एंट्रॉपी (सांख्यिकीय ऊष्मप्रवैगिकी): Difference between revisions
No edit summary |
|||
Line 25: | Line 25: | ||
एक प्रणाली की स्थूलदर्शित स्थिति, [[माइक्रोस्टेट (सांख्यिकीय यांत्रिकी)|सूक्ष्म अवस्था (सांख्यिकीय यांत्रिकी)]] पर वितरण की विशेषता है। इस वितरण की एन्ट्रॉपी गिब्स एंट्रॉपी सिद्धांत द्वारा दी गई है, जिसका नाम योशिय्याह विलार्ड गिब्स|जे के नाम पर रखा गया है। विलार्ड गिब्स एक प्राचीन प्रणाली के लिए (अर्थात, प्राचीन कणों का एक संग्रह) सूक्ष्म अवस्था के असतत सेट के साथ, यदि <math>E_i</math> सूक्ष्म अवस्था i की ऊर्जा है, और <math>p_i</math>संभावना है कि यह निकाय प्रणाली के उतार-चढ़ाव के दौरान होता है, तो निकाय प्रणाली की एन्ट्रॉपी निम्न है, | एक प्रणाली की स्थूलदर्शित स्थिति, [[माइक्रोस्टेट (सांख्यिकीय यांत्रिकी)|सूक्ष्म अवस्था (सांख्यिकीय यांत्रिकी)]] पर वितरण की विशेषता है। इस वितरण की एन्ट्रॉपी गिब्स एंट्रॉपी सिद्धांत द्वारा दी गई है, जिसका नाम योशिय्याह विलार्ड गिब्स|जे के नाम पर रखा गया है। विलार्ड गिब्स एक प्राचीन प्रणाली के लिए (अर्थात, प्राचीन कणों का एक संग्रह) सूक्ष्म अवस्था के असतत सेट के साथ, यदि <math>E_i</math> सूक्ष्म अवस्था i की ऊर्जा है, और <math>p_i</math>संभावना है कि यह निकाय प्रणाली के उतार-चढ़ाव के दौरान होता है, तो निकाय प्रणाली की एन्ट्रॉपी निम्न है, | ||
<math display="block">S = -k_\text{B}\,\sum_i p_i \ln (p_i)</math> | <math display="block">S = -k_\text{B}\,\sum_i p_i \ln (p_i)</math> | ||
<div | <div style=" width: 320px; float: right; margin: 0 0 1em 1em; border-style: solid; border-width: 1px; padding: 1em; font-size: 90%"> | ||
'''Entropy changes for systems in a canonical state''' | |||
विहित अवस्था में निकाय प्रणाली के लिए एंट्रॉपी परिवर्तन | विहित अवस्था में निकाय प्रणाली के लिए एंट्रॉपी परिवर्तन | ||
Line 67: | Line 68: | ||
*<math>Z_{\rm can} </math> कैनोनिकल पहनावा है | *<math>Z_{\rm can} </math> कैनोनिकल पहनावा है | ||
*<math>\mathcal{Z}_{\rm gr} </math> [[भव्य विहित पहनावा]] है | *<math>\mathcal{Z}_{\rm gr} </math> [[भव्य विहित पहनावा]] है | ||
[[Category:All articles with unsourced statements|Entropy (Statistical Thermodynamics)]] | |||
[[Category:Articles with hatnote templates targeting a nonexistent page|Entropy (Statistical Thermodynamics)]] | |||
[[Category:Articles with invalid date parameter in template|Entropy (Statistical Thermodynamics)]] | |||
[[Category:Articles with unsourced statements from March 2021|Entropy (Statistical Thermodynamics)]] | |||
[[Category:Created On 31/03/2023|Entropy (Statistical Thermodynamics)]] | |||
[[Category:Machine Translated Page|Entropy (Statistical Thermodynamics)]] | |||
[[Category:Pages with script errors|Entropy (Statistical Thermodynamics)]] | |||
