ब्रह्मांड (गणित): Difference between revisions
No edit summary |
(TEXT) |
||
Line 1: | Line 1: | ||
{{short description|Collection that contains all the entities one wishes to consider in a given situation in mathematics}} | {{short description|Collection that contains all the entities one wishes to consider in a given situation in mathematics}} | ||
[[File:Probability_venn_event.svg|thumb|320x320px| | [[File:Probability_venn_event.svg|thumb|320x320px|समष्टि और पूरक के बीच संबंध]]गणित में, और विशेष रूप [[वर्ग (सेट सिद्धांत)|वर्ग (समुच्चय सिद्धांत)]], [[श्रेणी सिद्धांत]], प्रकार सिद्धांत और [[गणित की नींव]] में, समष्टि एक संग्रह है जिसमें सभी संस्थाएं सम्मिलित होती हैं जिन्हें किसी दिए गए स्थिति में विचार करना होता है। | ||
[[समुच्चय सिद्धान्त]] में, | [[समुच्चय सिद्धान्त]] में, समष्टि प्रायः ऐसे वर्ग होते हैं जिनमें (तत्व के रूप में ) सभी समुच्चय होते हैं जिसके लिए एक विशेष [[प्रमेय]] के [[गणितीय प्रमाण]] की आशा की जाती है। ये वर्ग विभिन्न स्वयंसिद्ध प्रणालियों जैसे जेडएफसी या मोर्स-केली समुच्चय सिद्धांत के लिए [[आंतरिक मॉडल|आंतरिक प्रतिरूप]] के रूप में काम कर सकते हैं। समुच्चय-सैद्धांतिक नींव के अंदर श्रेणी सिद्धांत में अवधारणाओं को औपचारिक रूप देने के लिए समष्टि का महत्वपूर्ण महत्व है। उदाहरण के लिए, किसी श्रेणी की विहित प्रेरक उदाहरण समुच्चय है की जो सभी [[सेट की श्रेणी|समुच्चय की श्रेणी]] है, जिसे एक समष्टि की कुछ धारणा के बिना एक समुच्चय सिद्धांत में औपचारिक रूप नहीं दिया जा सकता है। | ||
[[प्रकार सिद्धांत]] में, | [[प्रकार सिद्धांत]] में, समष्टि एक प्रकार है जिसके तत्व प्रकार हैं। | ||
== एक विशिष्ट संदर्भ में == | == एक विशिष्ट संदर्भ में == | ||
{{Main|संवाद का क्षेत्र}} | {{Main|संवाद का क्षेत्र}} | ||
संभवतः सबसे सरल संस्करण यह है कि कोई भी समुच्चय एक | संभवतः सबसे सरल संस्करण यह है कि कोई भी समुच्चय एक समष्टि हो सकता है, जब तक कि अध्ययन की वस्तु उस विशेष समुच्चय तक ही सीमित हो। यदि अध्ययन का उद्देश्य [[वास्तविक संख्या]]ओं द्वारा बनता है, तो [[वास्तविक रेखा]] ''''R'''<nowiki/>', जो कि वास्तविक संख्या समुच्चय है, विचाराधीन समष्टि हो सकती है। अंतर्निहित रूप से, यह वह समष्टि है जिसका उपयोग [[जॉर्ज कैंटर]] कर रहे थे जब उन्होंने पहली बार [[वास्तविक विश्लेषण]] के अनुप्रयोगों में १८७० और १८८० के दशक में आधुनिक सहज समुच्चय सिद्धांत और [[प्रमुखता]] विकसित की थी। कैंटर मूल रूप से रुचि रखने वाले एकमात्र समुच्चय ''''R'''<nowiki/>' के [[सबसेट|उपसमुच्चय]] थे। | ||
समष्टि की यह अवधारणा [[वेन आरेख]] के उपयोग में परिलक्षित होती है। वेन आरेख में, कार्रवाई परंपरागत रूप से एक बड़े आयत के अंदर होती है जो समष्टि ''U'' का प्रतिनिधित्व करती है। सामान्यतः यह कहता है कि समुच्चय को मंडलियों द्वारा दर्शाए जाते हैं; लेकिन ये समुच्चय केवल ''U'' के उपसमुच्चय हो सकते हैं। समुच्चय ''A'' का पूरक (समुच्चय सिद्धांत) तब ''A'' के वृत्त के बाहर आयत के उस भाग द्वारा दिया जाता है। दृढता से बोलते हुए, यह ''U'' के सापेक्ष ''A'' का सापेक्ष [[पूरक (सेट सिद्धांत)|पूरक (समुच्चय सिद्धांत)]] ''U'' \ ''A'' है; लेकिन एक संदर्भ में जहां ''U'' समष्टि है, इसे ए के पूर्ण पूरक एसी के रूप में माना जा सकता है । इसी तरह, शून्य चौराहे की एक धारणा है, जो शून्य समुच्चय (जिसका अर्थ है कोई समुच्चय नहीं, शून्य समुच्चय नहीं) का प्रतिच्छेदन है। | |||
समष्टि के बिना, शून्य प्रतिच्छेदन पूरी तरह से सब कुछ का समुच्चय होगा, जिसे सामान्यतः असंभव माना जाता है; लेकिन समष्टि को ध्यान में रखते हुए, शून्य प्रतिच्छेदन को विचाराधीन हर चीज के समुच्चय के रूप में माना जा सकता है, जो केवल ''U'' है। ये सम्मेलन बूलियन लैटिस पर आधारित [[शून्य सेट|शून्य समुच्चय]] सिद्धांत के बीजगणितीय दृष्टिकोण में काफी उपयोगी हैं। स्वयंसिद्ध समुच्चय सिद्धांत (जैसे [[नई नींव]]) के कुछ गैर-मानक रूपों को छोड़कर, सभी समुच्चयों का वर्ग (समुच्चय सिद्धांत) एक [[बूलियन जाली]] नहीं है (यह केवल एक [[अपेक्षाकृत पूरक जाली]] है)। | |||
