क्रिस्टल गति: Difference between revisions
(Created page with "{{Short description|Quantum-mechanical vector property in solid-state physics}} File:Quasimomentum.gif|thumb|साइनसोइडल दोलनों की एक अ...") |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Quantum-mechanical vector property in solid-state physics}} | {{Short description|Quantum-mechanical vector property in solid-state physics}} | ||
[[File:Quasimomentum.gif|thumb|साइनसोइडल दोलनों की एक अनंत संख्या है जो असतत दोलित्रों के एक सेट को पूरी तरह से फिट करते हैं, जिससे स्पष्ट रूप से k- | [[File:Quasimomentum.gif|thumb|साइनसोइडल दोलनों की एक अनंत संख्या है जो असतत दोलित्रों के एक सेट को पूरी तरह से फिट करते हैं, जिससे स्पष्ट रूप से k-सदिश को परिभाषित करना असंभव हो जाता है। यह जाली में तरंगों की स्थानिक Nyquist आवृत्ति के लिए इंटर-ऑसिलेटर दूरी का संबंध है।<ref>{{Cite web|url=http://solidstate.mines.edu/videonotes/VN_5_2.pdf|title=Topic 5-2: Nyquist Frequency and Group Velocity|last=|first=|date=|website=Solid State Physics in a Nutshell|publisher=[[Colorado School of Mines]]|url-status=live|archive-url=https://web.archive.org/web/20151227094558/http://solidstate.mines.edu:80/videonotes/VN_5_2.pdf |archive-date=2015-12-27 |access-date=}}</ref> यह सभी देखें {{Section link|Aliasing|Sampling sinusoidal functions}} k-वैक्टर की समानता के बारे में अधिक जानकारी के लिए।]]ठोस-अवस्था भौतिकी में क्रिस्टल गति या क्वासिमोमेंटम एक गति जैसा [[वेक्टर (ज्यामितीय)|सदिश (ज्यामितीय)]] है जो क्रिस्टल जाली में [[इलेक्ट्रॉन|इलेक्ट्रॉनों]] से जुड़ा होता है।<ref>{{cite journal | ||
|author=Gurevich V.L. | |author=Gurevich V.L. | ||
|author2=Thellung A. | |author2=Thellung A. | ||
Line 8: | Line 8: | ||
|volume=42 |issue=12 |pages=7345–7349 | |volume=42 |issue=12 |pages=7345–7349 | ||
|doi= 10.1103/PhysRevB.42.7345 | |doi= 10.1103/PhysRevB.42.7345 | ||
|bibcode = 1990PhRvB..42.7345G }}</ref> | |bibcode = 1990PhRvB..42.7345G }}</ref> यह संबंधित [[पारस्परिक जाली]] <math>\mathbf{k}</math> द्वारा परिभाषित किया गया है इस जाली के अनुसार | ||
:<math>{\mathbf{p}}_{\text{crystal}} \equiv \hbar {\mathbf{k}}</math> | :<math>{\mathbf{p}}_{\text{crystal}} \equiv \hbar {\mathbf{k}}</math> | ||
( | संबंधित [[पारस्परिक जाली]] <math>\mathbf{k}</math> द्वारा परिभाषित किया गया है (जहाँ <math>\hbar</math> घटी हुई प्लैंक स्थिरांक है)।<ref name=Ashcroft>{{cite book | ||
| author = Neil Ashcroft | | author = Neil Ashcroft | ||
| author-link = Neil Ashcroft | | author-link = Neil Ashcroft | ||
Line 21: | Line 21: | ||
| url-access = registration | | url-access = registration | ||
| url = https://archive.org/details/solidstatephysic00ashc | | url = https://archive.org/details/solidstatephysic00ashc | ||