[[Category:Templates Vigyan Ready|Entropy (Statistical Thermodynamics)]] | |||
[[Category:Wikipedia articles needing clarification from September 2013|Entropy (Statistical Thermodynamics)]] | |||
[[Category:थर्मोडायनामिक एन्ट्रापी|Entropy (Statistical Thermodynamics)]] | |||
== अराजकता के माध्यम से आदेश और ऊष्मप्रवैगिकी का दूसरा नियम == | == अराजकता के माध्यम से आदेश और ऊष्मप्रवैगिकी का दूसरा नियम == |
Revision as of 16:31, 10 April 2023
एन्ट्रॉपी की अवधारणा को पहली बार उन्नीसवीं शताब्दी के मध्य में जर्मन भौतिक वैज्ञानिक रुडोल्फ क्लॉसियस द्वारा ऊष्मागतिक गुणधर्म के रूप में विकसित किया गया था जो पूर्वानुमानित करता है कि कुछ सहज प्रक्रियाएं अपरिवर्तनीय या असंभव हैं। सांख्यिकीय यांत्रिकी में, संभाव्यता सिद्धांत का उपयोग करके एन्ट्रॉपी को सांख्यिकीय गुणधर्म के रूप में तैयार किया जाता है। सांख्यिकीय एंट्रॉपी परिप्रेक्ष्य 1870 में ऑस्ट्रियाई भौतिक विज्ञानी लुडविग बोल्ट्जमैन द्वारा प्रस्तुत किया गया था, जिन्होंने भौतिकी के एक नए क्षेत्र की स्थापना की थी जो प्रकृति के स्थूलदर्शित अवलोकन और सूक्ष्म अवस्था के जटिल समाधान के आधार पर सूक्ष्म दृश्य के बीच वर्णनात्मक संबंध प्रदान करता है जो ऊष्मागतिक प्रणाली का गठन करते हैं।
बोल्ट्जमैन का सिद्धांत
लुडविग बोल्ट्जमैन ने एन्ट्रॉपी को ऊष्मागतिक संतुलन में एक प्रणाली के संभावित सूक्ष्म अवस्थाओं की संख्या के एक उपाय के रूप में परिभाषित किया, जो इसके स्थूलदर्शित ऊष्मागतिक गुणों के अनुरूप है, जो निकाय प्रणाली के सूक्ष्म अवस्थाओं का गठन करते हैं। एक उपयोगी चित्रण किसी धारक में निहित गैस के नमूने का उदाहरण है। गैस का आसानी से मापने योग्य पैरामीटर आयतन, दबाव और तापमान इसकी स्थूल स्थिति (अवस्था) का वर्णन करते हैं। सूक्ष्म स्तर पर, गैस में बड़ी संख्या में स्वतंत्र रूप से गतिमान परमाणु या अणु होते हैं, जो अनियंत्रित तरीकों से एक दूसरे से और धारक की दीवारों से टकराते हैं। दीवारों के साथ टकराव गैस के स्थूल दबाव का उत्पादन करते हैं, जो सूक्ष्म और स्थूल घटनाओं के बीच संबंध को दर्शाता है।
निकाय प्रणाली का एक सूक्ष्म अवस्था स्थिति (वेक्टर) और उसके सभी कणों की गति का विवरण है। गैस के कणों की बड़ी संख्या नमूने के लिए संभावित सूक्ष्म अवस्था की अनंत संख्या प्रदान करती है, लेकिन सामूहिक रूप से वे विन्यास संरूपण के एक अच्छी तरह से परिभाषित औसत प्रदर्शित करते हैं, जिसे निकाय प्रणाली के सूक्ष्म अवस्थाओं के रूप में प्रदर्शित किया जाता है, जिसमें प्रत्येक व्यक्तिगत सूक्ष्म अवस्था योगदान नगण्य रूप से छोटा होता है, सूक्ष्म अवस्था के समेकन में प्रत्येक सूक्ष्म अवस्था के लिए संभाव्यता का एक सांख्यिकीय वितरण होता है, और स्थूलदर्शित अवस्था के लिए सबसे संभावित विन्यास संरूपण मानकों का समूह होता है। इसलिए, निकाय प्रणाली को केवल कुछ स्थूलदर्शित भाग मापदंडों द्वारा संपूर्ण रूप से वर्णित किया जा सकता है, जिसे ऊष्मागतिक चर कहा जाता है: कुल ऊर्जा E, आयतन V, दबाव P, तापमान T, हालाँकि यह विवरण अपेक्षाकृत सरल है जब निकाय प्रणाली संतुलन की स्थिति में होता है।