इसके विपरीत, ''U'' के सभी उपसमुच्चयों का वर्ग, जिसे ''U'' का घात समुच्चय कहा जाता है, एक बूलियन जालक है। ऊपर वर्णित पूर्ण पूरक बूलियन जालक में पूरक संक्रिया है; और ''U'', [[शून्य चौराहा]] के रूप में, | इसके विपरीत, ''U'' के सभी उपसमुच्चयों का वर्ग, जिसे ''U'' का घात समुच्चय कहा जाता है, एक बूलियन जालक है। ऊपर वर्णित पूर्ण पूरक बूलियन जालक में पूरक संक्रिया है; और ''U'', [[शून्य चौराहा|शून्य प्रतिच्छेदन]] के रूप में, बूलीय जालक में सबसे महान तत्व (या नलरी सम्मेलन (गणित) के रूप में कार्य करता है। फिर डी मॉर्गन के नियम, जो मिलने और जुड़ने (गणित) के पूरक से निपटते हैं (जो कि समुच्चय सिद्धांत में [[संघ (सेट सिद्धांत)|संघ (समुच्चय सिद्धांत)]] हैं) वे लागू होते हैं और शून्य बैठक और शून्य जोड़ (जो कि [[खाली सेट|खाली समुच्चय]] है) पर भी लागू होते हैं। | ||
== साधारण गणित में == | == साधारण गणित में == | ||
तथापि, एक बार दिए गए समुच्चय X (कैंटर | तथापि, एक बार दिए गए समुच्चय X (कैंटर की स्तिथि में, ''X'' = ''''R'''<nowiki/>') के उपसमुच्चय पर विचार किया जाता है, समष्टि को X के उपसमुच्चय का एक समुच्चय होने की आवश्यकता हो सकती है। (उदाहरण के लिए, ''X'' पर एक [[टोपोलॉजिकल स्पेस|सांस्थितिक समष्टि]] उपसमुच्चय का एक समुच्चय है।) ''X'' के उपसमुच्चय के विभिन्न समुच्चय स्वयं ''X'' के उपसमुच्चय नहीं होंगे, बल्कि इसके स्थान पर '<nowiki/>'''P'''<nowiki/>'<nowiki/>''X'' के उपसमुच्चय होंगे, जो ''X'' का घात समुच्चय है। इसे जारी रखा जा सकता है; अध्ययन की उद्देश्य में आगे ''X'' के उपसमुच्चयों के ऐसे समुच्चय सम्मिलित हो सकते हैं, और इसी तरह, जिस स्थिति में समष्टि '<nowiki/>'''P'''<nowiki/>'('<nowiki/>'''P'''<nowiki/>'<nowiki/>''X'') होगा। एक अन्य दिशा में, ''X'' पर [[द्विआधारी संबंध]] (कार्टेशियन उत्पाद के उपसमुच्चय {{Nowrap|''X'' × ''X'')}} पर विचार किया जा सकता है, या कार्य (गणित) ''X'' से स्वयं के लिए किया जा सकता है, जैसे समष्टिों की आवश्यकता होती है {{Nowrap|'''P'''(''X'' × ''X'')}} या ''X<sup>X</sup>''<sup>। | ||
इस प्रकार, भले ही प्राथमिक रुचि ''X'' है, | इस प्रकार, भले ही प्राथमिक रुचि ''X'' है, समष्टि को ''X'' से बहुत बड़ा होना पड़ सकता है। उपरोक्त विचारों के बाद, समष्टि के रूप में ''X'' पर 'अधिरचना' चाह सकता है। इसे [[संरचनात्मक पुनरावर्तन]] द्वारा निम्नानुसार परिभाषित किया जा सकता है: | ||
* '''S'''<sub>0</sub>''X'' को ''X'' ही होने दें। | * '''S'''<sub>0</sub>''X'' को ''X'' ही होने दें। | ||
* मान लीजिए कि '''S'''<sub>1</sub>''X'', ''X'' और '''P'''''X'' का संघ (समुच्चय सिद्धांत) है। | * मान लीजिए कि '''S'''<sub>1</sub>''X'', ''X'' और '''P'''''X'' का संघ (समुच्चय सिद्धांत) है। | ||
* मान लीजिए कि '''S'''<sub>2</sub>''X'', '''S'''<sub>1</sub>''X'' और '''P'''('''S'''<sub>1</sub>''X'') का संघ है। | * मान लीजिए कि '''S'''<sub>2</sub>''X'', '''S'''<sub>1</sub>''X'' और '''P'''('''S'''<sub>1</sub>''X'') का संघ है। | ||
* | * सामान्यतः, '''S'''<sub>''n''+1</sub>''X'' को '''S'''<sub>n</sub>''X'' और ''''P'''' ('''S'''<sub>''n''</sub>''X'') का संघ होने दें। | ||
फिर ''X'' पर अधिरचना, '''S'''''X'' लिखा गया है, '<nowiki/>'''S'''<sub>0</sub>''X'', '''S'''<sub>1</sub>''X'', '''S'''<sub>2</sub>''X'', और इसी तरह का संघ है; नहीं तो | फिर ''X'' पर अधिरचना, '''S'''''X'' लिखा गया है, '<nowiki/>'''S'''<sub>0</sub>''X'', '''S'''<sub>1</sub>''X'', '''S'''<sub>2</sub>''X'', और इसी तरह का संघ है; नहीं तो | ||
: <math> \mathbf{S}X := \bigcup_{i=0}^{\infty} \mathbf{S}_{i}X \mbox{.} \! </math> | : <math> \mathbf{S}X := \bigcup_{i=0}^{\infty} \mathbf{S}_{i}X \mbox{.} \! </math> | ||
कोई भिन्नता नहीं पड़ता कि कौन सा समुच्चय ''X'' | कोई भिन्नता नहीं पड़ता कि कौन सा समुच्चय ''X'' प्रारंभिक बिंदु है, खाली समुच्चय {} '<nowiki/>'''S'''<sub>1</sub>''X'' से संबंधित होगा। खाली समुच्चय वॉन न्यूमैन क्रमसूचक [0] है। तब {[0]}, वह समुच्चय जिसका एकमात्र तत्व खाली समुच्चय है, '''S'''<sub>2</sub>''X'' से संबंधित होगा; यह वॉन न्यूमैन क्रमसूचक है [1] । इसी तरह, {[1]} '''S'''<sub>3</sub>''X'' से संबंधित होगा, और इस प्रकार {[0], [1]}, {[0]} और {[1]} के मिलन के रूप में होगा; यह वॉन न्यूमैन क्रमसूचक [2] है। इस प्रक्रिया को जारी रखते हुए, प्रत्येक [[प्राकृतिक संख्या]] को अधिरचना में उसके वॉन न्यूमैन क्रमसूचक द्वारा दर्शाया जाता है। इसके बाद, यदि ''x'' और ''y''<nowiki> अधिरचना से संबंधित हैं, तो ऐसा होता है {{</nowiki>''x''},{''x'',''y''}}, जो [[क्रमित युग्म]] (''x'', ''y'') का प्रतिनिधित्व करता है। इस प्रकार अधिरचना में विभिन्न वांछित कार्टेशियन उत्पाद सम्मिलित होंगे। फिर अधिरचना में कार्य (गणित) और [[संबंध (गणित)]] भी सम्मिलित हैं, क्योंकि इन्हें कार्टेशियन उत्पादों के उपसमुच्चय के रूप में दर्शाया जा सकता है। यह प्रक्रिया आदेशित एन-टुपल्स भी देती है, जिसका प्रतिनिधित्व ऐसे कार्यों के रूप में किया जाता है जिसका कार्यछेत्र वॉन न्यूमैन ऑर्डिनल [''n''] है, और इसी तरह। | ||
