों ही ऊर्जा के रूप थे और 1845 में, भौतिकी के अपने ज्ञान में सुधार के बाद, उन्होंने एक मोनोग्राफ प्रकाशित किया जिसमें उनके बीच एक मात्रात्मक संबंध बताया गया।<ref>Mayer, J.R. (1845). ''Die organische Bewegung in ihrem Zusammenhange mit dem Stoffwechsel. Ein Beitrag zur Naturkunde'', Dechsler, Heilbronn.</ref> | |||
[[File:Joule's Apparatus (Harper's Scan).png|thumb|right|गर्मी के यांत्रिक समकक्ष को मापने के लिए जूल का उपकरण।एक स्ट्रिंग से जुड़ा हुआ एक अवरोही वजन पानी में डूबे हुए एक पैडल को घुमाता है।]] | [[File:Joule's Apparatus (Harper's Scan).png|thumb|right|गर्मी के यांत्रिक समकक्ष को मापने के लिए जूल का उपकरण।एक स्ट्रिंग से जुड़ा हुआ एक अवरोही वजन पानी में डूबे हुए एक पैडल को घुमाता है।]] | ||
इस बीच, 1843 में, जेम्स प्रेस्कॉट जूल ने स्वतंत्र रूप से प्रयोगों की एक श्रृंखला में यांत्रिक | इस बीच, 1843 में, जेम्स प्रेस्कॉट जूल ने स्वतंत्र रूप से प्रयोगों की एक श्रृंखला में यांत्रिक तुल्यांक की खोज की। सबसे प्रसिद्ध, जिसे अब "जूल उपकरण" कहा जाता है, एक तार से जुड़े अवरोही वजन के कारण पानी में डूबा हुआ एक पैडल घूमता है। उन्होंने दिखाया कि अवरोही में वजन द्वारा खोई गई गुरुत्वाकर्षण स्थितिज ऊर्जा पैडल के साथ घर्षण के माध्यम से पानी द्वारा प्राप्त आंतरिक ऊर्जा के बराबर है। | ||
1840-1843 की अवधि में, | 1840-1843 की अवधि में, अभियांत्रिक लुडविग ए शीतलता द्वारा इसी तरह का कार्य किया गया था, हालांकि यह उनके मूल डेनमार्क के बाहर बहुत कम जाना जाता था। | ||
जूल और मेयर दोनों | जूल और मेयर दोनों के काम को बाधा और उपेक्षा का सामना करना पड़ा लेकिन जूल ने अंततः व्यापक मान्यता प्राप्त की। | ||
1844 में, विलियम रॉबर्ट ग्रोव ने यांत्रिकी, ऊष्मा, प्रकाश, बिजली और चुंबकत्व के बीच एक संबंध को एक ही "बल" (आधुनिक शब्दों में ऊर्जा) की अभिव्यक्तियों के रूप में माना गया है। 1846 में, ग्रोव ने अपने सिद्धांतों को अपनी पुस्तक भौतिक बलों का सहसंबंध में प्रकाशित किया।<ref>{{cite book | author=Grove, W. R. | title=The Correlation of Physical Forces | url=https://archive.org/details/correlationphys06grovgoog | location=London | publisher=Longmans, Green | year=1874 | edition=6th }}</ref> 1847 में, जूल, साडी कार्नोट और एमिल क्लैपेरॉन के पहले के काम पर चित्रण करते हुए, हरमन वॉन हेल्महोल्ट्ज़ ग्रोव के समान निष्कर्ष पर पहुंचे और अपनी पुस्तक उबेर डाई एर्हाल्टुंग डेर क्राफ्ट (ऑन द कंजर्वेशन ऑफ फोर्स, 1847) में अपने सिद्धांतों को प्रकाशित किया।<ref>{{cite web|title= On the Conservation of Force|url=http://www.bartleby.com/30/125.html|publisher=Bartleby|access-date= 6 April 2014}}</ref> सिद्धांत की सामान्य आधुनिक स्वीकृति इस प्रकाशन से उपजी है। | |||
1844 में, विलियम रॉबर्ट ग्रोव ने यांत्रिकी, | |||
1850 में, विलियम | 1850 में, विलियम रैनकिन ने पहली बार इस सिद्धांत के लिए ऊर्जा के संरक्षण के नियम वाक्यांश का प्रयोग किया।<ref>William John Macquorn Rankine (1853) "On the General Law of the Transformation of Energy," ''Proceedings of the Philosophical Society of Glasgow'', vol. 3, no. 5, pages 276-280; reprinted in: (1) ''Philosophical Magazine'', series 4, vol. 5, no. 30, [https://books.google.com/books?id=3Ov22-gFMnEC&pg=PA106&lpg=PA106#v=onepage&q&f=false pages 106-117] (February 1853); and (2) W. J. Millar, ed., ''Miscellaneous Scientific Papers: by W. J. Macquorn Rankine'', ... (London, England: Charles Griffin and Co., 1881), part II, [https://archive.org/stream/miscellaneoussci00rank#page/203/mode/1up pages 203-208]: "The law of the ''Conservation of Energy'' is already known—viz. that the sum of all the energies of the universe, actual and potential, is unchangeable."</ref> | ||
1877 में, पीटर गुथरी टैट ने दावा किया कि | |||
1877 में, पीटर गुथरी टैट ने दावा किया कि सिद्धांत की उत्पत्ति सर आइजैक न्यूटन के साथ हुई, जो फिलॉसॉफिया नेचुरलिस प्रिंसिपिया मैथमैटिका के प्रस्तावों 40 और 41 के रचनात्मक अध्यन पर आधारित है। इसे अब व्हिग इतिहास का एक उदाहरण माना जाता है।<ref>{{cite book | |||
|title=On the shoulders of merchants: exchange and the mathematical conception of nature in early modern Europe | |title=On the shoulders of merchants: exchange and the mathematical conception of nature in early modern Europe | ||
|first1=Richard W. |last1=Hadden |publisher=SUNY Press | |first1=Richard W. |last1=Hadden |publisher=SUNY Press | ||
Line 78: | Line 78: | ||
|url=https://books.google.com/books?id=7IxtC4Jw1YoC}}, [https://books.google.com/books?id=7IxtC4Jw1YoC&pg=PA13 Chapter 1, p. 13] | |url=https://books.google.com/books?id=7IxtC4Jw1YoC}}, [https://books.google.com/books?id=7IxtC4Jw1YoC&pg=PA13 Chapter 1, p. 13] | ||
</ref> | </ref> | ||
=== द्रव्यमान -ऊर्जा समतुल्यता === | === द्रव्यमान -ऊर्जा समतुल्यता === | ||
पदार्थ परमाणुओं से बना है और क्या परमाणु बनाता है। पदार्थ में आंतरिक या विराम द्रव्यमान होता है। उन्नीसवीं शताब्दी के मान्यता प्राप्त अनुभव की सीमित सीमा में यह पाया गया कि इस तरह के विराम द्रव्यमान का संरक्षण किया जाता है। आइंस्टीन के 1905 के विशेष सापेक्षता के सिद्धांत से पता चला है कि विराम द्रव्यमान शेष ऊर्जा के बराबर मात्रा का होता है। अर्थात विराम द्रव्यमान को ऊर्जा के (अभौतिक) रूपों के बराबर मात्रा में या उससे परिवर्तित किया जा सकता है, उदाहरण के लिए गतिज ऊर्जा, स्थितिज ऊर्जा और विद्युत चुम्बकीय विकिरण ऊर्जा। बीसवीं शताब्दी में कुल द्रव्यमान या कुल ऊर्जा के विपरीत, विराम द्रव्यमान को संरक्षित नहीं किया जाता है। ऊर्जा के सभी रूप कुल द्रव्यमान और कुल ऊर्जा में योगदान करते हैं। | |||
पदार्थ परमाणुओं से बना है और क्या परमाणु बनाता है। पदार्थ में आंतरिक या | |||
उदाहरण के लिए, | उदाहरण के लिए, इलेक्ट्रॉन एवं पॉज़िट्रॉन प्रत्येक में विराम द्रव्यमान होता है। वे एक साथ नष्ट हो सकते हैं, अपनी संयुक्त शेष ऊर्जा को फोटॉन में परिवर्तित कर सकते हैं जिसमें विद्युत चुम्बकीय विकिरण ऊर्जा होती है, लेकिन कोई विराम द्रव्यमान नहीं होता है। यदि यह एक विलगित निकाय के भीतर होता है जो बाहरी परिवेश में फोटॉन या उनकी ऊर्जा को मुक्त नहीं करता है, अतः न तो कुल द्रव्यमान और न ही निकाय की कुल ऊर्जा में परिवर्तन होगा। उत्पादित विद्युत चुम्बकीय विकिरण ऊर्जा निकाय के जड़त्व (और किसी भी भार के लिए) में उतना ही योगदान देती है जितना कि उनके इंतकाल से पहले इलेक्ट्रॉन और पॉज़िट्रॉन के विराम द्रव्यमान में होता है। इसी तरह, ऊर्जा के अभौतिक रूप पदार्थ में नष्ट हो सकते हैं, जिसमें विराम द्रव्यमान होता है। | ||