संतुलन को एक गिलास पानी में गिरने वाले खाद्य रंग की एक बूंद के सरल उदाहरण के साथ चित्रित किया जा सकता है। डाई एक जटिल तरीके से फैलती है, जिसका ठीक-ठीक अनुमान लगाना मुश्किल है। हालाँकि, पर्याप्त समय बीत जाने के बाद, निकाय प्रणाली एक समान रंग तक पहुँच जाता है, एक ऐसी स्थिति जिसका वर्णन करना और व्याख्या करना बहुत आसान है।
बोल्ट्जमैन ने एंट्रॉपी और निकाय प्रणाली के संभावित सूक्ष्म अवस्था की संख्या के बीच एक सरल संबंध तैयार किया, जिसे प्रतीक Ω द्वारा दर्शाया गया है। एन्ट्रॉपी एस इस संख्या के प्राकृतिक लघुगणक के लिए आनुपातिकता (गणित) है:
आनुपातिकता स्थिरांक kB भौतिकी के मूलभूत स्थिरांकों में से एक है, और इसके खोजकर्ता के सम्मान में इसे बोल्ट्जमैन स्थिरांक का नाम दिया गया है।
चूंकि Ω एक प्राकृतिक संख्या (1,2,3,...) है, एंट्रॉपी या तो शून्य या सकारात्मक है (ln 1 = 0, ln Ω ≥ 0).
बोल्ट्ज़मैन की एन्ट्रॉपी उस प्रणाली का वर्णन करती है जब सभी सुलभ सूक्ष्म अवस्था समान रूप से होने की संभावना होती है। यह संतुलन पर अधिकतम एन्ट्रॉपी के अनुरूप विन्यास है। यादृच्छिकता या विकार अधिकतम है, और इसलिए प्रत्येक सूक्ष्म अवस्था के भेद (या सूचना) की कमी है।
एंट्रॉपी दबाव, आयतन या तापमान की तरह ही एक ऊष्मागतिक गुण है। इसलिए, यह सूक्ष्म और स्थूल विश्वदृष्टि को जोड़ता है।
बोल्ट्जमैन के सिद्धांत को सांख्यिकीय यांत्रिकी का आधार माना जाता है।
गिब्स एंट्रॉपी सिद्धांत
एक प्रणाली की स्थूलदर्शित स्थिति, सूक्ष्म अवस्था (सांख्यिकीय यांत्रिकी) पर वितरण की विशेषता है। इस वितरण की एन्ट्रॉपी गिब्स एंट्रॉपी सिद्धांत द्वारा दी गई है, जिसका नाम योशिय्याह विलार्ड गिब्स|जे के नाम पर रखा गया है। विलार्ड गिब्स एक प्राचीन प्रणाली के लिए (अर्थात, प्राचीन कणों का एक संग्रह) सूक्ष्म अवस्था के असतत सेट के साथ, यदि सूक्ष्म अवस्था i की ऊर्जा है, और संभावना है कि यह निकाय प्रणाली के उतार-चढ़ाव के दौरान होता है, तो निकाय प्रणाली की एन्ट्रॉपी निम्न है,
Entropy changes for systems in a canonical state विहित अवस्था में निकाय प्रणाली के लिए एंट्रॉपी परिवर्तन
एक अच्छी तरह से परिभाषित तापमान वाली प्रणाली, अर्थात, एक थर्मल जलाशय के साथ थर्मल संतुलन में, बोल्ट्जमैन के वितरण द्वारा दिए गए सूक्ष्म अवस्था i में होने की संभावना है।
बाहरी बाधाओं में परिवर्तन के कारण होने वाली एन्ट्रॉपी में परिवर्तन इसके द्वारा दिया जाता है:
अब, Σi d(Ei pi) निकाय प्रणाली की कुल ऊर्जा में परिवर्तन का अपेक्षित मूल्य है।
यदि परिवर्तन पर्याप्त रूप से धीमे हैं, ताकि प्रणाली एक ही सूक्ष्म अवस्था में रहे, लेकिन स्थिति धीरे-धीरे (और विपरीत रूप से) बदलती है, तो Σi (dEi) pi इस उत्क्रमणीय प्रक्रिया के माध्यम से निकाय प्रणाली पर किए गए कार्य का अपेक्षित मूल्य है, dwrev.