}}</ref>{{rp|139}} | }}</ref>{{rp|139}} प्रायः,{{Clarify|reason=When is crystal momentum conserved?|date=September 2018}}, क्रिस्टल गति को यांत्रिक गति के जैसे संरक्षित किया जाता है, जिससे यह भौतिकविदों और सामग्री वैज्ञानिकों के लिए एक विश्लेषणात्मक उपकरण के रूप में उपयोगी हो जाता है। | ||
== जाली समरूपता उत्पत्ति == | == जाली समरूपता उत्पत्ति == | ||
क्रिस्टल संरचना और व्यवहार | क्रिस्टल संरचना और व्यवहार को मॉडलिंग करने की सामान्य विधि इलेक्ट्रॉनों को एक निश्चित अनंत आवधिक क्षमता <math>V(x)</math> के माध्यम से भ्रमण करने वाले [[क्वांटम यांत्रिकी]] कणों के रूप में देखना है, जैसे कि | ||
:<math>V({\mathbf{x}}+{\mathbf{a}})=V({\mathbf{x}}),</math> | :<math>V({\mathbf{x}}+{\mathbf{a}})=V({\mathbf{x}}),</math> | ||
जहां <math>\mathbf{a}</math> एक यादृच्छिक जाली सदिश है। ऐसा मॉडल प्रत्यक्ष है क्योंकि क्रिस्टल [[आयन]] जो जाली संरचना का निर्माण करते हैं, सामान्यतः इलेक्ट्रॉनों की तुलना में दसियों हज़ार गुना अधिक बड़े पैमाने पर होते हैं,<ref>{{cite web | |||
| author = Peter J. Mohr | | author = Peter J. Mohr | ||
|author2=Barry N. Taylor | |author2=Barry N. Taylor | ||
| title = The 2002 CODATA Recommended Values of the Fundamental Physical Constants | | title = The 2002 CODATA Recommended Values of the Fundamental Physical Constants | ||
| url = http://physics.nist.gov/cuu/constants | | url = http://physics.nist.gov/cuu/constants | ||
| year = 2004}}</ref> | | year = 2004}}</ref> एक निश्चित संभावित संरचना के साथ उन्हें बदलने के लिए इसे सुरक्षित बनाना, और एक क्रिस्टल के स्थूलदर्शित आयाम सामान्यतः एकल जाली रिक्ति से कहीं अधिक होते हैं, जिससे किनारे के प्रभाव नगण्य हो जाते हैं। इस संभावित ऊर्जा फलन का एक परिणाम यह है कि समस्या के किसी भी पहलू को बदले बिना किसी भी जाली सदिश <math>\mathbf{a}</math> द्वारा इलेक्ट्रॉन की प्रारंभिक स्थिति को स्थानांतरित करना संभव है , जिससे असतत समरूपता परिभाषित होती है। तकनीकी रूप से, एक अनंत आवधिक क्षमता का अर्थ है कि जाली अनुवाद संचालिका <math>T(a)</math> [[हैमिल्टनियन (क्वांटम यांत्रिकी)]] के साथ [[कम्यूटेटर]], एक सरल गतिज-प्लस-संभावित रूप ग्रहण करते हुए।<ref name=Ashcroft/>{{rp|134}} | ||
एक निश्चित संभावित संरचना के साथ उन्हें बदलने के लिए इसे सुरक्षित बनाना, और एक क्रिस्टल के | |||
ये स्थितियाँ बलोच के प्रमेय को दर्शाती हैं, जो बताता है | ये स्थितियाँ बलोच के प्रमेय को दर्शाती हैं, जो बताता है | ||
:<math>\psi_n({\mathbf{x}})=e^{i{\mathbf{k} {\mathbf{\cdot x}}}}u_{n{\mathbf{k}}}({\mathbf{x}}), \qquad | :<math>\psi_n({\mathbf{x}})=e^{i{\mathbf{k} {\mathbf{\cdot x}}}}u_{n{\mathbf{k}}}({\mathbf{x}}), \qquad | ||
u_{n{\mathbf{k}}}({\mathbf{x}}+{\mathbf{a}})=u_{n{\mathbf{k}}}({\mathbf{x}})</math>, | u_{n{\mathbf{k}}}({\mathbf{x}}+{\mathbf{a}})=u_{n{\mathbf{k}}}({\mathbf{x}})</math>, | ||
या कि एक जाली में एक इलेक्ट्रॉन, जिसे एकल कण तरंग | या कि एक जाली में एक इलेक्ट्रॉन, जिसे एकल कण तरंग फलन के रूप में प्रतिरूपित किया जा सकता है <math>\psi(\mathbf{x})</math>, एक आवधिक फलन से गुणा विमान तरंग के रूप में अपने स्थिर राज्य समाधान पाता है <math>u(\mathbf{x})</math>. प्रमेय उपरोक्त तथ्य के प्रत्यक्ष परिणाम के रूप में उत्पन्न होता है कि जाली समरूपता अनुवाद ऑपरेटर सिस्टम के हैमिल्टनियन के साथ काम करता है।<ref name=Ashcroft/>{{rp|261–266}}<ref>{{cite book | ||