इसलिए यदि प्रारंभिक बिंदु केवल ''X'' = {} है, तो गणित के लिए आवश्यक समुच्चयों का एक बड़ा भाग {} पर अधिरचना के तत्वों के रूप में दिखाई देते हैं। लेकिन ''''S'''<nowiki/>'{} का प्रत्येक तत्व एक परिमित समुच्चय होगा। प्रत्येक प्राकृतिक संख्या इससे संबंधित है, लेकिन सभी प्राकृतिक संख्याओं का समुच्चय '<nowiki/>'''N'''<nowiki/>' नहीं है (यद्यपि यह '<nowiki/>'''S'''<nowiki/>' {} का उप-समूह है)। | इसलिए यदि प्रारंभिक बिंदु केवल ''X'' = {} है, तो गणित के लिए आवश्यक समुच्चयों का एक बड़ा भाग {} पर अधिरचना के तत्वों के रूप में दिखाई देते हैं। लेकिन ''''S'''<nowiki/>'{} का प्रत्येक तत्व एक परिमित समुच्चय होगा। प्रत्येक प्राकृतिक संख्या इससे संबंधित है, लेकिन सभी प्राकृतिक संख्याओं का समुच्चय '<nowiki/>'''N'''<nowiki/>' नहीं है (यद्यपि यह '<nowiki/>'''S'''<nowiki/>' {} का उप-समूह है)। वस्तुतः, {} पर अधिरचना में सभी वंशानुगत रूप से परिमित समुच्चय होते हैं। जैसे, इसे परिमित गणित का समष्टि माना जा सकता है। कालानुक्रमिक रूप से बोलते हुए, कोई यह सुझाव दे सकता है कि 19वीं सदी के फिनिटिस्ट [[लियोपोल्ड क्रोनकर]] इस समष्टि में काम कर रहे थे; उनका मानना था कि प्रत्येक प्राकृतिक संख्या अस्तित्व थी लेकिन समुच्चय ''''N'''<nowiki/>' (एक [[पूर्ण अनंत]]) नहीं था। | ||
तथापि, '<nowiki/>'''S'''<nowiki/>'{} सामान्य गणितज्ञों (जो परिमित नहीं हैं) के लिए असंतोषजनक है, क्योंकि भले ही '<nowiki/>'''N'''<nowiki/>' '<nowiki/>'''S'''<nowiki/>'{} के उपसमुच्चय के रूप में उपलब्ध हो, फिर भी '<nowiki/>'''N'''<nowiki/>' का घात समुच्चय नहीं है। विशेष रूप से, वास्तविक संख्याओं का मनमाना समुच्चय उपलब्ध नहीं है। इसलिए प्रक्रिया को फिर से | तथापि, '<nowiki/>'''S'''<nowiki/>'{} सामान्य गणितज्ञों (जो परिमित नहीं हैं) के लिए असंतोषजनक है, क्योंकि भले ही '<nowiki/>'''N'''<nowiki/>' '<nowiki/>'''S'''<nowiki/>'{} के उपसमुच्चय के रूप में उपलब्ध हो, फिर भी '<nowiki/>'''N'''<nowiki/>' का घात समुच्चय नहीं है। विशेष रूप से, वास्तविक संख्याओं का मनमाना समुच्चय उपलब्ध नहीं है। इसलिए प्रक्रिया को फिर से प्रारम्भ करना और '<nowiki/>'''S'''<nowiki/>'('<nowiki/>'''S'''<nowiki/>'{}) बनाना आवश्यक हो सकता है। तथापि, चीजों को सरल रखने के लिए, प्राकृतिक संख्याओं के समुच्चय '<nowiki/>'''N'''<nowiki/>' को दिया जा सकता है और '<nowiki/>'''SN'''<nowiki/>', '<nowiki/>'''N'''<nowiki/>' के ऊपर अधिरचना का निर्माण कर सकते हैं। इसे प्रायः सामान्य गणित का समष्टि माना जाता है। विचार यह है कि सामान्य रूप से अध्ययन किए जाने वाले सभी गणित इस समष्टि के तत्वों को संदर्भित करते हैं। उदाहरण के लिए, वास्तविक संख्याओं का कोई भी सामान्य निर्माण ([[डेडेकाइंड कट|डेडेकाइंड]] अलगाव द्वारा) ''''SN'''<nowiki/>' से संबंधित है। यहां तक कि प्राकृतिक संख्याओं के गैर-मानक प्रतिरूप पर अधिरचना में गैर-मानक विश्लेषण भी किया जा सकता है। | ||
पिछले खंड से दर्शनशास्त्र में थोड़ा बदलाव आया है, जहां | पिछले खंड से दर्शनशास्त्र में थोड़ा बदलाव आया है, जहां समष्टि रुचि का कोई समुच्चय ''U'' था। वहां, अध्ययन किए जा रहे समुच्चय समष्टि के उपसमुच्चय थे; अब, वे समष्टि के सदस्य हैं। इस प्रकार यद्यपि '<nowiki/>'''P'''<nowiki/>'('<nowiki/>'''S'''''X'') एक बूलियन जाली है, जो प्रासंगिक है वह यह है कि '''S'''''X'' स्वयं नहीं है। नतीजतन, बूलियन लैटिस और वेन आरेखों की धारणाओं को सीधे अधिरचना समष्टि पर लागू करना दुर्लभ है क्योंकि वे पिछले खंड के शक्ति-समुच्चय समष्टिों के लिए थे। इसके स्थान पर, व्यक्ति अलग-अलग बूलियन लैटिस '''P'''''A'' के साथ काम कर सकता है, जहां ''A'' '''S'''''X'' से संबंधित कोई भी प्रासंगिक समुच्चय है; तो '''P'''''A'' '''S'''''X'' का एक उपसमुच्चय है (और वास्तव में '''S'''''X'' से संबंधित है)। कैंटर के विषय में ''X'' = ''''''R'''''<nowiki/>' विशेष रूप से, वास्तविक संख्याओं के मनमाने समुच्चय उपलब्ध नहीं हैं, इसलिए वहां प्रक्रिया को फिर से प्रारम्भ करना आवश्यक हो सकता है। | ||