लेकिन ऊष्मप्रवैगिकी के पहले नियम से, dE = δw + δq. इसलिए,
मात्रा एक भौतिक स्थिरांक है जिसे बोल्ट्जमैन स्थिरांक के रूप में जाना जाता है | बोल्ट्जमान स्थिरांक। समीकरण का शेष कारक, संपूर्ण योग आयाम रहित मात्रा है, मान के बाद से एक संभावना है और इसलिए आयामहीन है, और लघुगणक आयामहीन गणितीय स्थिरांक के आधार पर है e. इसलिए समीकरण के दोनों पक्षों पर SI व्युत्पन्न इकाई ऊष्मा क्षमता के समान है:
अलग-अलग कणों की अवस्थाओं के बीच सहसंबंधों (या, अधिक सामान्यतः, सांख्यिकीय स्वतंत्रता) की उपेक्षा करने से सूक्ष्म अवस्था पर एक गलत संभाव्यता वितरण होगा और इसलिए एन्ट्रॉपी का एक अतिरेक होगा।[1] ऐसे सहसंबंध किसी भी प्रणाली में गैर-तुच्छ रूप से परस्पर क्रिया करने वाले कणों के साथ होते हैं, जो कि सभी प्रणालियों में एक आदर्श गैस से अधिक जटिल होते हैं।
इस एस को लगभग सार्वभौमिक रूप से एंट्रॉपी कहा जाता है। अर्थ को बदले बिना इसे सांख्यिकीय एन्ट्रॉपी या ऊष्मागतिक एन्ट्रॉपी भी कहा जा सकता है। ध्यान दें कि सांख्यिकीय एन्ट्रॉपी की उपरोक्त अभिव्यक्ति शैनन एंट्रॉपी का एक अलग संस्करण है। वॉन न्यूमैन एन्ट्रॉपी सिद्धांत क्वांटम यांत्रिकी मामले में गिब्स एंट्रॉपी सिद्धांत का विस्तार है।
यह दिखाया गया है[1]कि गिब्स एंट्रॉपी क्लासिकल हीट इंजन एंट्रॉपी के बराबर है जिसकी विशेषता है , और Boltzmann बंटन#सामान्यीकृत Boltzmann बंटन इस तुल्यता के लिए पर्याप्त और आवश्यक शर्त है।[2] इसके अलावा, गिब्स एंट्रॉपी एकमात्र एन्ट्रॉपी है जो प्राचीन ताप इंजन एंट्रॉपी के बराबर है जो निम्न अभिधारणाओं के तहत है:[3]
- संभाव्यता घनत्व फ़ंक्शन समेकन पैरामीटर और यादृच्छिक चर के कुछ फ़ंक्शन के समानुपाती होता है।
- थर्मोडायनामिक राज्य कार्यों को यादृच्छिक चर के समेकन औसत द्वारा वर्णित किया गया है।
- अनंत तापमान पर, सभी माइक्रोस्टेट्स की समान संभावना होती है।
पहनावा
सांख्यिकीय ऊष्मप्रवैगिकी में उपयोग किए जाने वाले विभिन्न पहनावा निम्नलिखित संबंधों द्वारा एन्ट्रॉपी से जुड़े होते हैं:[clarification needed]
- माइक्रोकैनोनिकल पहनावा है
- कैनोनिकल पहनावा है
- भव्य विहित पहनावा है
अराजकता के माध्यम से आदेश और ऊष्मप्रवैगिकी का दूसरा नियम