इस प्रकार, ऊर्जा का संरक्षण (कुल, सामग्री या आराम ऊर्जा सहित), और द्रव्यमान का संरक्षण (कुल, केवल आराम नहीं) एक (समकक्ष) कानून हैं। 18 वीं शताब्दी में ये दो प्रतीत होने वाले कानूनों के रूप में दिखाई दिए थे। | इस प्रकार, ऊर्जा का संरक्षण (कुल, सामग्री या आराम ऊर्जा सहित), और द्रव्यमान का संरक्षण (कुल, केवल आराम नहीं) एक (समकक्ष) कानून हैं। 18 वीं शताब्दी में ये दो प्रतीत होने वाले कानूनों के रूप में दिखाई दिए थे। | ||
=== बीटा क्षय में ऊर्जा का संरक्षण === | === बीटा क्षय में ऊर्जा का संरक्षण === | ||
1911 में यह खोज कि बीटा क्षय में उत्सर्जित इलेक्ट्रॉनों में एक असतत वर्णक्रम (स्पेक्ट्रम) के बजाय निरंतर होता है, ऊर्जा के संरक्षण के विपरीत प्रतीत होता है, तत्कालीन वर्तमान धारणा के तहत कि बीटा क्षय नाभिक से एक इलेक्ट्रॉन का सरल उत्सर्जन है।<ref>{{cite book |last1=Jensen |first1=Carsten |year=2000 |title=Controversy and Consensus: Nuclear Beta Decay 1911-1934 |url=https://www.springer.com/birkhauser/physics/book/978-3-7643-5313-1 |publisher=Birkhäuser Verlag |isbn=978-3-7643-5313-1 }}</ref><ref>{{cite journal |bibcode= 1978PhT....31i..23B |doi=10.1063/1.2995181 |title=The idea of the neutrino |journal=Physics Today |volume=31 |issue=9 |pages=23–8 |year=1978 |last1=Brown |first1=Laurie M. }}</ref> इस समस्या को अंततः 1933 में एनरिको फर्मी द्वारा हल किया गया था,जिन्होंने बीटा-क्षय के सही वर्णन को एक इलेक्ट्रॉन और एक एंटीन्यूट्रिनो दोनों के उत्सर्जन के रूप में प्रस्तावित किया, जो स्पष्ट रूप से अनुपस्थित ऊर्जा को दूर करता है।<ref> | |||
1911 में यह खोज कि बीटा क्षय में उत्सर्जित इलेक्ट्रॉनों में एक असतत स्पेक्ट्रम के बजाय | |||
{{cite journal | {{cite journal | ||
|last=Wilson |first=F. L. | |last=Wilson |first=F. L. | ||
Line 111: | Line 109: | ||
== | == उष्मागतिकी का प्रथम नियम == | ||
बंद उष्मागतिक निकाय के लिए, उष्मागतिकी का उष्मागतिकी का प्रथम नियम निम्नलिखित है | |||
:<math>\delta Q = \mathrm{d}U + \delta W</math>, या समकक्ष, <math>\mathrm{d}U = \delta Q - \delta W,</math> | :<math>\delta Q = \mathrm{d}U + \delta W</math>, या समकक्ष, <math>\mathrm{d}U = \delta Q - \delta W,</math> | ||
जहाँ <math>\delta Q</math> उष्मीय प्रक्रिया द्वारा दी गई की मात्रा, <math>\delta W</math> निकाय द्वारा अपने परिवेश पर किए गए कार्य के कारण निकाय द्वारा व्यय ऊर्जा की मात्रा और <math>\mathrm{d}U</math> निकाय की आंतरिक ऊर्जा में परिवर्तन है। | |||
δ's से पहले ऊष्मा और कार्य की शर्तों का उपयोग यह इंगित करने के लिए किया जाता है कि वे ऊर्जा की वृद्धि का वर्णन करते हैं जिसे आंतरिक ऊर्जा <math>\mathrm{d}U</math> के वृद्धि से कुछ अलग व्याख्या है (अयथार्थ अवकल देखें)। कार्य और ऊष्मा का तात्पर्य उस प्रकार की प्रक्रिया से है जो किसी निकाय से या उससे ऊर्जा को जोड़ती या घटाती है, जबकि आंतरिक ऊर्जा <math>U</math> निकाय की एक विशेष अवस्था का गुण है जब यह अपरिवर्तनीय ऊष्मागतिक साम्यावस्था में होती है। इस प्रकार <math>\delta Q</math> के लिए "ऊष्मा ऊर्जा" शब्द का अर्थ है "ऊर्जा के एक विशेष रूप को संदर्भित करने के बजाय" उष्मीयता के परिणामस्वरूप जोड़ी गई ऊर्जा की मात्रा" है। इसी तरह, <math>\delta W</math> के लिए "कार्य ऊर्जा" शब्द का अर्थ है "कार्य के परिणामस्वरूप व्यय ऊर्जा की मात्रा" है। इस प्रकार कोई ऊष्मागतिक निकाय आंतरिक ऊर्जा की मात्रा ज्ञात की जा सकती है जिसे कोई जानता है कि वर्तमान में एक निश्चित स्थिति में है, लेकिन यह ज्ञात नहीं किया जा सकता है कि दी गई वर्तमान स्थिति के ज्ञान से, निकाय के गर्म या ठंडा होने के परिणामस्वरूप, न ही निकाय पर या उसके द्वारा किए जा रहे कार्य के परिणामस्वरूप अतीत में कितनी ऊर्जा प्रवाहित या निकाय के बहार है। | |||
एन्ट्रॉपी निकाय की अवस्था का एक फलन है जो ऊष्मा के कार्य में रूपांतरण की संभावना की सीमाओं का वर्णन करती है। | |||
सरल संपीड़ित निकाय के लिए, निकाय द्वारा किया गया कार्य निम्न प्रकार है। | |||
:<math>\delta W = P\,\mathrm{d}V,</math> | :<math>\delta W = P\,\mathrm{d}V,</math> | ||
जहाँ <math>P</math> दाब और <math>dV</math> निकाय का आयतन परिवर्तन है, जिनमें से प्रत्येक निकाय के परिवर्ती कारक हैं। काल्पनिक स्थिति में जिसमें प्रक्रिया को आदर्श और असीम रूप से धीमी गति से होती है, जिसे स्थायीकल्प कहा जाता है, और प्रतिवर्ती माना जाता है, ऊष्मा को निकाय तापमान से असीम रूप से उच्च तापमान वाले स्रोत से स्थानांतरित किया जा रहा है, ऊष्मा ऊर्जा निम्न प्रकार है। | |||
:<math>\delta Q = T\,\mathrm{d}S,</math> | :<math>\delta Q = T\,\mathrm{d}S,</math> | ||
जहाँ <math>T</math> तापमान और <math>\mathrm{d}S</math> निकाय की एन्ट्रापी में परिवर्तन है। तापमान और एन्ट्रापी निकाय के परिवर्ती कारक हैं। | |||
यदि | यदि खुला निकाय (जिसमें द्रव्यमान को पर्यावरण के साथ आदान -प्रदान किया जा सकता है) में कई दीवारें होती हैं, जैसे कि बड़े पैमाने पर स्थानांतरण कठोर दीवारों के माध्यम से ऊष्मा और कार्य स्थानान्तरण से अलग होता है, अतः प्रथम नियम निम्न प्रकार है।<ref>{{cite journal | url=https://pubs.acs.org/doi/full/10.1021/ed200405k | doi=10.1021/ed200405k | title=On the Relation between the Fundamental Equation of Thermodynamics and the Energy Balance Equation in the Context of Closed and Open Systems | year=2012 | last1=Knuiman | first1=Jan T. | last2=Barneveld | first2=Peter A. | last3=Besseling | first3=Nicolaas A. M. | journal=Journal of Chemical Education | volume=89 | issue=8 | pages=968–972 | bibcode=2012JChEd..89..968K }}</ref> | ||
:<math>\mathrm{d}U = \delta Q - \delta W + \sum_i h_i\,dM_i,</math> | :<math>\mathrm{d}U = \delta Q - \delta W + \sum_i h_i\,dM_i,</math> | ||
जहाँ <math>dM_i</math>, <math>i</math> वर्ग का आभासी द्रव्यमान है तथा <math>h_i</math> प्रति इकाई द्रव्यमान के अनुरूप एन्थैल्पी है। ध्यान दें कि सामान्यतः <math>dS\neq\delta Q/T</math> इस स्थिति मे, क्योंकि पदार्थ की स्वयं की ऐन्ट्रोपी होती है। बजाय, <math>dS=\delta Q/T+\textstyle{\sum_{i}}s_i\,dM_i</math>, जहाँ <math>s_i</math> प्रकार <math>i</math> के प्रति इकाई द्रव्यमान में ऐन्ट्रोपी है, जिससे हम मूल ऊष्मागतिक संबंध पुनर्प्राप्त करते हैं। | |||
:<math>\mathrm{d}U = T\,dS - P\,dV + \sum_i\mu_i\,dN_i</math> | :<math>\mathrm{d}U = T\,dS - P\,dV + \sum_i\mu_i\,dN_i</math> | ||