== समुच्चय सिद्धांत में == | == समुच्चय सिद्धांत में == | ||
इस दावे को सटीक अर्थ देना संभव है कि '''SN''' सामान्य गणित का | इस दावे को सटीक अर्थ देना संभव है कि '''SN''' सामान्य गणित का समष्टि है; यह [[ज़र्मेलो सेट सिद्धांत|ज़र्मेलो समुच्चय सिद्धांत]] का एक [[मॉडल सिद्धांत|प्रतिरूप सिद्धांत]] है, स्वयंसिद्ध समुच्चय सिद्धांत मूल रूप से १९०८ में [[अर्नेस्ट ज़र्मेलो]] द्वारा विकसित किया गया था । ज़र्मेलो समुच्चय सिद्धांत सटीक रूप से सफल रहा क्योंकि यह ३० साल पहले कैंटर द्वारा प्रारम्भ किए गए कार्यक्रम को पूरा करते हुए सामान्य गणित को स्वयंसिद्ध करने में सक्षम था। लेकिन ज़र्मेलो समुच्चय सिद्धांत गणित की नींव में स्वयंसिद्ध समुच्चय सिद्धांत और अन्य कार्यों के आगे के विकास के लिए अपर्याप्त साबित हुआ, विशेष रूप से प्रतिरूप सिद्धांत। | ||
एक नाटकीय उदाहरण के लिए, ऊपर अधिरचना प्रक्रिया का वर्णन ज़र्मेलो समुच्चय सिद्धांत में ही नहीं किया जा सकता है। अंतिम चरण, '''S''' को एक असीम संघ के रूप में बनाने के लिए, प्रतिस्थापन के स्वयंसिद्ध की आवश्यकता होती है, जिसे १९२२ में ज़र्मेलो-फ्रेंकेल समुच्चय सिद्धांत बनाने के लिए ज़र्मेलो समुच्चय सिद्धांत में जोड़ा गया था, जो आज व्यापक रूप से स्वीकृत स्वयंसिद्धों का समुच्चय है। इसलिए जब सामान्य गणित '' '''SN''' '' में किया जा सकता है, '''SN''' की चर्चा '' '''SN''' सामान्य | एक नाटकीय उदाहरण के लिए, ऊपर अधिरचना प्रक्रिया का वर्णन ज़र्मेलो समुच्चय सिद्धांत में ही नहीं किया जा सकता है। अंतिम चरण, '''S''' को एक असीम संघ के रूप में बनाने के लिए, प्रतिस्थापन के स्वयंसिद्ध की आवश्यकता होती है, जिसे १९२२ में ज़र्मेलो-फ्रेंकेल समुच्चय सिद्धांत बनाने के लिए ज़र्मेलो समुच्चय सिद्धांत में जोड़ा गया था, जो आज व्यापक रूप से स्वीकृत स्वयंसिद्धों का समुच्चय है। इसलिए जब सामान्य गणित '''''SN''' '' में किया जा सकता है, '''SN''' की चर्चा '' '''SN''' सामान्य के अतिरिक्त, [[मेटामैथमैटिक्स]] में जाती है।'' | ||
लेकिन अगर उच्च-शक्ति वाले समुच्चय सिद्धांत को लाया जाता है, तो ऊपर दी गई अधिरचना प्रक्रिया खुद को एक [[ट्रांसफिनिट रिकर्सन]] की शुरुआत के रूप में प्रकट करती है। ''X'' = {}, खाली समुच्चय पर वापस जा रहे हैं, और (मानक) संकेतन को प्रस्तुत कर रहे हैं <sub>''Vi''</sub> '''S'''<sub>''i''</sub>{}, ''V''<sub>0</sub> = {}, ''V''<sub>1</sub> = '''P'''{}, और इसी तरह पहले की तरह। लेकिन जिसे अधिरचना कहा जाता था, वह अब सूची में अगला आइटम है: ''V''<sub>ω</sub>, जहां ω पहली अनंत क्रमिक संख्या है। इसे मनमाने ढंग से क्रमिक संख्याओं तक बढ़ाया जा सकता है: | लेकिन अगर उच्च-शक्ति वाले समुच्चय सिद्धांत को लाया जाता है, तो ऊपर दी गई अधिरचना प्रक्रिया खुद को एक [[ट्रांसफिनिट रिकर्सन]] की शुरुआत के रूप में प्रकट करती है। ''X'' = {}, खाली समुच्चय पर वापस जा रहे हैं, और (मानक) संकेतन को प्रस्तुत कर रहे हैं <sub>''Vi''</sub> '''S'''<sub>''i''</sub>{}, ''V''<sub>0</sub> = {}, ''V''<sub>1</sub> = '''P'''{}, और इसी तरह पहले की तरह। लेकिन जिसे अधिरचना कहा जाता था, वह अब सूची में अगला आइटम है: ''V''<sub>ω</sub>, जहां ω पहली अनंत क्रमिक संख्या है। इसे मनमाने ढंग से क्रमिक संख्याओं तक बढ़ाया जा सकता है: | ||
: <math> V_{i} := \bigcup_{j<i} \mathbf{P}V_j \! </math> | : <math> V_{i} := \bigcup_{j<i} \mathbf{P}V_j \! </math> | ||
निम्न किसी भी क्रमिक संख्या i के लिए Vi को परिभाषित करता है। सभी ''V<sub>i</sub>'' का संघ वॉन न्यूमैन समष्टि V है: | |||
: <math> V := \bigcup_{i} V_{i} \! </math>. | : <math> V := \bigcup_{i} V_{i} \! </math>. | ||
प्रत्येक | प्रत्येक व्यष्टिक ''V<sub>i</sub>'' एक समुच्चय है, लेकिन उनका संघ ''V'' एक [[उचित वर्ग]] है। [[नींव का स्वयंसिद्ध]], जिसे ज़र्मेलो-फ्रेंकेल समुच्चय सिद्धांत समुच्चय सिद्धांत में जोड़ा गया था, उसी समय प्रतिस्थापन के स्वयंसिद्ध के रूप में कहा गया था कि प्रत्येक समुच्चय ''V'' से संबंधित है। | ||
: कर्ट गोडेल का रचनात्मक | : कर्ट गोडेल का रचनात्मक समष्टि एल और रचनात्मकता का स्वयंसिद्ध | ||
: अप्राप्य कार्डिनल्स ''ZF'' के | : अप्राप्य कार्डिनल्स ''ZF'' के प्रतिरूप और कभी-कभी अतिरिक्त स्वयंसिद्धों का उत्पादन करते हैं, और [[ग्रोथेंडिक ब्रह्मांड|ग्रोथेंडिक समष्टि]] समुच्चय के अस्तित्व के समान हैं | ||