हम Ω को एक प्रणाली के बारे में हमारे ज्ञान की कमी के उपाय के रूप में देख सकते हैं। इस विचार के उदाहरण के रूप में, 100 सिक्कों के एक सेट पर विचार करें, जिनमें से प्रत्येक या तो सिक्का फ़्लिपिंग है। मैक्रोस्टेट्स को हेड्स और टेल्स की कुल संख्या द्वारा निर्दिष्ट किया जाता है, जबकि सूक्ष्म अवस्था को प्रत्येक व्यक्तिगत सिक्के के फेसिंग द्वारा निर्दिष्ट किया जाता है। 100 हेड्स या 100 टेल्स के मैक्रोस्टेट्स के लिए, वास्तव में एक संभव विन्यास संरूपण है, इसलिए निकाय प्रणाली का हमारा ज्ञान पूरा हो गया है। इसके विपरीत चरम पर, सूक्ष्म अवस्थाओं जो हमें निकाय प्रणाली के बारे में कम से कम ज्ञान देता है, में किसी भी क्रम में 50 हेड और 50 टेल होते हैं, जिसके लिए 100,891,344,545,564,193,334,812,497,256 (संयोजन) ≈ 10 हैं29 संभावित सूक्ष्म अवस्था।
यहां तक कि जब कोई प्रणाली बाहरी प्रभावों से पूरी तरह से अलग हो जाती है, तब भी इसका सूक्ष्म अवस्था लगातार बदल रहा है। उदाहरण के लिए, एक गैस में कण लगातार गतिमान रहते हैं, और इस प्रकार समय के प्रत्येक क्षण में एक अलग स्थिति पर कब्जा कर लेते हैं; उनका संवेग भी लगातार बदल रहा है क्योंकि वे एक दूसरे से या धारक की दीवारों से टकराते हैं। मान लीजिए कि हम निकाय प्रणाली को कृत्रिम रूप से उच्च क्रम वाली संतुलन स्थिति में तैयार करते हैं। उदाहरण के लिए, एक धारक को एक विभाजन के साथ विभाजित करने और विभाजन के एक तरफ एक गैस रखने की कल्पना करें, दूसरी तरफ एक वैक्यूम के साथ। यदि हम विभाजन को हटा दें और गैस के बाद के व्यवहार को देखें, तो हम पाएंगे कि इसका सूक्ष्म अवस्था कुछ अराजक और अप्रत्याशित पैटर्न के अनुसार विकसित होता है, और औसतन ये सूक्ष्म अवस्था पहले की तुलना में अधिक अव्यवस्थित सूक्ष्म अवस्थाओं के अनुरूप होंगे। यह संभव है, लेकिन अत्यंत संभावना नहीं है कि गैस के अणु एक दूसरे से इस तरह उछलें कि वे धारक के आधे हिस्से में रहें। धारक को समान रूप से भरने के लिए गैस के फैलने की अत्यधिक संभावना है, जो निकाय प्रणाली का नया संतुलन सूक्ष्म अवस्थाओं है।
यह ऊष्मप्रवैगिकी के दूसरे नियम को दर्शाने वाला एक उदाहरण है:
- किसी भी पृथक ऊष्मागतिक प्रणाली की कुल एन्ट्रॉपी समय के साथ बढ़ती है, अधिकतम मूल्य तक पहुंचती है।
इसकी खोज के बाद से, यह विचार बहुत सारे विचारों का केंद्र रहा है, इसमें से कुछ भ्रमित हैं। भ्रम का एक मुख्य बिंदु यह तथ्य है कि दूसरा कानून केवल अलग-अलग प्रणालियों पर लागू होता है। उदाहरण के लिए, पृथ्वी एक पृथक प्रणाली नहीं है क्योंकि यह लगातार सूर्य के प्रकाश के रूप में ऊर्जा प्राप्त कर रही है। इसके विपरीत, ब्रह्मांड को एक पृथक प्रणाली माना जा सकता है, ताकि इसकी कुल एन्ट्रॉपी लगातार बढ़ रही हो। (स्पष्टीकरण की आवश्यकता है। देखें: ऊष्मप्रवैगिकी का दूसरा नियम#उद्धृत नोट-ग्रैंडी 151-21)