क्योंकि रासायनिक क्षमता <math>\mu_i</math> | क्योंकि रासायनिक क्षमता <math>\mu_i</math>, <math>i</math> प्रजातियों की आंशिक मोलर गिब्स मुक्त ऊर्जा है और गिब्स मुक्त ऊर्जा <math>G\equiv H-TS</math>। | ||
== | == नोएदर कि प्रमेय == | ||
[[File:Noether.jpg|thumb|200px|एमी नूथर (1882-1935) एक प्रभावशाली गणितज्ञ थे, जो अमूर्त बीजगणित और सैद्धांतिक भौतिकी में उनके ग्राउंडब्रेकिंग योगदान के लिए जाना जाता था।]] | [[File:Noether.jpg|thumb|200px|एमी नूथर (1882-1935) एक प्रभावशाली गणितज्ञ थे, जो अमूर्त बीजगणित और सैद्धांतिक भौतिकी में उनके ग्राउंडब्रेकिंग योगदान के लिए जाना जाता था।]] | ||
कई भौतिक सिद्धांतों में ऊर्जा का संरक्षण एक सामान्य विशेषता है। | कई भौतिक सिद्धांतों में ऊर्जा का संरक्षण एक सामान्य विशेषता है। गणितीय दृष्टिकोण से इसे नोएदर के प्रमेय के परिणाम के रूप में व्याखित है, जिसे 1915 में एमी नोथर द्वारा विकसित किया गया था और पहली बार 1918 में प्रकाशित किया गया था। प्रमेय के अनुसार भौतिक सिद्धांत की प्रत्येक निरंतर समरूपता में एक संबद्ध संरक्षित मात्रा होती है। यदि सिद्धांत की समरूपता समय अपरिवर्तनीय है तो संरक्षित मात्रा को "ऊर्जा" कहा जाता है। ऊर्जा संरक्षण नियम समय की शिफ्ट समरूपता का परिणाम है। ऊर्जा संरक्षण अनुभवजन्य तथ्य से निहित है कि भौतिकी के नियम समय के साथ नहीं बदलते हैं। दार्शनिक रूप से इसे "कुछ भी समय पर निर्भर नहीं करता" के रूप में कहा जा सकता है। दूसरे शब्दों में, यदि समय अंतरण की निरंतर समरूपता मे भौतिक प्रणाली अपरिवर्तनीय होती है तो इसकी ऊर्जा (जो समय के लिए विहित संयुग्म मात्रा है) संरक्षित है। इसके विपरीत, निकाय जो समय एवं शिफ्ट मे अपरिवर्तनीय नहीं हैं (उदाहरण के लिए समय-निर्भर स्थितिज ऊर्जा वाले निकाय) ऊर्जा के संरक्षण को प्रदर्शित नहीं करते हैं - जब तक कि हम उन्हें दूसरे के साथ ऊर्जा का आदान-प्रदान करने के लिए नहीं मानते, बाह्य निकाय ताकि विवर्धित निकाय का सिद्धांत बन जाए जिससे यह पुनः समाये-अपरिवर्तनीय हो। परिमित निकायों के लिए ऊर्जा का संरक्षण भौतिक सिद्धांतों जैसे विशेष सापेक्षता और क्वांटम सिद्धांत (क्यूईडी सहित) में अवक्र दिक्-काल में मान्य है। | ||
== सापेक्षता == | == सापेक्षता == | ||
हेनरी पोइंकेरे और अल्बर्ट आइंस्टीन द्वारा विशेष सापेक्षता की खोज के साथ, ऊर्जा को | हेनरी पोइंकेरे और अल्बर्ट आइंस्टीन द्वारा विशेष सापेक्षता की खोज के साथ, ऊर्जा को ऊर्जा-संवेग 4-सदिश का एक घटक होने का प्रस्ताव दिया गया था। इस सदिश के चार घटकों (एक ऊर्जा का तथा तीन संवेग का) में से प्रत्येक को किसी भी बंद प्रणाली में समय के साथ अलग -अलग संरक्षित किया जाता है, जैसा कि किसी भी दिए गए जड़त्वीय निर्देश तंत्र से देखा जाता है। सदिश लंबाई (मिन्कोव्स्की मानदंड) भी संरक्षित है, जो एकल कणों के लिए बाकी द्रव्यमान है, और कणों की प्रणालियों के लिए अपरिवर्तनीय द्रव्यमान (जहां लंबाई की गणना से पहले संवेग और ऊर्जा को अलग-अलग अभिव्यक्त किया जाता है)। | ||
एक | एक विशाल कण की आपेक्षिक ऊर्जा में कण की गतिज ऊर्जा के अतिरिक्त इसके विराम द्रव्यमान से संबंधित एक पद भी होता है। एक विशाल कण की शून्य गतिज ऊर्जा (या समतुल्य रूप से विराम तंत्र में) की सीमा में, या गतिज ऊर्जा को बनाए रखने वाली वस्तुओं या प्रणालियों के लिए संवेग तंत्र के केंद्र में, कण या वस्तु की कुल ऊर्जा (निकायों में आंतरिक गतिज ऊर्जा सहित) विराम द्रव्यमान या अपरिवर्तनीय द्रव्यमान के समानुपाती होता है, जैसा कि प्रसिद्ध समीकरण <math>E=mc^2</math> द्वारा वर्णित है। | ||
इस प्रकार, विशेष सापेक्षता में समय के साथ ऊर्जा के संरक्षण का नियम | इस प्रकार, प्रेक्षक के निर्देश तंत्र अपरिवर्तित रहने तक, विशेष सापेक्षता में समय के साथ ऊर्जा के संरक्षण का नियम स्थायी रहता है। यह निकाय की कुल ऊर्जा पर लागू होता है, हालांकि विभिन्न प्रेक्षक ऊर्जा मूल्य के लिए असहमत हैं। सभी प्रेक्षको के लिए भी संरक्षित, और अपरिवर्तनीय, निश्चर द्रव्यमान है, जो कि न्यूनतम प्रणाली द्रव्यमान और ऊर्जा है जिसे किसी भी प्रेक्षक द्वारा देखा जा सकता है, और जिसे ऊर्जा-संवेग संबंध द्वारा परिभाषित किया जाता है। | ||
सामान्य सापेक्षता में, कुछ विशेष | सामान्य सापेक्षता में, कुछ विशेष स्थितियों को छोड़कर ऊर्जा-संवेग संरक्षण अच्छी तरह परिभाषित नहीं है। ऊर्जा-संवेग को सामान्यतः तनाव-ऊर्जा-संवेग स्यूडोटेन्सर की सहायता से व्यक्त किया जाता है। हालांकि, चूंकि स्यूडोटेंसर टेंसर नहीं हैं, इसलिए वे निर्देश तंत्र के बीच स्पष्ट रूप से रूपांतरित नहीं होते हैं। यदि विचाराधीन मात्रिक स्थिर है (अर्थात, समय के साथ नहीं बदलता है) या स्पर्शोन्मुख रूप से समतल (अर्थात, अनंत दूरी पर स्पेसटाइम खाली दिखता है), तो ऊर्जा संरक्षण बिना किसी बड़े नुकसान के होता है। कुछ मिति जैसे कि फ्रीडमैन-लेमेत्रे-रॉबर्टसन-वाकर मात्रिक इन बाधाओं को समाधान नहीं करते हैं और ऊर्जा संरक्षण अच्छी तरह परिभाषित नहीं है।<ref>{{cite web|url=http://math.ucr.edu/home/baez/physics/Relativity/GR/energy_gr.html|title=Is Energy Conserved in General Relativity?|authors=Michael Weiss and John Baez|access-date=5 January 2017|archive-url=https://web.archive.org/web/20070605041426/http://math.ucr.edu/home/baez/physics/Relativity/GR/energy_gr.html|archive-date=5 June 2007|url-status=dead}}</ref> सामान्य सापेक्षता का सिंद्धांत इस प्रश्न को जन्म देता है कि सम्पूर्ण ब्रह्मांड की ऊर्जा संरक्षित होती है। | ||
== क्वांटम थ्योरी == | == क्वांटम थ्योरी == | ||
क्वांटम यांत्रिकी में, | क्वांटम यांत्रिकी में, क्वांटम निकाय की ऊर्जा को हेमिल्टोनियन नामक एक स्व-सहायक (या हर्मिटियन) संचालक द्वारा वर्णित किया जाता है, जो निकाय के हिल्बर्ट स्पेस (या तरंग कार्यों की जगह) पर कार्य करता है। यदि हैमिल्टन एक समय-स्वतंत्र संचालक है, तो माप परिणाम की आविर्भाव की संभावना प्रणाली के विकास पर समय में नहीं बदलती है। इस प्रकार ऊर्जा का प्रत्याशित मूल्य भी समय स्वतंत्र होता है। क्वांटम क्षेत्र सिद्धांत में स्थानीय ऊर्जा संरक्षण ऊर्जा-संवेग टेंसर संचालक के लिए क्वांटम नोएदर के प्रमेय द्वारा सुनिश्चित किया जाता है। क्वांटम सिद्धांत में (सार्वभौमिक) समय संचालक की कमी के कारण, समय और ऊर्जा के लिए अनिश्चितता संबंध स्थिति-संवेग अनिश्चितता सिद्धांत के विपरीत मौलिक नहीं हैं, और केवल विशिष्ट स्थितियों में हैं (अनिश्चितता सिद्धांत देखें)। प्रत्येक निश्चित समय पर ऊर्जा को सैद्धांतिक रूप से समय-ऊर्जा अनिश्चितता संबंधों द्वारा मजबूर परिशुद्धता में बिना किसी दुविधा-बंद के बिल्कुल मापा जा सकता है। इस प्रकार समय पर ऊर्जा का संरक्षण क्वांटम यांत्रिकी में भी एक सुपरिभाषित अवधारणा है। | ||