== विधेय कलन में == | == विधेय कलन में == | ||
प्रथम-क्रम तर्क की एक [[व्याख्या (तर्क)]] में, | प्रथम-क्रम तर्क की एक [[व्याख्या (तर्क)]] में, समष्टि (या संवाद का कार्यछेत्र) व्यक्तियों (व्यक्तिगत स्थिरांक) का समूह है, जिस पर [[परिमाणक (तर्क)]]तर्क) की सीमा होती है। एक प्रस्ताव जैसे {{math|[[Universal quantification|∀]]''x'' (''x''<sup>2</sup> ≠ 2)}} अस्पष्ट है, यदि विमर्श के किसी क्षेत्र की पहचान नहीं की गई है। एक व्याख्या में, विमर्श का क्षेत्र वास्तविक संख्याओं का समुच्चय हो सकता है; एक अन्य व्याख्या में, यह प्राकृतिक संख्याओं का समुच्चय हो सकता है। यदि संवाद का क्षेत्र वास्तविक संख्याओं का समूह है, तो प्रस्ताव झूठा है, साथ {{math|1=''x'' = {{radic|2}}}} प्रति उदाहरण के रूप में; यदि प्रांत प्राकृतिकों का समुच्चय है, तो तर्कवाक्य सत्य है, क्योंकि २ किसी भी प्राकृत संख्या का वर्ग नहीं है। | ||
== श्रेणी सिद्धांत में == | == श्रेणी सिद्धांत में == | ||
{{Main|ग्रोथेन डाइक ब्रह्मांड}} | {{Main|ग्रोथेन डाइक ब्रह्मांड}} | ||
समष्टिों के लिए एक और दृष्टिकोण है जो ऐतिहासिक रूप से श्रेणी सिद्धांत से जुड़ा हुआ है। यह ग्रोथेंडिक समष्टि का विचार है। मोटे तौर पर, एक ग्रोथेंडिक समष्टि एक समुच्चय है जिसके अंदर समुच्चय सिद्धांत के सभी सामान्य संचालन किए जा सकते हैं। समष्टि के इस संस्करण को किसी भी समुच्चय के रूप में परिभाषित किया गया है जिसके लिए निम्नलिखित स्वयंसिद्ध हैं:<ref>Mac Lane 1998, p. 22</ref> | |||
# <math>x\in u\in U</math> तात्पर्य <math>x\in U</math> | # <math>x\in u\in U</math> तात्पर्य <math>x\in U</math> | ||
# <math>u\in U</math> और <math>v\in U</math> मतलब {''u'',''v''}, (''u'',''v''), और <math>u\times v\in U</math>. | # <math>u\in U</math> और <math>v\in U</math> मतलब {''u'',''v''}, (''u'',''v''), और <math>u\times v\in U</math>. | ||
Line 62: | Line 62: | ||
# अगर <math>f:a\to b</math> के साथ एक विशेषण कार्य है <math> a\in U</math> और <math>b\subset U</math>, तब <math>b\in U</math>. | # अगर <math>f:a\to b</math> के साथ एक विशेषण कार्य है <math> a\in U</math> और <math>b\subset U</math>, तब <math>b\in U</math>. | ||
ग्रोथेंडिक | ग्रोथेंडिक समष्टि का लाभ यह है कि यह वास्तव में एक समुच्चय है, और कभी भी उचित वर्ग नहीं है। हानि यह है कि यदि कोई पर्याप्त प्रयास करता है, तो वह ग्रोथेंडिक समष्टि को छोड़ सकता है।{{citation needed|date=December 2013}} | ||
ग्रोथेंडिक | ग्रोथेंडिक समष्टि ''U'' का सबसे आम उपयोग ''U'' को सभी समुच्चयों की श्रेणी के प्रतिस्थापन के रूप में लेना है। एक का कहना है कि एक समुच्चय ''S'' '''U''<nowiki/>'-'छोटा' है यदि एस ∈''U'', और '''U''<nowiki/>'-'बड़ा' अन्यथा। सभी ''U''-छोटे समुच्चयों की श्रेणी ''U''-'समुच्चय' में सभी ''U''-छोटे समुच्चय वस्तु के रूप में हैं और इन समुच्चयों के बीच सभी प्रकार्यों के रूप में हैं। वस्तु समुच्चय और आकारिकी समुच्चय दोनों ही समुच्चय हैं, इसलिए उचित वर्गों का आह्वान किए बिना सभी समुच्चयों की श्रेणी पर चर्चा करना संभव हो जाता है। तब इस नई श्रेणी के संदर्भ में अन्य श्रेणियों को परिभाषित करना संभव हो जाता है। उदाहरण के लिए, सभी ''U''-छोटी श्रेणियों की श्रेणी उन सभी श्रेणियों की श्रेणी है, जिनका वस्तु समुच्चय और जिनका आकारिकी समुच्चय ''U'' में है। फिर समुच्चय सिद्धांत के सामान्य तर्क सभी श्रेणियों की श्रेणी पर लागू होते हैं, और किसी को नहीं करना पड़ता है गलती से उचित कक्षाओं के बारे में बात करने की चिंता। क्योंकि ग्रोथेंडिक समष्टि बहुत बड़े हैं, यह लगभग सभी अनुप्रयोगों में पर्याप्त है। | ||
प्रायः ग्रोथेंडिक | प्रायः ग्रोथेंडिक समष्टिों के साथ काम करते समय, गणितज्ञ टार्स्की-ग्रोथेंडिक समुच्चय सिद्धांत को मानते हैं: किसी भी समुच्चय ''x'' के लिए, एक समष्टि ''U'' अस्तित्व है जैसे कि ''x'' ∈''U''। इस स्वयंसिद्ध का समस्या यह है कि किसी भी समुच्चय का सामना कुछ ''U'' के लिए ''U''-छोटा होता है, इसलिए सामान्य ग्रोथेंडिक समष्टि में किए गए किसी भी तर्क को लागू किया जा सकता है।<ref>{{Cite arXiv |last=Low |first=Zhen Lin |date=2013-04-18 |title=श्रेणी सिद्धांत के लिए ब्रह्मांड|class=math.CT |eprint=1304.5227v2 }}</ref> यह स्वयंसिद्ध दुर्गम कार्डिनल्स के अस्तित्व से निकटता से संबंधित है। | ||