| author = J. J. Sakurai | | author = J. J. Sakurai | ||
| title = Modern Quantum Mechanics | | title = Modern Quantum Mechanics | ||
Line 45: | Line 43: | ||
| isbn = 0-201-53929-2 | | isbn = 0-201-53929-2 | ||
| page = 139}}</ref> | | page = 139}}</ref> | ||
बलोच के प्रमेय के उल्लेखनीय पहलुओं में से एक यह है कि यह सीधे दिखाता है कि स्थिर अवस्था समाधानों को तरंग सदिश के साथ पहचाना जा सकता है <math>\mathbf{k}</math>, जिसका अर्थ है कि यह क्वांटम संख्या गति की एक स्थिर बनी हुई है। क्रिस्टल गति को तब पारंपरिक रूप से इस तरंग | बलोच के प्रमेय के उल्लेखनीय पहलुओं में से एक यह है कि यह सीधे दिखाता है कि स्थिर अवस्था समाधानों को तरंग सदिश के साथ पहचाना जा सकता है <math>\mathbf{k}</math>, जिसका अर्थ है कि यह क्वांटम संख्या गति की एक स्थिर बनी हुई है। क्रिस्टल गति को तब पारंपरिक रूप से इस तरंग सदिश को प्लैंक के स्थिरांक से गुणा करके परिभाषित किया जाता है: | ||
:<math>{\mathbf{p}}_{\text{crystal}} = \hbar {\mathbf{k}}.</math> | :<math>{\mathbf{p}}_{\text{crystal}} = \hbar {\mathbf{k}}.</math> | ||
हालांकि यह वास्तव में परिभाषा के समान है जो नियमित गति के लिए दे सकता है (उदाहरण के लिए, मुक्त स्थान में एक कण के प्रभाव से अनुवाद ऑपरेटर के प्रभावों का इलाज करके)<ref>{{cite web | हालांकि यह वास्तव में परिभाषा के समान है जो नियमित गति के लिए दे सकता है (उदाहरण के लिए, मुक्त स्थान में एक कण के प्रभाव से अनुवाद ऑपरेटर के प्रभावों का इलाज करके)<ref>{{cite web | ||
Line 52: | Line 50: | ||
| url = http://bohr.physics.berkeley.edu/classes/221/1112/221.html | | url = http://bohr.physics.berkeley.edu/classes/221/1112/221.html | ||
| year = 2012}}</ref>), | | year = 2012}}</ref>), | ||
महत्वपूर्ण सैद्धांतिक अंतर हैं। उदाहरण के लिए, जबकि नियमित | महत्वपूर्ण सैद्धांतिक अंतर हैं। उदाहरण के लिए, जबकि नियमित गति पूरी तरह से संरक्षित है, क्रिस्टल गति केवल संरक्षित मॉडुलो (शब्दजाल) एक जाली सदिश है। उदाहरण के लिए, एक इलेक्ट्रॉन को न केवल तरंग सदिश द्वारा वर्णित किया जा सकता है <math>\mathbf{k}</math>, लेकिन किसी अन्य तरंग सदिश के साथ भी <math>\mathbf{k'}</math>ऐसा है कि | ||
:<math>\mathbf{k'} = \mathbf{k} + \mathbf{K},</math> | :<math>\mathbf{k'} = \mathbf{k} + \mathbf{K},</math> | ||
जहाँ <math>\mathbf{K}</math> एक यादृच्छिक पारस्परिक जाली सदिश है।<ref name=Ashcroft/>{{rp|218}} यह इस तथ्य का परिणाम है कि जाली समरूपता निरंतर के विपरीत असतत है, और इस प्रकार इसके संबंधित संरक्षण कानून को नोएदर के प्रमेय का उपयोग करके प्राप्त नहीं किया जा सकता है। | |||
== भौतिक महत्व == | == भौतिक महत्व == | ||