== यह भी देखें == | == यह भी देखें == | ||
Line 205: | Line 201: | ||
{{DEFAULTSORT:Conservation Of Energy}} | {{DEFAULTSORT:Conservation Of Energy}} | ||
<!--Categories--> | <!--Categories--> | ||
[[Category:Machine Translated Page]] | |||
[[Category:AC with 0 elements|Conservation Of Energy]] | [[Category:AC with 0 elements|Conservation Of Energy]] | ||
[[Category:All articles with dead external links|Conservation Of Energy]] | [[Category:All articles with dead external links|Conservation Of Energy]] | ||
[[Category:Articles with dead external links from March 2021 | [[Category:Articles with dead external links from March 2021]] | ||
[[Category:Articles with hatnote templates targeting a nonexistent page|Conservation Of Energy]] | [[Category:Articles with hatnote templates targeting a nonexistent page|Conservation Of Energy]] | ||
[[Category:Articles with invalid date parameter in template|Conservation Of Energy]] | [[Category:Articles with invalid date parameter in template|Conservation Of Energy]] | ||
Line 215: | Line 212: | ||
[[Category:CS1|Conservation Of Energy]] | [[Category:CS1|Conservation Of Energy]] | ||
[[Category:CS1 maint|Conservation Of Energy]] | [[Category:CS1 maint|Conservation Of Energy]] | ||
[[Category:Pages with empty portal template|Conservation Of Energy]] | |||
[[Category:Portal templates with redlinked portals|Conservation Of Energy]] | |||
[[Category:Short description with empty Wikidata description|Conservation Of Energy]] |
Latest revision as of 14:02, 9 September 2022
Part of a series on |
सातत्यक यांत्रिकी |
---|
भौतिकी और रसायन विज्ञान में, ऊर्जा संरक्षण नियम के अनुसार किसी विलगित निकाय की कुल ऊर्जा नियत रहती है, इसे समय के साथ संरक्षित कहा जाता है।[1] यह नियम, सर्वप्रथम एमिली डु चेटेलेट द्वारा प्रस्तावित और परीक्षण किया गया।[2][3] ऊर्जा न तो उत्पन्न की जा सकती है और न ही नष्ट किया जा सकती है, इसे केवल एक रूप से दूसरे रूप में रूपांतरित या स्थानांतरित किया जा सकता है। उदाहरण के लिए, डायनामाइट की एक छड़ के विस्फोटित होने पर रासायनिक ऊर्जा गतिज ऊर्जा में परिवर्तित हो जाती है। यदि विस्फोट में उत्सर्जित ऊर्जा के सभी रूप एकत्रित हो जाये, जैसे गतिज ऊर्जा और टुकड़ों की स्थतिज ऊर्जा, साथ ही ऊष्मा और ध्वनि, तो डायनामाइट के दहन में रासायनिक ऊर्जा की कमी प्राप्त होगी।
उत्कृष्ट रूप से, ऊर्जा का संरक्षण द्रव्यमान के संरक्षण से अलग था। हालाँकि, विशेष सापेक्षता के E=mc2 अनुसार, ऊर्जा तथा द्रव्यमान से सम्बंधित है तथा इसी प्रकार द्रव्यमान ऊर्जा से सम्बंधित है औरअब विज्ञान का यह मानना है कि द्रव्यमान-ऊर्जा समग्र रूप से संरक्षित है। सैद्धांतिक रूप से, इसका तात्पर्य यह है कि द्रव्यमान वाली कोई भी वस्तु स्वयं शुद्ध ऊर्जा में परिवर्तित हो सकती है, और इसके विपरीत भी। हालांकि यह माना जाता है कि यह केवल सबसे अधिकतम भौतिक परिस्थितियों में ही संभव है, जैसे कि ब्रह्मांड में बिग बैंग के तुरंत बाद या जब कृष्ण विवर (ब्लैक होल) हॉकिंग विकिरण उत्सर्जित करते हैं।
निरंतर समय अंतरण समरूपता के परिणामस्वरूप नोथर के प्रमेय द्वारा ऊर्जा के संरक्षण को सिद्ध किया जा सकता है, अर्थात इस तथ्य से कि भौतिकी के नियम समय के साथ नहीं बदलते हैं।
ऊर्जा के संरक्षण के नियम का एक परिणाम यह है कि पहली तरह की एक सतत गति मशीन मौजूद नहीं हो सकती है, यानी बाहरी ऊर्जा आपूर्ति के बिना कोई भी प्रणाली अपने परिवेश में असीमित मात्रा में ऊर्जा नहीं पहुंचा सकती है।[4] उन प्रणालियों के लिए जिनमें समय अंतरण समरूपता नहीं है, ऊर्जा के संरक्षण को परिभाषित करना संभव नहीं हो सकता है। सामान्य सापेक्षता में घुमावदार स्पेसटाइम[5] या संघनित पदार्थ भौतिकी में समय क्रिस्टल उदाहरणों में शामिल हैं।[6][7][8][9]
इतिहास
थेल्स ऑफ़ मिलेटस के रूप में प्राचीन दार्शनिक 550 ईसा पूर्व में कुछ मूलभूत पदार्थ के संरक्षण के संकेत थे जिनसे सब कुछ बना है। हालांकि, आज हम जिसे "द्रव्यमान-ऊर्जा" के रूप में जानते हैं, उनके सिद्धांतों की पहचान करने का कोई विशेष कारण नहीं है (उदाहरण के लिए, थेल्स ने सोचा कि यह जल था)। एम्पेडोकल्स (490-430 ईसा पूर्व) ने लिखा है कि चार जड़ों (पृथ्वी, वायु, जल, अग्नि) से बनी उनकी सार्वभौमिक निकाय में, "कुछ भी नहीं आता या नष्ट नहीं होता"[10] इसके बजाय, इन तत्वों को निरंतर पुनर्व्यवस्थापन का सामना करना पड़ता है। दूसरी ओर एपिकुरस (350 ईसा पूर्व) का मानना था कि ब्रह्मांड में सब कुछ पदार्थ की अविभाज्य इकाइयों से बना है ('परमाणुओं' के प्राचीन अग्रदूत) और उन्हें भी संरक्षण की आवश्यकता के बारे में कुछ विचार था, जिसमें कहा गया था कि "योग कुल चीजें हमेशा वैसी ही थीं जैसी अभी हैं, और ऐसी ही रहेंगी।"[11]
1605 में, साइमन स्टीविनस इस सिद्धांत के आधार पर सांख्यिकी में कई समस्याओं को हल करने में सक्षम था कि सतत गति असंभव थी।
1639 में, गैलीलियो ने कई स्थितियों के अपने विश्लेषण को प्रकाशित किया (जिसमें प्रसिद्ध "बाधित लोलक" भी शामिल है) जिसे (आधुनिक भाषा में) दकियानूसी ढंग से स्थितिज ऊर्जा को गतिज ऊर्जा में परिवर्तित करने के रूप में वर्णित किया जा सकता है। अनिवार्य रूप से, उन्होंने बताया कि एक गतिमान पिंड जिस ऊंचाई से गिरता है, वह उस ऊंचाई के बराबर होता है जिससे वह गिरता है, और इस अवलोकन का उपयोग जड़ता के विचार का अनुमान लगाने के लिए किया। इस अवलोकन का उल्लेखनीय पहलू यह है कि एक गतिमान पिंड जिस ऊंचाई तक घर्षण रहित सतह पर चढ़ता है, वह सतह के आकार पर निर्भर नहीं करता है।
1669 में, क्रिस्टियान ह्यूजेंस ने टकराव के अपने नियमों को प्रकाशित किया। पिंडों के टकराने से पहले और बाद में अपरिवर्तनीय होने के रूप में उन्होंने जिन मात्राओं को सूचीबद्ध किया, उनमें उनके रैखिक गति के योग के साथ-साथ उनकी गतिज ऊर्जाओं का योग भी है। हालांकि, प्रत्यस्थ और अप्रत्यस्थ टक्कर के बीच का अंतर उस समय समझ में नहीं आया था। इससे बाद के शोधकर्ताओं के बीच विवाद पैदा हो गया कि इनमें से कौन सी संरक्षित मात्रा अधिक मौलिक थी। अपने होरोलोगियम ऑसिलेटोरियम में, उन्होंने एक गतिमान पिंड की चढ़ाई की ऊंचाई के बारे में बहुत स्पष्ट बयान दिया, और इस विचार को सतत गति की असंभवता से जोड़ा। लोलक गति की गतिशीलता का ह्यूजेंस का अध्ययन एक ही सिद्धांत पर आधारित था, कि भारी वस्तु का गुरुत्वाकर्षण केंद्र खुद को नहीं उठा सकता है।
यह 1676-1689 के दौरान लाइबनिज थे जिन्होंने पहली बार गति (गतिज ऊर्जा) से जुड़ी ऊर्जा के गणितीय सूत्रीकरण का प्रयास किया था। टक्कर पर ह्यूजेन्स के कार्य का उपयोग करते हुए, लीबनिज़ ने देखा कि कई यांत्रिक प्रणालियों में (कई द्रव्यमानों का, mi प्रत्येक वेग के साथ vi),