== प्रकार सिद्धांत में<!--'Russell-style universe', 'Russell-style universes', 'Tarski-style universe', and 'Tarski-style universes' redirect here-->== | == प्रकार सिद्धांत में<!--'Russell-style universe', 'Russell-style universes', 'Tarski-style universe', and 'Tarski-style universes' redirect here-->== | ||
कुछ प्रकार के सिद्धांतों में, विशेष रूप से [[आश्रित प्रकार]] वाले प्रणालियों में, स्वयं को शब्द (तर्क) के रूप में माना जा सकता है। | कुछ प्रकार के सिद्धांतों में, विशेष रूप से [[आश्रित प्रकार]] वाले प्रणालियों में, स्वयं को शब्द (तर्क) के रूप में माना जा सकता है। समष्टि नामक एक प्रकार है (प्रायः निरूपित किया जाता है <math>\mathcal{U}</math>) जिसके तत्वों में प्रकार हैं। गिरार्ड के विरोधाभास (प्रकार सिद्धांत के लिए रसेल के विरोधाभास का एक एनालॉग) जैसे विरोधाभासों से बचने के लिए, प्रकार के सिद्धांतों को प्रायः ऐसे समष्टिों के एक [[गणनीय सेट|गणनीय समुच्चय]] पदानुक्रम से सुसज्जित किया जाता है, जिसमें प्रत्येक समष्टि अगले एक का एक शब्द होता है। | ||
कम से कम दो प्रकार के | कम से कम दो प्रकार के समष्टि हैं जिन पर एक प्रकार के सिद्धांत में विचार किया जा सकता है: रसेल-शैली के समष्टि ([[बर्ट्रेंड रसेल]] के नाम पर) और तार्स्की-शैली के समष्टि ([[अल्फ्रेड टार्स्की]] के नाम पर)।<ref name=nLab>[https://ncatlab.org/homotopytypetheory/show/universe "Universe in Homotopy Type Theory"] in [[nLab]]</ref><ref>Zhaohui Luo, [http://www.cs.rhul.ac.uk/home/zhaohui/universes.pdf "Notes on Universes in Type Theory"], 2012.</ref><ref>[[Per Martin-Löf]], ''Intuitionistic Type Theory'', Bibliopolis, 1984, pp. 88 and 91.</ref> एक रसेल-शैली का समष्टि एक प्रकार है जिसकी शर्तें प्रकार हैं।<ref name=nLab/>एक तर्स्की-शैली समष्टि एक प्रकार है जो एक व्याख्या संचालन के साथ मिलकर हमें इसकी शर्तों को प्रकारों के रूप में मानने की अनुमति देता है।<ref name=nLab/> | ||
उदाहरण के लिए:<ref>{{cite journal |last1=Rathjen |first1=Michael |date=October 2005 |title=The Constructive Hilbert Program and the Limits of Martin-Löf Type Theory |url=https://link.springer.com/article/10.1007/s11229-004-6208-4 |journal=Synthese |volume=147 |pages=81–120 |doi=10.1007/s11229-004-6208-4 |s2cid=143295 |access-date=September 21, 2022}}</ref> | उदाहरण के लिए:<ref>{{cite journal |last1=Rathjen |first1=Michael |date=October 2005 |title=The Constructive Hilbert Program and the Limits of Martin-Löf Type Theory |url=https://link.springer.com/article/10.1007/s11229-004-6208-4 |journal=Synthese |volume=147 |pages=81–120 |doi=10.1007/s11229-004-6208-4 |s2cid=143295 |access-date=September 21, 2022}}</ref> | ||
{{quote|[[मार्टिन-लोफ प्रकार सिद्धांत]] की खुलापन विशेष रूप से तथाकथित ब्रह्मांडों की शुरूआत में प्रकट होता है। प्रकार के | {{quote|[[मार्टिन-लोफ प्रकार सिद्धांत]] की खुलापन विशेष रूप से तथाकथित ब्रह्मांडों की शुरूआत में प्रकट होता है। प्रकार के समष्टि प्रतिबिंब की अनौपचारिक धारणा को समाहित करते हैं जिसकी भूमिका को निम्नानुसार समझाया जा सकता है। वर्ग सिद्धांत के एक विशेष औपचारिकरण को विकसित करने के दौरान, वर्ग सिद्धांतकार प्रकारों के नियमों पर वापस देख सकता है, सी कहते हैं, जिन्हें अब तक प्रस्तुत किया गया है और यह पहचानने का चरण निष्पादित कर सकता है कि वे [[मार्टिन-लोफ]]<nowiki> के अनौपचारिक शब्दार्थ के अनुसार मान्य हैं। 'आत्मनिरीक्षण' का यह कार्य उन धारणाओं से अवगत होने का एक प्रयास है जिन्होंने अतीत में हमारे निर्माणों को नियंत्रित किया है। यह एक "[प्रतिबिंब सिद्धांत]] को जन्म देता है जो स्थूलतः कहता है कि हम जो कुछ भी प्रकारों के साथ करने के आदी हैं, वह एक समष्टि के अंदर किया जा सकता है" (मार्टिन-लोफ १९७५,८३) । औपचारिक स्तर पर, यह प्रकार सिद्धांत के सामयिक औपचारिकरण के विस्तार की ओर जाता है जिसमें सी की प्रकार बनाने की क्षमता एक प्रकार के समष्टि U</nowiki><sub>c</sub> दर्पण C में निहित हो जाती है।}} | ||
== यह भी देखें == | == यह भी देखें == | ||
* संवाद का क्षेत्र | * संवाद का क्षेत्र | ||
* ग्रोथेंडिक | * ग्रोथेंडिक समष्टि | ||
* [[हरब्रांड ब्रह्मांड|हरब्रांड | * [[हरब्रांड ब्रह्मांड|हरब्रांड समष्टि]] | ||
* [[मुक्त वस्तु]] | * [[मुक्त वस्तु]] | ||