[[बलोच राज्य]] का चरण मॉडुलन <math>\psi_n({\mathbf{x}})=e^{i{\mathbf{k} {\mathbf{\cdot x}}}}u_{n{\mathbf{k}}}({\mathbf{x}})</math> गति के साथ एक मुक्त कण के समान है <math>\hbar k </math>, अर्थात। <math> k </math> राज्य की आवधिकता देता है, जो जाली के समान नहीं है। यह मॉडुलन कण की गतिज ऊर्जा में योगदान देता है (जबकि मॉड्यूलेशन मुक्त कण की गतिज ऊर्जा के लिए पूरी तरह से जिम्मेदार होता है)। | [[बलोच राज्य]] का चरण मॉडुलन <math>\psi_n({\mathbf{x}})=e^{i{\mathbf{k} {\mathbf{\cdot x}}}}u_{n{\mathbf{k}}}({\mathbf{x}})</math> गति के साथ एक मुक्त कण के समान है <math>\hbar k </math>, अर्थात। <math> k </math> राज्य की आवधिकता देता है, जो जाली के समान नहीं है। यह मॉडुलन कण की गतिज ऊर्जा में योगदान देता है (जबकि मॉड्यूलेशन मुक्त कण की गतिज ऊर्जा के लिए पूरी तरह से जिम्मेदार होता है)। | ||
उन क्षेत्रों में जहां बैंड लगभग परवलयिक है, क्रिस्टल | उन क्षेत्रों में जहां बैंड लगभग परवलयिक है, क्रिस्टल गति गति के साथ मुक्त कण के गति के बराबर होता है <math>\hbar k </math> यदि हम कण को एक प्रभावी द्रव्यमान (ठोस-अवस्था भौतिकी) प्रदान करते हैं जो कि परवलय की वक्रता से संबंधित है। | ||
=== वेग से संबंध === | === वेग से संबंध === | ||
[[Image:Wave packet (dispersion).gif|right|thumb|300px|[[फैलाव संबंध]] वाला एक तरंग पैकेट, जिसके कारण [[समूह वेग]] और [[चरण वेग]] भिन्न होते हैं। यह छवि एक 1-आयामी [[वास्तविक संख्या]] तरंग है, लेकिन इलेक्ट्रॉन तरंग पैकेट 3-आयामी [[जटिल संख्या]] तरंगें हैं।]]क्रिस्टल गति के अनुसार वेग की शारीरिक रूप से मापने योग्य अवधारणा से मेल खाती है<ref name=Ashcroft/>{{rp|141}} | [[Image:Wave packet (dispersion).gif|right|thumb|300px|[[फैलाव संबंध]] वाला एक तरंग पैकेट, जिसके कारण [[समूह वेग]] और [[चरण वेग]] भिन्न होते हैं। यह छवि एक 1-आयामी [[वास्तविक संख्या]] तरंग है, लेकिन इलेक्ट्रॉन तरंग पैकेट 3-आयामी [[जटिल संख्या]] तरंगें हैं।]]क्रिस्टल गति के अनुसार वेग की शारीरिक रूप से मापने योग्य अवधारणा से मेल खाती है<ref name=Ashcroft/>{{rp|141}} | ||
:<math>{\mathbf{v}}_n({\mathbf{k}}) = \frac{1}{\hbar} \nabla_{\mathbf{k}} E_n({\mathbf{k}}).</math> | :<math>{\mathbf{v}}_n({\mathbf{k}}) = \frac{1}{\hbar} \nabla_{\mathbf{k}} E_n({\mathbf{k}}).</math> | ||
यह समूह वेग के समान सूत्र है। अधिक विशेष रूप से, [[हाइजेनबर्ग अनिश्चितता सिद्धांत]] के कारण, एक क्रिस्टल में एक इलेक्ट्रॉन में क्रिस्टल में बिल्कुल परिभाषित k और सटीक स्थिति [[फोनन]] नहीं हो सकते हैं। हालाँकि, यह | यह समूह वेग के समान सूत्र है। अधिक विशेष रूप से, [[हाइजेनबर्ग अनिश्चितता सिद्धांत]] के कारण, एक क्रिस्टल में एक इलेक्ट्रॉन में क्रिस्टल में बिल्कुल परिभाषित k और सटीक स्थिति [[फोनन]] नहीं हो सकते हैं। हालाँकि, यह गति k (थोड़ी अनिश्चितता के साथ) पर केंद्रित एक तरंग पैकेट बना सकता है, और एक निश्चित स्थिति (थोड़ी अनिश्चितता के साथ) पर केंद्रित होता है। इस तरंग पैकेट की केंद्र स्थिति बदल जाती है क्योंकि लहर फैलती है, ऊपर दिए गए सूत्र द्वारा दिए गए वेग v पर क्रिस्टल के माध्यम से चलती है। एक वास्तविक क्रिस्टल में, एक इलेक्ट्रॉन इस तरह से चलता है - एक निश्चित गति से एक निश्चित दिशा में भ्रमण करता है - केवल थोड़े समय के लिए, क्रिस्टल में एक अपूर्णता से टकराने से पहले जो इसे एक अलग, यादृच्छिक दिशा में स्थानांतरित करने का कारण बनता है। ये टकराव, जिन्हें ''[[ इलेक्ट्रॉन प्रकीर्णन ]]'' कहा जाता है, सामान्यतः [[क्रिस्टलोग्राफिक दोष]]ों, क्रिस्टल की सतह और क्रिस्टल (फोनोन्स) में परमाणुओं के यादृच्छिक थर्मल कंपन के कारण होते हैं।<ref name=Ashcroft/>{{rp|216}} | ||