द्रव्यमानो के परस्पर प्रभावित होने तक संरक्षित किया गया। उन्होंने इस मात्रा को निकाय की विस वाइवा या जीवित शक्ति कहा। यह सिद्धांत उन स्थितियों में गतिज ऊर्जा के अनुमानित संरक्षण के सटीक विवरण का प्रतिनिधित्व करता है जहां कोई घर्षण नहीं होता है। उस समय के कई भौतिकविदों, जैसे न्यूटन, ने माना कि संवेग का संरक्षण, जो कि घर्षण के साथ निकायों में भी होता है, जैसा कि संवेग द्वारा परिभाषित किया गया है:
संरक्षित विज़ वाइवा था। बाद में यह दिखाया गया कि प्रत्यस्थ टक्कर जैसी उचित परिस्थितियों को देखते हुए दोनों मात्राओं को एक साथ संरक्षित किया जाता है।
1687 में, आइजैक न्यूटन ने अपना प्रिंसिपिया प्रकाशित किया, जो बल और गति की अवधारणा के आसपास आयोजित किया गया था। हालांकि, शोधकर्ताओं को यह पहचानने की जल्दी थी कि पुस्तक में निर्धारित सिद्धांत, जबकि बिंदु द्रव्यमान के लिए ठीक हैं, कठोर और द्रव निकायों की गति से निपटने के लिए पर्याप्त नहीं थे। कुछ अन्य सिद्धांतों की भी आवश्यकता थी।
विज़ वाइवा के संरक्षण के नियम को पिता और पुत्र की जोड़ी, जोहान और डैनियल बर्नौली ने चैंपियन बनाया था। पूर्व ने आभासी कार्य के सिद्धांत को 1715 में अपनी पूर्ण व्यापकता में उपयोग किए जाने के रूप में प्रतिपादित किया, जबकि बाद वाले ने 1738 में प्रकाशित अपने हाइड्रोडायनामिका को इस एकल विज़ वाइवा संरक्षण सिद्धांत पर आधारित किया। डेनियल के बहते पानी के विज़ वाइवा के नुकसान के अध्ययन ने उन्हें बर्नौली के सिद्धांत को तैयार करने के लिए प्रेरित किया, जो नुकसान को हाइड्रोडायनामिक दाब में परिवर्तन के आनुपातिक होने का दावा करता है। डैनियल ने हाइड्रोलिक मशीनों के लिए कार्य और दक्षता की धारणा भी तैयार की और उन्होंने गैसों का गतिज सिद्धांत दिया, और गैस के अणुओं की गतिज ऊर्जा को गैस के तापमान से जोड़ा।
महाद्वीपीय भौतिकविदों द्वारा विज़ वाइवा पर इस फोकस ने अंततः यांत्रिकी को नियंत्रित करने वाले स्थिरता सिद्धांतों की खोज की, जैसे डी'अलेम्बर्ट के सिद्धांत, लैग्रैंगियन और यांत्रिकी के हैमिल्टनियन फॉर्मूलेशन।
एमिली डू चेटेलेट (1706-1749) ने संवेग से अलग, कुल ऊर्जा के संरक्षण की परिकल्पना का प्रस्ताव और परीक्षण किया। गॉटफ्रीड लाइबनिज़ के सिद्धांतों से प्रेरित होकर, उन्होंने 1722 में मूल रूप से विलेम के ग्रेवेसंडे द्वारा तैयार किए गए प्रयोग को दोहराया और प्रचारित किया जिसमें गेंदों को विभिन्न ऊंचाइयों से नरम मिट्टी की परत में गिराया गया। प्रत्येक गेंद की गतिज ऊर्जा (जैसा कि विस्थापित पदार्थ की मात्रा से संकेत मिलता है) को वेग के वर्ग के समानुपाती दिखाया गया था। मिट्टी का विरूपण उस ऊंचाई के सीधे आनुपातिक पाया गया जहां से गेंदों को गिराया गया था, प्रारंभिक स्थितिज ऊर्जा के बराबर। न्यूटन और वोल्टेयर सहित पहले के सभी श्रमिकों का मानना था कि "ऊर्जा" (जहां तक वे अवधारणा को बिल्कुल भी समझते हैं) गति से अलग नहीं थी और इसलिए वेग के समानुपाती थी। इस समझ के अनुसार, मिट्टी का विरूपण उस ऊंचाई के वर्गमूल के समानुपाती होना चाहिए जिससे गेंदें गिराई गई थीं। चिरसम्मत भौतिकी में सही सूत्र है, जहां वस्तु की गतिज ऊर्जा है, इसका द्रव्यमान है और इसकी गति है। इस आधार पर, डु चेटेलेट ने प्रस्तावित किया कि ऊर्जा का हमेशा किसी भी रूप में समान आयाम होना चाहिए, जो इसे विभिन्न रूपों (गतिज, स्थितिज, ऊष्मा) में विचार करने में सक्षम होने के लिए आवश्यक है।[3][2]
जॉन स्मेटन, पीटर इवार्ट, कार्ल होल्ट्ज़मैन, गुस्ताव-एडोल्फ हिरन और मार्क सेगुइन जैसे अभियन्त्रिको ने माना कि केवल संवेग का संरक्षण व्यावहारिक गणना के लिए पर्याप्त नहीं था और लाइबनिज़ के सिद्धांत का उपयोग किया। विलियम हाइड वोलास्टन जैसे कुछ रसायनज्ञों ने भी इस सिद्धांत का समर्थन किया था। जॉन प्लेफेयर जैसे शिक्षाविदों ने यह इंगित करने के लिए जल्दी किया कि गतिज ऊर्जा स्पष्ट रूप से संरक्षित नहीं है। उष्मागतिकी के दूसरे नियम पर आधारित एक आधुनिक विश्लेषण के लिए यह स्पष्ट है, लेकिन 18वीं और 19वीं शताब्दी में, खोई हुई ऊर्जा का भाग्य अभी भी अज्ञात था।
धीरे-धीरे यह संदेह होने लगा कि घर्षण के तहत गति द्वारा अनिवार्य रूप से उत्पन्न ऊष्मा विज़ वाइवा का दूसरा रूप है। 1783 में, एंटोनी लावोज़ियर और पियरे-साइमन लाप्लास ने विवा और कैलोरी सिद्धांत के दो प्रतिस्पर्धी सिद्धांतों की समीक्षा की।[12][13] काउंट रमफोर्ड के 1798 में तोपों के प्रवेधन के दौरान ऊष्मा पैदा करने के अवलोकनों ने, यांत्रिक गति को ऊष्मा में परिवर्तित किया जा सकता है, इस विचार पर और अधिक जोर दिया और (यह महत्वपूर्ण था) कि रूपांतरण मात्रात्मक तथा अनुमान लगाया जा सकता हो (गतिज ऊर्जा और ऊष्मा के बीच एक सार्वभौमिक रूपांतरण स्थिरांक की अनुमति देता है)। 1807 में थॉमस यंग द्वारा इस अर्थ में पहली बार इस्तेमाल किए जाने के बाद विस वाइवा को ऊर्जा के रूप में जाना जाने लगा।
विज़ विवा का पुनर्गणना
जिसे काम करने के लिए गतिज ऊर्जा को परिवर्तित करने के रूप में समझा जा सकता है, बड़े पैमाने पर 1819-1839 की अवधि में गैपर्ड-गस्टेव कोरिओलिस और जीन-विक्टर पोंसेलेट का परिणाम था।पूर्व ने क्वांटिटी क्वांटिट डे ट्रैवेल (काम की मात्रा) और बाद वाले, ट्रैवेल मेकेनिक (मैकेनिकल वर्क) को कहा, और दोनों ने इंजीनियरिंग गणना में इसका उपयोग किया।
1837 में जेटसक्रॉफ्ट फर फिज़िक में प्रकाशित एक पेपर उबेर डाई नेचुर डेर वेरमे (जर्मन "ऊष्मा की प्रकृति पर") में, कार्ल फ्रेडरिक मोहर ने ऊर्जा के संरक्षण के सिद्धांत के शुरुआती सामान्य बयानों में से एक दिया: " 54 ज्ञात रासायनिक तत्वों के अलावा भौतिक जगत में केवल एक कारक है, और इसे क्राफ्ट [ऊर्जा या कार्य] कहा जाता है। यह परिस्थितियों के अनुसार गति, रासायनिक आत्मीयता, सामंजस्य, बिजली, प्रकाश और चुंबकत्व के रूप में प्रकट हो सकता है तथा इन रूपों में से किसी एक से इसे किसी अन्य रूप में परिवर्तित किया जा सकता है।"
गर्मी के यांत्रिक समकक्ष
आधुनिक संरक्षण सिद्धांत के विकास में एक महत्वपूर्ण चरण ऊष्मा के यांत्रिक समतुल्यता का प्रदर्शन था। कैलोरी सिद्धांत के अनुसार ऊष्मा को न तो उत्पन्न किया जा सकता है और न ही नष्ट किया जा सकता है, जबकि ऊर्जा के संरक्षण में इसके विपरीत सिद्धांत शामिल है कि ऊष्मा और यांत्रिक कार्य का विनिमेय होता हैं।
अठारहवीं शताब्दी के मध्य में, एक रूसी वैज्ञानिक मिखाइल लोमोनोसोव ने ऊष्मा के अपने कॉर्पुस्कुलो-गतिज सिद्धांत को प्रतिपादित किया, जिसने कैलोरी के विचार को खारिज कर दिया। प्रयोगसिद्ध अध्ययनों के परिणामों के माध्यम से, लोमोनोसोव इस निष्कर्ष पर पहुंचे कि कैलोरी द्रव के कणों के माध्यम से ऊष्मा को स्थानांतरित नहीं होती।
1798 में, काउंट रमफोर्ड (बेंजामिन थॉम्पसन) ने प्रवेधन तोपों में उत्पन्न घर्षण-ऊष्मा का मापन किया, और इस विचार को विकसित किया कि ऊष्मा गतिज ऊर्जा का एक रूप है। उनके माप ने कैलोरी सिद्धांत का खंडन किया।