* [[ खुला सूत्र |खुला सूत्र]] | * [[ खुला सूत्र |खुला सूत्र]] |
Revision as of 13:01, 11 April 2023
गणित में, और विशेष रूप वर्ग (समुच्चय सिद्धांत), श्रेणी सिद्धांत, प्रकार सिद्धांत और गणित की नींव में, समष्टि एक संग्रह है जिसमें सभी संस्थाएं सम्मिलित होती हैं जिन्हें किसी दिए गए स्थिति में विचार करना होता है।
समुच्चय सिद्धान्त में, समष्टि प्रायः ऐसे वर्ग होते हैं जिनमें (तत्व के रूप में ) सभी समुच्चय होते हैं जिसके लिए एक विशेष प्रमेय के गणितीय प्रमाण की आशा की जाती है। ये वर्ग विभिन्न स्वयंसिद्ध प्रणालियों जैसे जेडएफसी या मोर्स-केली समुच्चय सिद्धांत के लिए आंतरिक प्रतिरूप के रूप में काम कर सकते हैं। समुच्चय-सैद्धांतिक नींव के अंदर श्रेणी सिद्धांत में अवधारणाओं को औपचारिक रूप देने के लिए समष्टि का महत्वपूर्ण महत्व है। उदाहरण के लिए, किसी श्रेणी की विहित प्रेरक उदाहरण समुच्चय है की जो सभी समुच्चय की श्रेणी है, जिसे एक समष्टि की कुछ धारणा के बिना एक समुच्चय सिद्धांत में औपचारिक रूप नहीं दिया जा सकता है।
प्रकार सिद्धांत में, समष्टि एक प्रकार है जिसके तत्व प्रकार हैं।
एक विशिष्ट संदर्भ में
संभवतः सबसे सरल संस्करण यह है कि कोई भी समुच्चय एक समष्टि हो सकता है, जब तक कि अध्ययन की वस्तु उस विशेष समुच्चय तक ही सीमित हो। यदि अध्ययन का उद्देश्य वास्तविक संख्याओं द्वारा बनता है, तो वास्तविक रेखा 'R', जो कि वास्तविक संख्या समुच्चय है, विचाराधीन समष्टि हो सकती है। अंतर्निहित रूप से, यह वह समष्टि है जिसका उपयोग जॉर्ज कैंटर कर रहे थे जब उन्होंने पहली बार वास्तविक विश्लेषण के अनुप्रयोगों में १८७० और १८८० के दशक में आधुनिक सहज समुच्चय सिद्धांत और प्रमुखता विकसित की थी। कैंटर मूल रूप से रुचि रखने वाले एकमात्र समुच्चय 'R' के उपसमुच्चय थे।
समष्टि की यह अवधारणा वेन आरेख के उपयोग में परिलक्षित होती है। वेन आरेख में, कार्रवाई परंपरागत रूप से एक बड़े आयत के अंदर होती है जो समष्टि U का प्रतिनिधित्व करती है। सामान्यतः यह कहता है कि समुच्चय को मंडलियों द्वारा दर्शाए जाते हैं; लेकिन ये समुच्चय केवल U के उपसमुच्चय हो सकते हैं। समुच्चय A का पूरक (समुच्चय सिद्धांत) तब A के वृत्त के बाहर आयत के उस भाग द्वारा दिया जाता है। दृढता से बोलते हुए, यह U के सापेक्ष A का सापेक्ष पूरक (समुच्चय सिद्धांत) U \ A है; लेकिन एक संदर्भ में जहां U समष्टि है, इसे ए के पूर्ण पूरक एसी के रूप में माना जा सकता है । इसी तरह, शून्य चौराहे की एक धारणा है, जो शून्य समुच्चय (जिसका अर्थ है कोई समुच्चय नहीं, शून्य समुच्चय नहीं) का प्रतिच्छेदन है।
समष्टि के बिना, शून्य प्रतिच्छेदन पूरी तरह से सब कुछ का समुच्चय होगा, जिसे सामान्यतः असंभव माना जाता है; लेकिन समष्टि को ध्यान में रखते हुए, शून्य प्रतिच्छेदन को विचाराधीन हर चीज के समुच्चय के रूप में माना जा सकता है, जो केवल U है। ये सम्मेलन बूलियन लैटिस पर आधारित शून्य समुच्चय सिद्धांत के बीजगणितीय दृष्टिकोण में काफी उपयोगी हैं। स्वयंसिद्ध समुच्चय सिद्धांत (जैसे नई नींव) के कुछ गैर-मानक रूपों को छोड़कर, सभी समुच्चयों का वर्ग (समुच्चय सिद्धांत) एक बूलियन जाली नहीं है (यह केवल एक अपेक्षाकृत पूरक जाली है)।
इसके विपरीत, U के सभी उपसमुच्चयों का वर्ग, जिसे U का घात समुच्चय कहा जाता है, एक बूलियन जालक है। ऊपर वर्णित पूर्ण पूरक बूलियन जालक में पूरक संक्रिया है; और U, शून्य प्रतिच्छेदन के रूप में, बूलीय जालक में सबसे महान तत्व (या नलरी सम्मेलन (गणित) के रूप में कार्य करता है। फिर डी मॉर्गन के नियम, जो मिलने और जुड़ने (गणित) के पूरक से निपटते हैं (जो कि समुच्चय सिद्धांत में संघ (समुच्चय सिद्धांत) हैं) वे लागू होते हैं और शून्य बैठक और शून्य जोड़ (जो कि खाली समुच्चय है) पर भी लागू होते हैं।
साधारण गणित में
तथापि, एक बार दिए गए समुच्चय X (कैंटर की स्तिथि में, X = 'R') के उपसमुच्चय पर विचार किया जाता है, समष्टि को X के उपसमुच्चय का एक समुच्चय होने की आवश्यकता हो सकती है। (उदाहरण के लिए, X पर एक सांस्थितिक समष्टि उपसमुच्चय का एक समुच्चय है।) X के उपसमुच्चय के विभिन्न समुच्चय स्वयं X के उपसमुच्चय नहीं होंगे, बल्कि इसके स्थान पर 'P'X के उपसमुच्चय होंगे, जो X का घात समुच्चय है। इसे जारी रखा जा सकता है; अध्ययन की उद्देश्य में आगे X के उपसमुच्चयों के ऐसे समुच्चय सम्मिलित हो सकते हैं, और इसी तरह, जिस स्थिति में समष्टि 'P'('P'X) होगा। एक अन्य दिशा में, X पर द्विआधारी संबंध (कार्टेशियन उत्पाद के उपसमुच्चय X × X) पर विचार किया जा सकता है, या कार्य (गणित) X से स्वयं के लिए किया जा सकता है, जैसे समष्टिों की आवश्यकता होती है P(X × X) या XX।