===बिजली और चुंबकीय क्षेत्र की प्रतिक्रिया=== | ===बिजली और चुंबकीय क्षेत्र की प्रतिक्रिया=== | ||
Line 71: | Line 69: | ||
:<math>{\mathbf{v}}_n({\mathbf{k}}) = \frac{1}{\hbar} \nabla_{\mathbf{k}} E_n({\mathbf{k}}), </math> | :<math>{\mathbf{v}}_n({\mathbf{k}}) = \frac{1}{\hbar} \nabla_{\mathbf{k}} E_n({\mathbf{k}}), </math> | ||
:<math>{\mathbf{\dot{p}}}_{\text{crystal}} = -e \left( {\mathbf{E}} -\frac{1}{c} {\mathbf{v}} \times {\mathbf{H}} \right)</math> | :<math>{\mathbf{\dot{p}}}_{\text{crystal}} = -e \left( {\mathbf{E}} -\frac{1}{c} {\mathbf{v}} \times {\mathbf{H}} \right)</math> | ||
यहाँ शायद क्रिस्टल | यहाँ शायद क्रिस्टल गति और वास्तविक गति के बीच सादृश्य अपने सबसे शक्तिशाली पर है, क्योंकि ये ठीक ऐसे समीकरण हैं जो किसी क्रिस्टल संरचना की अनुपस्थिति में एक मुक्त अंतरिक्ष इलेक्ट्रॉन का पालन करते हैं। क्रिस्टल गति भी इस प्रकार की गणनाओं में चमकने का अवसर अर्जित करता है, क्योंकि उपरोक्त समीकरणों का उपयोग करके एक इलेक्ट्रॉन की गति के प्रक्षेपवक्र की गणना करने के लिए, किसी को केवल बाहरी क्षेत्रों पर विचार करने की आवश्यकता होती है, जबकि गति के समीकरणों के एक सेट से गणना का प्रयास करते समय वास्तविक गति के लिए बाहरी क्षेत्र के अलावा हर एक जाली आयन के अलग-अलग कूलम्ब और लोरेंत्ज़ बलों को ध्यान में रखना होगा। | ||
== अनुप्रयोग == | == अनुप्रयोग == | ||
===कोण-समाधान फोटो-उत्सर्जन स्पेक्ट्रोस्कोपी (ARPES)=== | ===कोण-समाधान फोटो-उत्सर्जन स्पेक्ट्रोस्कोपी (ARPES)=== | ||
कोण-समाधान फोटो-उत्सर्जन स्पेक्ट्रोस्कोपी|कोण-समाधान फोटो-उत्सर्जन स्पेक्ट्रोस्कोपी (एआरपीईएस) में, क्रिस्टल नमूने पर प्रकाश को विकिरणित करने से क्रिस्टल से दूर एक इलेक्ट्रॉन की अस्वीकृति होती है। बातचीत के दौरान, किसी को क्रिस्टल और वास्तविक गति की दो अवधारणाओं को मिलाने की अनुमति दी जाती है और इस तरह क्रिस्टल की बैंड संरचना का प्रत्यक्ष ज्ञान प्राप्त होता है। कहने का तात्पर्य यह है कि, क्रिस्टल के अंदर एक इलेक्ट्रॉन का क्रिस्टल | कोण-समाधान फोटो-उत्सर्जन स्पेक्ट्रोस्कोपी|कोण-समाधान फोटो-उत्सर्जन स्पेक्ट्रोस्कोपी (एआरपीईएस) में, क्रिस्टल नमूने पर प्रकाश को विकिरणित करने से क्रिस्टल से दूर एक इलेक्ट्रॉन की अस्वीकृति होती है। बातचीत के दौरान, किसी को क्रिस्टल और वास्तविक गति की दो अवधारणाओं को मिलाने की अनुमति दी जाती है और इस तरह क्रिस्टल की बैंड संरचना का प्रत्यक्ष ज्ञान प्राप्त होता है। कहने का तात्पर्य यह है कि, क्रिस्टल के अंदर एक इलेक्ट्रॉन का क्रिस्टल गति उसके जाने के बाद उसका वास्तविक गति बन जाता है, और वास्तविक गति बाद में समीकरण से अनुमानित किया जा सकता है। | ||