सूक्ष्म अवस्था की गिनती
प्राचीन यांत्रिकी सांख्यिकीय यांत्रिकी में, सूक्ष्म अवस्था की संख्या वास्तव में बेशुमार सेट है, क्योंकि प्राचीन प्रणालियों के गुण निरंतर हैं। उदाहरण के लिए, प्राचीन आदर्श गैस का एक सूक्ष्म अवस्था सभी परमाणुओं की स्थिति और संवेग द्वारा निर्दिष्ट किया जाता है, जो वास्तविक संख्याओं पर निरंतर सीमा होती है। यदि हम Ω को परिभाषित करना चाहते हैं, तो हमें एक गणनीय सेट प्राप्त करने के लिए सूक्ष्म अवस्था को समूहबद्ध करने की एक विधि के साथ आना होगा। इस प्रक्रिया को मोटे दाने के रूप में जाना जाता है। आदर्श गैस के मामले में, हम एक परमाणु की दो अवस्थाओं को एक ही अवस्था के रूप में गिनते हैं यदि उनकी स्थिति और संवेग एक दूसरे के δx और δp के भीतर हों। चूंकि δx और δp के मूल्यों को मनमाने तरीकों से चुना जा सकता है, एंट्रॉपी विशिष्ट रूप से परिभाषित नहीं है। इसे केवल योगात्मक स्थिरांक तक परिभाषित किया जाता है। (जैसा कि हम देखेंगे, एंट्रॉपी (प्राचीन ऊष्मप्रवैगिकी) को भी केवल एक स्थिरांक तक परिभाषित किया गया है।)
मोटे दाने से बचने के लिए एच-प्रमेय # टॉल्मन_एच-प्रमेय | एच-प्रमेय द्वारा परिभाषित एंट्रॉपी ले सकते हैं।[4]
हालाँकि, इस अस्पष्टता को क्वांटम यांत्रिकी के साथ हल किया जा सकता है। एक प्रणाली की कितना अवस्था को आधार अवस्थाओं के सुपरपोजिशन के रूप में व्यक्त किया जा सकता है, जिसे ऊर्जा ईजेनस्टेट्स (अर्थात क्वांटम हैमिल्टनियन (क्वांटम यांत्रिकी) के खुद का अवस्था) के रूप में चुना जा सकता है। आम तौर पर, क्वांटम अवस्था असतत होते हैं, भले ही उनमें अनंत संख्या हो। कुछ निर्दिष्ट ऊर्जा ई के साथ एक प्रणाली के लिए, ई और के बीच एक स्थूलदर्शित रूप से छोटी ऊर्जा सीमा के भीतर ऊर्जा ईजेनस्टेट्स की संख्या होने के लिए Ω लेता है E + δE. ऊष्मप्रवैगिकी सीमा में, विशिष्ट एन्ट्रॉपी δE की पसंद पर स्वतंत्र हो जाती है।
एक महत्वपूर्ण परिणाम, जिसे नर्नस्ट के प्रमेय या ऊष्मप्रवैगिकी के तीसरे नियम के रूप में जाना जाता है, बताता है कि पूर्ण शून्य पर एक प्रणाली की एन्ट्रॉपी एक अच्छी तरह से परिभाषित स्थिरांक है। ऐसा इसलिए है क्योंकि शून्य तापमान पर एक प्रणाली अपने निम्नतम-ऊर्जा अवस्था, या जमीनी अवस्था में मौजूद है, ताकि इसकी एंट्रॉपी जमीनी अवस्था के हैमिल्टनियन (क्वांटम यांत्रिकी) द्वारा