1842 में जर्मन सर्जन जूलियस रॉबर्ट वॉन मेयर द्वारा यांत्रिक तुल्यता सिद्धांत को सर्वप्रथम इसके आधुनिक रूप में ज्ञात किया गया।[14] मेयर, डच ईस्ट इंडीज की यात्रा पर अपने निष्कर्ष पर पहुंचे, जहां उन्होंने पाया कि उनके मरीजों का रक्त गहरा लाल था क्योंकि वे गर्म जलवायु में अपने शरीर के तापमान को बनाए रखने के लिए कम ऑक्सीजन ग्रहण करते है, और इसलिए कम ऊर्जा का उपभोग कर रहे थे। उन्होंने पाया कि ऊष्मा और यांत्रिक कार्य दोनों ही ऊर्जा के रूप थे और 1845 में, भौतिकी के अपने ज्ञान में सुधार के बाद, उन्होंने एक मोनोग्राफ प्रकाशित किया जिसमें उनके बीच एक मात्रात्मक संबंध बताया गया।[15]
इस बीच, 1843 में, जेम्स प्रेस्कॉट जूल ने स्वतंत्र रूप से प्रयोगों की एक श्रृंखला में यांत्रिक तुल्यांक की खोज की। सबसे प्रसिद्ध, जिसे अब "जूल उपकरण" कहा जाता है, एक तार से जुड़े अवरोही वजन के कारण पानी में डूबा हुआ एक पैडल घूमता है। उन्होंने दिखाया कि अवरोही में वजन द्वारा खोई गई गुरुत्वाकर्षण स्थितिज ऊर्जा पैडल के साथ घर्षण के माध्यम से पानी द्वारा प्राप्त आंतरिक ऊर्जा के बराबर है।
1840-1843 की अवधि में, अभियांत्रिक लुडविग ए शीतलता द्वारा इसी तरह का कार्य किया गया था, हालांकि यह उनके मूल डेनमार्क के बाहर बहुत कम जाना जाता था।
जूल और मेयर दोनों के काम को बाधा और उपेक्षा का सामना करना पड़ा लेकिन जूल ने अंततः व्यापक मान्यता प्राप्त की।
1844 में, विलियम रॉबर्ट ग्रोव ने यांत्रिकी, ऊष्मा, प्रकाश, बिजली और चुंबकत्व के बीच एक संबंध को एक ही "बल" (आधुनिक शब्दों में ऊर्जा) की अभिव्यक्तियों के रूप में माना गया है। 1846 में, ग्रोव ने अपने सिद्धांतों को अपनी पुस्तक भौतिक बलों का सहसंबंध में प्रकाशित किया।[16] 1847 में, जूल, साडी कार्नोट और एमिल क्लैपेरॉन के पहले के काम पर चित्रण करते हुए, हरमन वॉन हेल्महोल्ट्ज़ ग्रोव के समान निष्कर्ष पर पहुंचे और अपनी पुस्तक उबेर डाई एर्हाल्टुंग डेर क्राफ्ट (ऑन द कंजर्वेशन ऑफ फोर्स, 1847) में अपने सिद्धांतों को प्रकाशित किया।[17] सिद्धांत की सामान्य आधुनिक स्वीकृति इस प्रकाशन से उपजी है।
1850 में, विलियम रैनकिन ने पहली बार इस सिद्धांत के लिए ऊर्जा के संरक्षण के नियम वाक्यांश का प्रयोग किया।[18]
1877 में, पीटर गुथरी टैट ने दावा किया कि सिद्धांत की उत्पत्ति सर आइजैक न्यूटन के साथ हुई, जो फिलॉसॉफिया नेचुरलिस प्रिंसिपिया मैथमैटिका के प्रस्तावों 40 और 41 के रचनात्मक अध्यन पर आधारित है। इसे अब व्हिग इतिहास का एक उदाहरण माना जाता है।[19]
द्रव्यमान -ऊर्जा समतुल्यता
पदार्थ परमाणुओं से बना है और क्या परमाणु बनाता है। पदार्थ में आंतरिक या विराम द्रव्यमान होता है। उन्नीसवीं शताब्दी के मान्यता प्राप्त अनुभव की सीमित सीमा में यह पाया गया कि इस तरह के विराम द्रव्यमान का संरक्षण किया जाता है। आइंस्टीन के 1905 के विशेष सापेक्षता के सिद्धांत से पता चला है कि विराम द्रव्यमान शेष ऊर्जा के बराबर मात्रा का होता है। अर्थात विराम द्रव्यमान को ऊर्जा के (अभौतिक) रूपों के बराबर मात्रा में या उससे परिवर्तित किया जा सकता है, उदाहरण के लिए गतिज ऊर्जा, स्थितिज ऊर्जा और विद्युत चुम्बकीय विकिरण ऊर्जा। बीसवीं शताब्दी में कुल द्रव्यमान या कुल ऊर्जा के विपरीत, विराम द्रव्यमान को संरक्षित नहीं किया जाता है। ऊर्जा के सभी रूप कुल द्रव्यमान और कुल ऊर्जा में योगदान करते हैं।
उदाहरण के लिए, इलेक्ट्रॉन एवं पॉज़िट्रॉन प्रत्येक में विराम द्रव्यमान होता है। वे एक साथ नष्ट हो सकते हैं, अपनी संयुक्त शेष ऊर्जा को फोटॉन में परिवर्तित कर सकते हैं जिसमें विद्युत चुम्बकीय विकिरण ऊर्जा होती है, लेकिन कोई विराम द्रव्यमान नहीं होता है। यदि यह एक विलगित निकाय के भीतर होता है जो बाहरी परिवेश में फोटॉन या उनकी ऊर्जा को मुक्त नहीं करता है, अतः न तो कुल द्रव्यमान और न ही निकाय की कुल ऊर्जा में परिवर्तन होगा। उत्पादित विद्युत चुम्बकीय विकिरण ऊर्जा निकाय के जड़त्व (और किसी भी भार के लिए) में उतना ही योगदान देती है जितना कि उनके इंतकाल से पहले इलेक्ट्रॉन और पॉज़िट्रॉन के विराम द्रव्यमान में होता है। इसी तरह, ऊर्जा के अभौतिक रूप पदार्थ में नष्ट हो सकते हैं, जिसमें विराम द्रव्यमान होता है।
इस प्रकार, ऊर्जा का संरक्षण (कुल, सामग्री या आराम ऊर्जा सहित), और द्रव्यमान का संरक्षण (कुल, केवल आराम नहीं) एक (समकक्ष) कानून हैं। 18 वीं शताब्दी में ये दो प्रतीत होने वाले कानूनों के रूप में दिखाई दिए थे।
बीटा क्षय में ऊर्जा का संरक्षण
1911 में यह खोज कि बीटा क्षय में उत्सर्जित इलेक्ट्रॉनों में एक असतत वर्णक्रम (स्पेक्ट्रम) के बजाय निरंतर होता है, ऊर्जा के संरक्षण के विपरीत प्रतीत होता है, तत्कालीन वर्तमान धारणा के तहत कि बीटा क्षय नाभिक से एक इलेक्ट्रॉन का सरल उत्सर्जन है।[20][21] इस समस्या को अंततः 1933 में एनरिको फर्मी द्वारा हल किया गया था,जिन्होंने बीटा-क्षय के सही वर्णन को एक इलेक्ट्रॉन और एक एंटीन्यूट्रिनो दोनों के उत्सर्जन के रूप में प्रस्तावित किया, जो स्पष्ट रूप से अनुपस्थित ऊर्जा को दूर करता है।[22][23]
उष्मागतिकी का प्रथम नियम
बंद उष्मागतिक निकाय के लिए, उष्मागतिकी का उष्मागतिकी का प्रथम नियम निम्नलिखित है
- , या समकक्ष,
जहाँ उष्मीय प्रक्रिया द्वारा दी गई की मात्रा, निकाय द्वारा अपने परिवेश पर किए गए कार्य के कारण निकाय द्वारा व्यय ऊर्जा की मात्रा और निकाय की आंतरिक ऊर्जा में परिवर्तन है।
δ's से पहले ऊष्मा और कार्य की शर्तों का उपयोग यह इंगित करने के लिए किया जाता है कि वे ऊर्जा की वृद्धि का वर्णन करते हैं जिसे आंतरिक ऊर्जा के वृद्धि से कुछ अलग व्याख्या है (अयथार्थ अवकल देखें)। कार्य और ऊष्मा का तात्पर्य उस प्रकार की प्रक्रिया से है जो किसी निकाय से या उससे ऊर्जा को जोड़ती या घटाती है, जबकि आंतरिक ऊर्जा निकाय की एक विशेष अवस्था का गुण है जब यह अपरिवर्तनीय ऊष्मागतिक साम्यावस्था में होती है। इस प्रकार के लिए "ऊष्मा ऊर्जा" शब्द का अर्थ है "ऊर्जा के एक विशेष रूप को संदर्भित करने के बजाय" उष्मीयता के परिणामस्वरूप जोड़ी गई ऊर्जा की मात्रा" है। इसी तरह, के लिए "कार्य ऊर्जा" शब्द का अर्थ है "कार्य के परिणामस्वरूप व्यय ऊर्जा की मात्रा" है। इस प्रकार कोई ऊष्मागतिक निकाय आंतरिक ऊर्जा की मात्रा ज्ञात की जा सकती है जिसे कोई जानता है कि वर्तमान में एक निश्चित स्थिति में है, लेकिन यह ज्ञात नहीं किया जा सकता है कि दी गई वर्तमान स्थिति के ज्ञान से, निकाय के गर्म या ठंडा होने के परिणामस्वरूप, न ही निकाय पर या उसके द्वारा किए जा रहे कार्य के परिणामस्वरूप अतीत में कितनी ऊर्जा प्रवाहित या निकाय के बहार है।
एन्ट्रॉपी निकाय की अवस्था का एक फलन है जो ऊष्मा के कार्य में रूपांतरण की संभावना की सीमाओं का वर्णन करती है।