:<math>{\mathbf{p_{\parallel}}} = \sqrt{2 m E_{\text{kin}}}\sin \theta</math> | :<math>{\mathbf{p_{\parallel}}} = \sqrt{2 m E_{\text{kin}}}\sin \theta</math> | ||
कोण और गतिज ऊर्जा को मापने के द्वारा जिस पर इलेक्ट्रॉन क्रिस्टल से बाहर निकलता है, जहां <math>m</math> एक एकल इलेक्ट्रॉन का द्रव्यमान है। क्योंकि क्रिस्टल सतह के सामान्य दिशा में क्रिस्टल समरूपता क्रिस्टल सीमा पर खो जाती है, इस दिशा में क्रिस्टल गति संरक्षित नहीं होती है। नतीजतन, एकमात्र दिशा जिसमें उपयोगी ARPES डेटा को चमकाया जा सकता है, वे क्रिस्टल सतह के समानांतर दिशाएं हैं।<ref>{{cite journal | कोण और गतिज ऊर्जा को मापने के द्वारा जिस पर इलेक्ट्रॉन क्रिस्टल से बाहर निकलता है, जहां <math>m</math> एक एकल इलेक्ट्रॉन का द्रव्यमान है। क्योंकि क्रिस्टल सतह के सामान्य दिशा में क्रिस्टल समरूपता क्रिस्टल सीमा पर खो जाती है, इस दिशा में क्रिस्टल गति संरक्षित नहीं होती है। नतीजतन, एकमात्र दिशा जिसमें उपयोगी ARPES डेटा को चमकाया जा सकता है, वे क्रिस्टल सतह के समानांतर दिशाएं हैं।<ref>{{cite journal |
Revision as of 20:11, 20 March 2023
ठोस-अवस्था भौतिकी में क्रिस्टल गति या क्वासिमोमेंटम एक गति जैसा सदिश (ज्यामितीय) है जो क्रिस्टल जाली में इलेक्ट्रॉनों से जुड़ा होता है।[2] यह संबंधित पारस्परिक जाली द्वारा परिभाषित किया गया है इस जाली के अनुसार
संबंधित पारस्परिक जाली द्वारा परिभाषित किया गया है (जहाँ घटी हुई प्लैंक स्थिरांक है)।[3]: 139 प्रायः,[clarification needed], क्रिस्टल गति को यांत्रिक गति के जैसे संरक्षित किया जाता है, जिससे यह भौतिकविदों और सामग्री वैज्ञानिकों के लिए एक विश्लेषणात्मक उपकरण के रूप में उपयोगी हो जाता है।
जाली समरूपता उत्पत्ति
क्रिस्टल संरचना और व्यवहार को मॉडलिंग करने की सामान्य विधि इलेक्ट्रॉनों को एक निश्चित अनंत आवधिक क्षमता के माध्यम से भ्रमण करने वाले क्वांटम यांत्रिकी कणों के रूप में देखना है, जैसे कि
जहां एक यादृच्छिक जाली सदिश है। ऐसा मॉडल प्रत्यक्ष है क्योंकि क्रिस्टल आयन जो जाली संरचना का निर्माण करते हैं, सामान्यतः इलेक्ट्रॉनों की तुलना में दसियों हज़ार गुना अधिक बड़े पैमाने पर होते हैं,[4] एक निश्चित संभावित संरचना के साथ उन्हें बदलने के लिए इसे सुरक्षित बनाना, और एक क्रिस्टल के स्थूलदर्शित आयाम सामान्यतः एकल जाली रिक्ति से कहीं अधिक होते हैं, जिससे किनारे के प्रभाव नगण्य हो जाते हैं। इस संभावित ऊर्जा फलन का एक परिणाम यह है कि समस्या के किसी भी पहलू को बदले बिना किसी भी जाली सदिश द्वारा इलेक्ट्रॉन की प्रारंभिक स्थिति को स्थानांतरित करना संभव है , जिससे असतत समरूपता परिभाषित होती है। तकनीकी रूप से, एक अनंत आवधिक क्षमता का अर्थ है कि जाली अनुवाद संचालिका हैमिल्टनियन (क्वांटम यांत्रिकी) के साथ कम्यूटेटर, एक सरल गतिज-प्लस-संभावित रूप ग्रहण करते हुए।[3]: 134
ये स्थितियाँ बलोच के प्रमेय को दर्शाती हैं, जो बताता है
- ,
या कि एक जाली में एक इलेक्ट्रॉन, जिसे एकल कण तरंग फलन के रूप में प्रतिरूपित किया जा सकता है , एक आवधिक फलन से गुणा विमान तरंग के रूप में अपने स्थिर राज्य समाधान पाता है . प्रमेय उपरोक्त तथ्य के प्रत्यक्ष परिणाम के रूप में उत्पन्न होता है कि जाली समरूपता अनुवाद ऑपरेटर सिस्टम के हैमिल्टनियन के साथ काम करता है।[3]: 261–266 [5] बलोच के प्रमेय के उल्लेखनीय पहलुओं में से एक यह है कि यह सीधे दिखाता है कि स्थिर अवस्था समाधानों को तरंग सदिश के साथ पहचाना जा सकता है , जिसका अर्थ है कि यह क्वांटम संख्या गति की एक स्थिर बनी हुई है। क्रिस्टल गति को तब पारंपरिक रूप से इस तरंग सदिश को प्लैंक के स्थिरांक से गुणा करके परिभाषित किया जाता है:
हालांकि यह वास्तव में परिभाषा के समान है जो नियमित गति के लिए दे सकता है (उदाहरण के लिए, मुक्त स्थान में एक कण के प्रभाव से अनुवाद ऑपरेटर के प्रभावों का इलाज करके)[6]), महत्वपूर्ण सैद्धांतिक अंतर हैं। उदाहरण के लिए, जबकि नियमित गति पूरी तरह से संरक्षित है, क्रिस्टल गति केवल संरक्षित मॉडुलो (शब्दजाल) एक जाली सदिश है। उदाहरण के लिए, एक इलेक्ट्रॉन को न केवल तरंग सदिश द्वारा वर्णित किया जा सकता है , लेकिन किसी अन्य तरंग सदिश के साथ भी ऐसा है कि
जहाँ एक यादृच्छिक पारस्परिक जाली सदिश है।[3]: 218 यह इस तथ्य का परिणाम है कि जाली समरूपता निरंतर के विपरीत असतत है, और इस प्रकार इसके संबंधित संरक्षण कानून को नोएदर के प्रमेय का उपयोग करके प्राप्त नहीं किया जा सकता है।
भौतिक महत्व
बलोच राज्य का चरण मॉडुलन गति के साथ एक मुक्त कण के समान है , अर्थात। राज्य की आवधिकता देता है, जो जाली के समान नहीं है। यह मॉडुलन कण की गतिज ऊर्जा में योगदान देता है (जबकि मॉड्यूलेशन मुक्त कण की गतिज ऊर्जा के लिए पूरी तरह से जिम्मेदार होता है)।
उन क्षेत्रों में जहां बैंड लगभग परवलयिक है, क्रिस्टल गति गति के साथ मुक्त कण के गति के बराबर होता है यदि हम कण को एक प्रभावी द्रव्यमान (ठोस-अवस्था भौतिकी) प्रदान करते हैं जो कि परवलय की वक्रता से संबंधित है।
वेग से संबंध
क्रिस्टल गति के अनुसार वेग की शारीरिक रूप से मापने योग्य अवधारणा से मेल खाती है[3]: 141
यह समूह वेग के समान सूत्र है। अधिक विशेष रूप से, हाइजेनबर्ग अनिश्चितता सिद्धांत के कारण, एक क्रिस्टल में एक इलेक्ट्रॉन में क्रिस्टल में बिल्कुल परिभाषित k और सटीक स्थिति फोनन नहीं हो सकते हैं। हालाँकि, यह गति k (थोड़ी अनिश्चितता के साथ) पर केंद्रित एक तरंग पैकेट बना सकता है, और एक निश्चित स्थिति (थोड़ी अनिश्चितता के साथ) पर केंद्रित होता है। इस तरंग पैकेट की केंद्र स्थिति बदल जाती है क्योंकि लहर फैलती है, ऊपर दिए गए सूत्र द्वारा दिए गए वेग v पर क्रिस्टल के माध्यम से चलती है। एक वास्तविक क्रिस्टल में, एक इलेक्ट्रॉन इस तरह से चलता है - एक निश्चित गति से एक निश्चित दिशा में भ्रमण करता है - केवल थोड़े समय के लिए, क्रिस्टल में एक अपूर्णता से टकराने से पहले जो इसे एक अलग, यादृच्छिक दिशा में स्थानांतरित करने का कारण बनता है। ये टकराव, जिन्हें इलेक्ट्रॉन प्रकीर्णन कहा जाता है, सामान्यतः क्रिस्टलोग्राफिक दोषों, क्रिस्टल की सतह और क्रिस्टल (फोनोन्स) में परमाणुओं के यादृच्छिक थर्मल कंपन के कारण होते हैं।[3]: 216
बिजली और चुंबकीय क्षेत्र की प्रतिक्रिया
क्रिस्टल गति भी इलेक्ट्रॉन गतिकी के अर्ध-शास्त्रीय मॉडल में एक महत्वपूर्ण भूमिका निभाती है, जहां यह त्वरण प्रमेय से अनुसरण करती है[7][8] कि यह गति के समीकरणों का पालन करता है (सीजीएस इकाइयों में):[3]: 218