निर्धारित की जा सके। कई प्रणालियाँ, जैसे कि क्रिस्टल, की एक अद्वितीय जमीनी स्थिति होती है, और (चूंकि ln(1) = 0) इसका मतलब है कि उनके पास पूर्ण शून्य पर शून्य एंट्रॉपी है। अन्य प्रणालियों में समान, सबबर्फ़ कम ऊर्जा वाले एक से अधिक अवस्था होते हैं, और एक गैर-लुप्त होने वाला शून्य-बिंदु एन्ट्रॉपी होता है। उदाहरण के लिए, साधारण बर्फ का शून्य-बिंदु एन्ट्रॉपी होता है 3.41 J/(mol⋅K), क्योंकि इसकी अंतर्निहित क्रिस्टल संरचना में एक ही ऊर्जा के साथ कई विन्यास होते हैं (एक घटना जिसे ज्यामितीय हताशा के रूप में जाना जाता है)।
ऊष्मप्रवैगिकी के तीसरे नियम में कहा गया है कि पूर्ण शून्य (0 केल्विन) पर एक आदर्श क्रिस्टल की एन्ट्रॉपी शून्य होती है। इसका मतलब है कि लगभग सभी आणविक गति बंद हो जानी चाहिए। परिमाणित कंपन स्तरों की पूर्वानुमानित के लिए क्वांटम हार्मोनिक ऑसिलेटर से पता चलता है कि कंपन क्वांटम संख्या 0 होने पर भी, अणु में अभी भी कंपन ऊर्जा होती है[citation needed]:
कहाँ प्लैंक नियतांक है, कंपन की विशेषता आवृत्ति है, और कंपन क्वांटम संख्या है। यहां तक कि जब (शून्य बिंदु ऊर्जा), हाइजेनबर्ग अनिश्चितता सिद्धांत के पालन में 0 के बराबर नहीं है।
यह भी देखें
- बोल्ट्जमैन स्थिरांक
- कॉन्फ़िगरेशन एन्ट्रापी
- गठनात्मक एन्ट्रापी
- तापीय धारिता
- एंट्रॉपी
- एन्ट्रापी (शास्त्रीय ऊष्मप्रवैगिकी)
- एंट्रॉपी (ऊर्जा फैलाव)
- मिश्रण की एन्ट्रॉपी
- एंट्रॉपी (आदेश और विकार)
- एंट्रॉपी (सूचना सिद्धांत)
- एन्ट्रापी का इतिहास
- सूचना सिद्धांत
- थर्मोडायनामिक मुक्त ऊर्जा
- सल्लिस एन्ट्रॉपी
संदर्भ
- ↑ 1.0 1.1 E.T. Jaynes; Gibbs vs Boltzmann Entropies; American Journal of Physics, 391 (1965); https://doi.org/10.1119/1.1971557
- ↑ Gao, Xiang; Gallicchio, Emilio; Roitberg, Adrian (2019). "सामान्यीकृत बोल्ट्जमैन वितरण एकमात्र ऐसा वितरण है जिसमें गिब्स-शैनन एन्ट्रापी थर्मोडायनामिक एन्ट्रॉपी के बराबर होती है". The Journal of Chemical Physics. 151 (3): 034113. arXiv:1903.02121. Bibcode:2019JChPh.151c4113G. doi:10.1063/1.5111333. PMID 31325924. S2CID 118981017.
- ↑ Gao, Xiang (March 2022). "एनसेंबल थ्योरी का गणित". Results in Physics. 34: 105230. Bibcode:2022ResPh..3405230G. doi:10.1016/j.rinp.2022.105230. S2CID 221978379.
- ↑ Boltzmann, Ludwig (January 1995). गैस सिद्धांत पर व्याख्यान. ISBN 0-486-68455-5.