सरल संपीड़ित निकाय के लिए, निकाय द्वारा किया गया कार्य निम्न प्रकार है।
जहाँ दाब और निकाय का आयतन परिवर्तन है, जिनमें से प्रत्येक निकाय के परिवर्ती कारक हैं। काल्पनिक स्थिति में जिसमें प्रक्रिया को आदर्श और असीम रूप से धीमी गति से होती है, जिसे स्थायीकल्प कहा जाता है, और प्रतिवर्ती माना जाता है, ऊष्मा को निकाय तापमान से असीम रूप से उच्च तापमान वाले स्रोत से स्थानांतरित किया जा रहा है, ऊष्मा ऊर्जा निम्न प्रकार है।
जहाँ तापमान और निकाय की एन्ट्रापी में परिवर्तन है। तापमान और एन्ट्रापी निकाय के परिवर्ती कारक हैं।
यदि खुला निकाय (जिसमें द्रव्यमान को पर्यावरण के साथ आदान -प्रदान किया जा सकता है) में कई दीवारें होती हैं, जैसे कि बड़े पैमाने पर स्थानांतरण कठोर दीवारों के माध्यम से ऊष्मा और कार्य स्थानान्तरण से अलग होता है, अतः प्रथम नियम निम्न प्रकार है।[24]
जहाँ , वर्ग का आभासी द्रव्यमान है तथा प्रति इकाई द्रव्यमान के अनुरूप एन्थैल्पी है। ध्यान दें कि सामान्यतः इस स्थिति मे, क्योंकि पदार्थ की स्वयं की ऐन्ट्रोपी होती है। बजाय, , जहाँ प्रकार के प्रति इकाई द्रव्यमान में ऐन्ट्रोपी है, जिससे हम मूल ऊष्मागतिक संबंध पुनर्प्राप्त करते हैं।
क्योंकि रासायनिक क्षमता , प्रजातियों की आंशिक मोलर गिब्स मुक्त ऊर्जा है और गिब्स मुक्त ऊर्जा ।
नोएदर कि प्रमेय
कई भौतिक सिद्धांतों में ऊर्जा का संरक्षण एक सामान्य विशेषता है। गणितीय दृष्टिकोण से इसे नोएदर के प्रमेय के परिणाम के रूप में व्याखित है, जिसे 1915 में एमी नोथर द्वारा विकसित किया गया था और पहली बार 1918 में प्रकाशित किया गया था। प्रमेय के अनुसार भौतिक सिद्धांत की प्रत्येक निरंतर समरूपता में एक संबद्ध संरक्षित मात्रा होती है। यदि सिद्धांत की समरूपता समय अपरिवर्तनीय है तो संरक्षित मात्रा को "ऊर्जा" कहा जाता है। ऊर्जा संरक्षण नियम समय की शिफ्ट समरूपता का परिणाम है। ऊर्जा संरक्षण अनुभवजन्य तथ्य से निहित है कि भौतिकी के नियम समय के साथ नहीं बदलते हैं। दार्शनिक रूप से इसे "कुछ भी समय पर निर्भर नहीं करता" के रूप में कहा जा सकता है। दूसरे शब्दों में, यदि समय अंतरण की निरंतर समरूपता मे भौतिक प्रणाली अपरिवर्तनीय होती है तो इसकी ऊर्जा (जो समय के लिए विहित संयुग्म मात्रा है) संरक्षित है। इसके विपरीत, निकाय जो समय एवं शिफ्ट मे अपरिवर्तनीय नहीं हैं (उदाहरण के लिए समय-निर्भर स्थितिज ऊर्जा वाले निकाय) ऊर्जा के संरक्षण को प्रदर्शित नहीं करते हैं - जब तक कि हम उन्हें दूसरे के साथ ऊर्जा का आदान-प्रदान करने के लिए नहीं मानते, बाह्य निकाय ताकि विवर्धित निकाय का सिद्धांत बन जाए जिससे यह पुनः समाये-अपरिवर्तनीय हो। परिमित निकायों के लिए ऊर्जा का संरक्षण भौतिक सिद्धांतों जैसे विशेष सापेक्षता और क्वांटम सिद्धांत (क्यूईडी सहित) में अवक्र दिक्-काल में मान्य है।
सापेक्षता
हेनरी पोइंकेरे और अल्बर्ट आइंस्टीन द्वारा विशेष सापेक्षता की खोज के साथ, ऊर्जा को ऊर्जा-संवेग 4-सदिश का एक घटक होने का प्रस्ताव दिया गया था। इस सदिश के चार घटकों (एक ऊर्जा का तथा तीन संवेग का) में से प्रत्येक को किसी भी बंद प्रणाली में समय के साथ अलग -अलग संरक्षित किया जाता है, जैसा कि किसी भी दिए गए जड़त्वीय निर्देश तंत्र से देखा जाता है। सदिश लंबाई (मिन्कोव्स्की मानदंड) भी संरक्षित है, जो एकल कणों के लिए बाकी द्रव्यमान है, और कणों की प्रणालियों के लिए अपरिवर्तनीय द्रव्यमान (जहां लंबाई की गणना से पहले संवेग और ऊर्जा को अलग-अलग अभिव्यक्त किया जाता है)।
एक विशाल कण की आपेक्षिक ऊर्जा में कण की गतिज ऊर्जा के अतिरिक्त इसके विराम द्रव्यमान से संबंधित एक पद भी होता है। एक विशाल कण की शून्य गतिज ऊर्जा (या समतुल्य रूप से विराम तंत्र में) की सीमा में, या गतिज ऊर्जा को बनाए रखने वाली वस्तुओं या प्रणालियों के लिए संवेग तंत्र के केंद्र में, कण या वस्तु की कुल ऊर्जा (निकायों में आंतरिक गतिज ऊर्जा सहित) विराम द्रव्यमान या अपरिवर्तनीय द्रव्यमान के समानुपाती होता है, जैसा कि प्रसिद्ध समीकरण द्वारा वर्णित है।
इस प्रकार, प्रेक्षक के निर्देश तंत्र अपरिवर्तित रहने तक, विशेष सापेक्षता में समय के साथ ऊर्जा के संरक्षण का नियम स्थायी रहता है। यह निकाय की कुल ऊर्जा पर लागू होता है, हालांकि विभिन्न प्रेक्षक ऊर्जा मूल्य के लिए असहमत हैं। सभी प्रेक्षको के लिए भी संरक्षित, और अपरिवर्तनीय, निश्चर द्रव्यमान है, जो कि न्यूनतम प्रणाली द्रव्यमान और ऊर्जा है जिसे किसी भी प्रेक्षक द्वारा देखा जा सकता है, और जिसे ऊर्जा-संवेग संबंध द्वारा परिभाषित किया जाता है।
सामान्य सापेक्षता में, कुछ विशेष स्थितियों को छोड़कर ऊर्जा-संवेग संरक्षण अच्छी तरह परिभाषित नहीं है। ऊर्जा-संवेग को सामान्यतः तनाव-ऊर्जा-संवेग स्यूडोटेन्सर की सहायता से व्यक्त किया जाता है। हालांकि, चूंकि स्यूडोटेंसर टेंसर नहीं हैं, इसलिए वे निर्देश तंत्र के बीच स्पष्ट रूप से रूपांतरित नहीं होते हैं। यदि विचाराधीन मात्रिक स्थिर है (अर्थात, समय के साथ नहीं बदलता है) या स्पर्शोन्मुख रूप से समतल (अर्थात, अनंत दूरी पर स्पेसटाइम खाली दिखता है), तो ऊर्जा संरक्षण बिना किसी बड़े नुकसान के होता है। कुछ मिति जैसे कि फ्रीडमैन-लेमेत्रे-रॉबर्टसन-वाकर मात्रिक इन बाधाओं को समाधान नहीं करते हैं और ऊर्जा संरक्षण अच्छी तरह परिभाषित नहीं है।[25] सामान्य सापेक्षता का सिंद्धांत इस प्रश्न को जन्म देता है कि सम्पूर्ण ब्रह्मांड की ऊर्जा संरक्षित होती है।
क्वांटम थ्योरी
क्वांटम यांत्रिकी में, क्वांटम निकाय की ऊर्जा को हेमिल्टोनियन नामक एक स्व-सहायक (या हर्मिटियन) संचालक द्वारा वर्णित किया जाता है, जो निकाय के हिल्बर्ट स्पेस (या तरंग कार्यों की जगह) पर कार्य करता है। यदि हैमिल्टन एक समय-स्वतंत्र संचालक है, तो माप परिणाम की आविर्भाव की संभावना प्रणाली के विकास पर समय में नहीं बदलती है। इस प्रकार ऊर्जा का प्रत्याशित मूल्य भी समय स्वतंत्र होता है। क्वांटम क्षेत्र सिद्धांत में स्थानीय ऊर्जा संरक्षण ऊर्जा-संवेग टेंसर संचालक के लिए क्वांटम नोएदर के प्रमेय द्वारा सुनिश्चित किया जाता है। क्वांटम सिद्धांत में (सार्वभौमिक) समय संचालक की कमी के कारण, समय और ऊर्जा के लिए अनिश्चितता संबंध स्थिति-संवेग अनिश्चितता सिद्धांत के विपरीत मौलिक नहीं हैं, और केवल विशिष्ट स्थितियों में हैं (अनिश्चितता सिद्धांत देखें)। प्रत्येक निश्चित समय पर ऊर्जा को सैद्धांतिक रूप से समय-ऊर्जा अनिश्चितता संबंधों द्वारा मजबूर परिशुद्धता में बिना किसी दुविधा-बंद के बिल्कुल मापा जा सकता है। इस प्रकार समय पर ऊर्जा का संरक्षण क्वांटम यांत्रिकी में भी एक सुपरिभाषित अवधारणा है।
यह भी देखें
- ऊर्जा की गुणवत्ता
- ऊर्जा परिवर्तन
- दुनिया की अनंत काल
- लैग्रैन्जियन मैकेनिक्स
- थर्मोडायनामिक्स के नियम
- शून्य-ऊर्जा ब्रह्मांड
संदर्भ
- ↑ Richard Feynman (1970). The Feynman Lectures on Physics Vol I. Addison Wesley. ISBN 978-0-201-02115-8.