यहाँ शायद क्रिस्टल गति और वास्तविक गति के बीच सादृश्य अपने सबसे शक्तिशाली पर है, क्योंकि ये ठीक ऐसे समीकरण हैं जो किसी क्रिस्टल संरचना की अनुपस्थिति में एक मुक्त अंतरिक्ष इलेक्ट्रॉन का पालन करते हैं। क्रिस्टल गति भी इस प्रकार की गणनाओं में चमकने का अवसर अर्जित करता है, क्योंकि उपरोक्त समीकरणों का उपयोग करके एक इलेक्ट्रॉन की गति के प्रक्षेपवक्र की गणना करने के लिए, किसी को केवल बाहरी क्षेत्रों पर विचार करने की आवश्यकता होती है, जबकि गति के समीकरणों के एक सेट से गणना का प्रयास करते समय वास्तविक गति के लिए बाहरी क्षेत्र के अलावा हर एक जाली आयन के अलग-अलग कूलम्ब और लोरेंत्ज़ बलों को ध्यान में रखना होगा।
अनुप्रयोग
कोण-समाधान फोटो-उत्सर्जन स्पेक्ट्रोस्कोपी (ARPES)
कोण-समाधान फोटो-उत्सर्जन स्पेक्ट्रोस्कोपी|कोण-समाधान फोटो-उत्सर्जन स्पेक्ट्रोस्कोपी (एआरपीईएस) में, क्रिस्टल नमूने पर प्रकाश को विकिरणित करने से क्रिस्टल से दूर एक इलेक्ट्रॉन की अस्वीकृति होती है। बातचीत के दौरान, किसी को क्रिस्टल और वास्तविक गति की दो अवधारणाओं को मिलाने की अनुमति दी जाती है और इस तरह क्रिस्टल की बैंड संरचना का प्रत्यक्ष ज्ञान प्राप्त होता है। कहने का तात्पर्य यह है कि, क्रिस्टल के अंदर एक इलेक्ट्रॉन का क्रिस्टल गति उसके जाने के बाद उसका वास्तविक गति बन जाता है, और वास्तविक गति बाद में समीकरण से अनुमानित किया जा सकता है।
कोण और गतिज ऊर्जा को मापने के द्वारा जिस पर इलेक्ट्रॉन क्रिस्टल से बाहर निकलता है, जहां एक एकल इलेक्ट्रॉन का द्रव्यमान है। क्योंकि क्रिस्टल सतह के सामान्य दिशा में क्रिस्टल समरूपता क्रिस्टल सीमा पर खो जाती है, इस दिशा में क्रिस्टल गति संरक्षित नहीं होती है। नतीजतन, एकमात्र दिशा जिसमें उपयोगी ARPES डेटा को चमकाया जा सकता है, वे क्रिस्टल सतह के समानांतर दिशाएं हैं।[9]
संदर्भ
- ↑ "Topic 5-2: Nyquist Frequency and Group Velocity" (PDF). Solid State Physics in a Nutshell. Colorado School of Mines. Archived (PDF) from the original on 2015-12-27.
- ↑ Gurevich V.L.; Thellung A. (October 1990). "Quasimomentum in the theory of elasticity and its conversion". Physical Review B. 42 (12): 7345–7349. Bibcode:1990PhRvB..42.7345G. doi:10.1103/PhysRevB.42.7345.
- ↑ 3.0 3.1 3.2 3.3 3.4 3.5 3.6 Neil Ashcroft; David Mermin (1976). Solid State Physics. Brooks/Cole Thomson Learning. ISBN 0-03-083993-9.
- ↑ Peter J. Mohr; Barry N. Taylor (2004). "The 2002 CODATA Recommended Values of the Fundamental Physical Constants".
- ↑ J. J. Sakurai (1994). Modern Quantum Mechanics. Addison-Wesley. p. 139. ISBN 0-201-53929-2.
- ↑ Robert Littlejohn (2012). "Physics 221a class notes 4: Spatial Degrees of Freedom".
- ↑ Callaway, Joseph (1976). ठोस अवस्था का क्वांटम सिद्धांत. Academic Press.
- ↑ Grecchi, Vincenzo; Sacchetti, Andrea (2005). "Bloch Oscillators: motion of wave-packets". arXiv:quant-ph/0506057.
- ↑ Damascelli, Andrea; Zahid Hussain; Zhi-Xun Shen (2003). "Angle-resolved photoemission studies of the cuprate superconductors". Reviews of Modern Physics. 75 (2): 473. arXiv:cond-mat/0208504. Bibcode:2003RvMP...75..473D. doi:10.1103/RevModPhys.75.473.