- ↑ 2.0 2.1 Arianrhod, Robyn (2012). Seduced by logic : Émilie du Châtelet, Mary Somerville, and the Newtonian revolution (US ed.). New York: Oxford University Press. ISBN 978-0-19-993161-3.
- ↑ 3.0 3.1 Hagengruber, Ruth, editor (2011) Émilie du Chatelet between Leibniz and Newton. Springer. ISBN 978-94-007-2074-9.
- ↑ Planck, M. (1923/1927). Treatise on Thermodynamics, third English edition translated by A. Ogg from the seventh German edition, Longmans, Green & Co., London, page 40.
- ↑ Witten, Edward (1981). "A new proof of the positive energy theorem" (PDF). Communications in Mathematical Physics. 80 (3): 381–402. Bibcode:1981CMaPh..80..381W. doi:10.1007/BF01208277. ISSN 0010-3616. S2CID 1035111. Archived from the original (PDF) on 25 November 2016. Retrieved 12 December 2017.
- ↑ Grossman, Lisa (18 January 2012). "Death-defying time crystal could outlast the universe". newscientist.com. New Scientist. Archived from the original on 2 February 2017.
- ↑ Cowen, Ron (27 February 2012). ""Time Crystals" Could Be a Legitimate Form of Perpetual Motion". scientificamerican.com. Scientific American. Archived from the original on 2 February 2017.
- ↑ Powell, Devin (2013). "Can matter cycle through shapes eternally?". Nature. doi:10.1038/nature.2013.13657. ISSN 1476-4687. S2CID 181223762. Archived from the original on 3 February 2017.
- ↑ Gibney, Elizabeth (2017). "The quest to crystallize time". Nature. 543 (7644): 164–166. Bibcode:2017Natur.543..164G. doi:10.1038/543164a. ISSN 0028-0836. PMID 28277535. S2CID 4460265. Archived from the original on 13 March 2017.
- ↑ Janko, Richard (2004). "Empedocles, "On Nature"" (PDF). Zeitschrift für Papyrologie und Epigraphik. 150: 1–26.
- ↑ Laertius, Diogenes. Lives of Eminent Philosophers: Epicurus.[permanent dead link]. This passage comes from a letter quoted in full by Diogenes, and purportedly written by Epicurus himself in which he lays out the tenets of his philosophy.
- ↑ Lavoisier, A.L. & Laplace, P.S. (1780) "Memoir on Heat", Académie Royale des Sciences pp. 4–355
- ↑ Guerlac, Henry (1976). "Chemistry as a Branch of Physics: Laplace's Collaboration with Lavoisier". Historical Studies in the Physical Sciences. University of California Press. 7: 193–276. doi:10.2307/27757357. JSTOR 27757357. Retrieved 24 March 2022.
- ↑ von Mayer, J.R. (1842) "Remarks on the forces of inorganic nature" in Annalen der Chemie und Pharmacie, 43, 233
- ↑ Mayer, J.R. (1845). Die organische Bewegung in ihrem Zusammenhange mit dem Stoffwechsel. Ein Beitrag zur Naturkunde, Dechsler, Heilbronn.
- ↑ Grove, W. R. (1874). The Correlation of Physical Forces (6th ed.). London: Longmans, Green.
- ↑ "On the Conservation of Force". Bartleby. Retrieved 6 April 2014.
- ↑ William John Macquorn Rankine (1853) "On the General Law of the Transformation of Energy," Proceedings of the Philosophical Society of Glasgow, vol. 3, no. 5, pages 276-280; reprinted in: (1) Philosophical Magazine, series 4, vol. 5, no. 30, pages 106-117 (February 1853); and (2) W. J. Millar, ed., Miscellaneous Scientific Papers: by W. J. Macquorn Rankine, ... (London, England: Charles Griffin and Co., 1881), part II, pages 203-208: "The law of the Conservation of Energy is already known—viz. that the sum of all the energies of the universe, actual and potential, is unchangeable."
- ↑ Hadden, Richard W. (1994). On the shoulders of merchants: exchange and the mathematical conception of nature in early modern Europe. SUNY Press. p. 13. ISBN 978-0-7914-2011-9., Chapter 1, p. 13
- ↑ Jensen, Carsten (2000). Controversy and Consensus: Nuclear Beta Decay 1911-1934. Birkhäuser Verlag. ISBN 978-3-7643-5313-1.
- ↑ Brown, Laurie M. (1978). "The idea of the neutrino". Physics Today. 31 (9): 23–8. Bibcode:1978PhT....31i..23B. doi:10.1063/1.2995181.
- ↑ Wilson, F. L. (1968). "Fermi's Theory of Beta Decay". American Journal of Physics. 36 (12): 1150–1160. Bibcode:1968AmJPh..36.1150W. doi:10.1119/1.1974382.
- ↑ Griffiths, D. (2009). Introduction to Elementary Particles (2nd ed.). pp. 314–315. ISBN 978-3-527-40601-2.
- ↑ Knuiman, Jan T.; Barneveld, Peter A.; Besseling, Nicolaas A. M. (2012). "On the Relation between the Fundamental Equation of Thermodynamics and the Energy Balance Equation in the Context of Closed and Open Systems". Journal of Chemical Education. 89 (8): 968–972. Bibcode:2012JChEd..89..968K. doi:10.1021/ed200405k.
- ↑ Michael Weiss and John Baez. "Is Energy Conserved in General Relativity?". Archived from the original on 5 June 2007. Retrieved 5 January 2017.
{{cite web}}
: CS1 maint: uses authors parameter (link)
ग्रन्थसूची
आधुनिक खाते
- गोल्डस्टीन, मार्टिन, और इंग एफ।, (1993)।रेफ्रिजरेटर और ब्रह्मांड।हार्वर्ड यूनीव।प्रेस।एक सौम्य परिचय।
- Kroemer, Herbert; Kittel, Charles (1980). Thermal Physics (2nd ed.). W. H. Freeman Company. ISBN 978-0-7167-1088-2.
- Nolan, Peter J. (1996). Fundamentals of College Physics, 2nd ed. William C. Brown Publishers.
- Oxtoby & Nachtrieb (1996). Principles of Modern Chemistry, 3rd ed. Saunders College Publishing.
- Papineau, D. (2002). Thinking about Consciousness. Oxford: Oxford University Press.
- Serway, Raymond A.; Jewett, John W. (2004). Physics for Scientists and Engineers (6th ed.). Brooks/Cole. ISBN 978-0-534-40842-8.
- स्टेंजर, विक्टर जे (2000)।कालातीत वास्तविकता।प्रोमेथियस किताबें।विशेष रूप से chpt।12. गैर -तकनीकी।
- Tipler, Paul (2004). Physics for Scientists and Engineers: Mechanics, Oscillations and Waves, Thermodynamics (5th ed.). W. H. Freeman. ISBN 978-0-7167-0809-4.
- Lanczos, Cornelius (1970). The Variational Principles of Mechanics. Toronto: University of Toronto Press. ISBN 978-0-8020-1743-7.
विचारों का इतिहास
- Brown, T.M. (1965). "Resource letter EEC-1 on the evolution of energy concepts from Galileo to Helmholtz". American Journal of Physics. 33 (10): 759–765. Bibcode:1965AmJPh..33..759B. doi:10.1119/1.1970980.
- Cardwell, D.S.L. (1971). From Watt to Clausius: The Rise of Thermodynamics in the Early Industrial Age. London: Heinemann. ISBN 978-0-435-54150-7.
- Guillen, M. (1999). Five Equations That Changed the World. New York: Abacus. ISBN 978-0-349-11064-6.
- Hiebert, E.N. (1981). Historical Roots of the Principle of Conservation of Energy. Madison, Wis.: Ayer Co Pub. ISBN 978-0-405-13880-5.
- कुहन, टी.एस.।
- Sarton, G.; Joule, J. P.; Carnot, Sadi (1929). "The discovery of the law of conservation of energy". Isis. 13: 18–49. doi:10.1086/346430. S2CID 145585492.
- Smith, C. (1998). The Science of Energy: Cultural History of Energy Physics in Victorian Britain. London: Heinemann. ISBN 978-0-485-11431-7.
- Mach, E. (1872). History and Root of the Principles of the Conservation of Energy. Open Court Pub. Co., Illinois.
- Poincaré, H. (1905). Science and Hypothesis. Walter Scott Publishing Co. Ltd; Dover reprint, 1952. ISBN 978-0-486-60221-9., अध्याय 8, ऊर्जा और थर्मो-डायनैमिक्स
बाहरी संबंध
- MISN-0-158</>§small> The First Law of Thermodynamics (PDF file) by Jerzy Borysowicz for Project PHYSNET.