इस प्रकार, भले ही प्राथमिक रुचि X है, समष्टि को X से बहुत बड़ा होना पड़ सकता है। उपरोक्त विचारों के बाद, समष्टि के रूप में X पर 'अधिरचना' चाह सकता है। इसे संरचनात्मक पुनरावर्तन द्वारा निम्नानुसार परिभाषित किया जा सकता है:
- S0X को X ही होने दें।
- मान लीजिए कि S1X, X और PX का संघ (समुच्चय सिद्धांत) है।
- मान लीजिए कि S2X, S1X और P(S1X) का संघ है।
- सामान्यतः, Sn+1X को SnX और 'P' (SnX) का संघ होने दें।
फिर X पर अधिरचना, SX लिखा गया है, 'S0X, S1X, S2X, और इसी तरह का संघ है; नहीं तो
कोई भिन्नता नहीं पड़ता कि कौन सा समुच्चय X प्रारंभिक बिंदु है, खाली समुच्चय {} 'S1X से संबंधित होगा। खाली समुच्चय वॉन न्यूमैन क्रमसूचक [0] है। तब {[0]}, वह समुच्चय जिसका एकमात्र तत्व खाली समुच्चय है, S2X से संबंधित होगा; यह वॉन न्यूमैन क्रमसूचक है [1] । इसी तरह, {[1]} S3X से संबंधित होगा, और इस प्रकार {[0], [1]}, {[0]} और {[1]} के मिलन के रूप में होगा; यह वॉन न्यूमैन क्रमसूचक [2] है। इस प्रक्रिया को जारी रखते हुए, प्रत्येक प्राकृतिक संख्या को अधिरचना में उसके वॉन न्यूमैन क्रमसूचक द्वारा दर्शाया जाता है। इसके बाद, यदि x और y अधिरचना से संबंधित हैं, तो ऐसा होता है {{x},{x,y}}, जो क्रमित युग्म (x, y) का प्रतिनिधित्व करता है। इस प्रकार अधिरचना में विभिन्न वांछित कार्टेशियन उत्पाद सम्मिलित होंगे। फिर अधिरचना में कार्य (गणित) और संबंध (गणित) भी सम्मिलित हैं, क्योंकि इन्हें कार्टेशियन उत्पादों के उपसमुच्चय के रूप में दर्शाया जा सकता है। यह प्रक्रिया आदेशित एन-टुपल्स भी देती है, जिसका प्रतिनिधित्व ऐसे कार्यों के रूप में किया जाता है जिसका कार्यछेत्र वॉन न्यूमैन ऑर्डिनल [n] है, और इसी तरह।
इसलिए यदि प्रारंभिक बिंदु केवल X = {} है, तो गणित के लिए आवश्यक समुच्चयों का एक बड़ा भाग {} पर अधिरचना के तत्वों के रूप में दिखाई देते हैं। लेकिन 'S'{} का प्रत्येक तत्व एक परिमित समुच्चय होगा। प्रत्येक प्राकृतिक संख्या इससे संबंधित है, लेकिन सभी प्राकृतिक संख्याओं का समुच्चय 'N' नहीं है (यद्यपि यह 'S' {} का उप-समूह है)। वस्तुतः, {} पर अधिरचना में सभी वंशानुगत रूप से परिमित समुच्चय होते हैं। जैसे, इसे परिमित गणित का समष्टि माना जा सकता है। कालानुक्रमिक रूप से बोलते हुए, कोई यह सुझाव दे सकता है कि 19वीं सदी के फिनिटिस्ट लियोपोल्ड क्रोनकर इस समष्टि में काम कर रहे थे; उनका मानना था कि प्रत्येक प्राकृतिक संख्या अस्तित्व थी लेकिन समुच्चय 'N' (एक पूर्ण अनंत) नहीं था।
तथापि, 'S'{} सामान्य गणितज्ञों (जो परिमित नहीं हैं) के लिए असंतोषजनक है, क्योंकि भले ही 'N' 'S'{} के उपसमुच्चय के रूप में उपलब्ध हो, फिर भी 'N' का घात समुच्चय नहीं है। विशेष रूप से, वास्तविक संख्याओं का मनमाना समुच्चय उपलब्ध नहीं है। इसलिए प्रक्रिया को फिर से प्रारम्भ करना और 'S'('S'{}) बनाना आवश्यक हो सकता है। तथापि, चीजों को सरल रखने के लिए, प्राकृतिक संख्याओं के समुच्चय 'N' को दिया जा सकता है और 'SN', 'N' के ऊपर अधिरचना का निर्माण कर सकते हैं। इसे प्रायः सामान्य गणित का समष्टि माना जाता है। विचार यह है कि सामान्य रूप से अध्ययन किए जाने वाले सभी गणित इस समष्टि के तत्वों को संदर्भित करते हैं। उदाहरण के लिए, वास्तविक संख्याओं का कोई भी सामान्य निर्माण (डेडेकाइंड अलगाव द्वारा) 'SN' से संबंधित है। यहां तक कि प्राकृतिक संख्याओं के गैर-मानक प्रतिरूप पर अधिरचना में गैर-मानक विश्लेषण भी किया जा सकता है।
पिछले खंड से दर्शनशास्त्र में थोड़ा बदलाव आया है, जहां समष्टि रुचि का कोई समुच्चय U था। वहां, अध्ययन किए जा रहे समुच्चय समष्टि के उपसमुच्चय थे; अब, वे समष्टि के सदस्य हैं। इस प्रकार यद्यपि 'P'('SX) एक बूलियन जाली है, जो प्रासंगिक है वह यह है कि SX स्वयं नहीं है। नतीजतन, बूलियन लैटिस और वेन आरेखों की धारणाओं को सीधे अधिरचना समष्टि पर लागू करना दुर्लभ है क्योंकि वे पिछले खंड के शक्ति-समुच्चय समष्टिों के लिए थे। इसके स्थान पर, व्यक्ति अलग-अलग बूलियन लैटिस PA के साथ काम कर सकता है, जहां A SX से संबंधित कोई भी प्रासंगिक समुच्चय है; तो PA SX का एक उपसमुच्चय है (और वास्तव में SX से संबंधित है)। कैंटर के विषय में X = 'R' विशेष रूप से, वास्तविक संख्याओं के मनमाने समुच्चय उपलब्ध नहीं हैं, इसलिए वहां प्रक्रिया को फिर से प्रारम्भ करना आवश्यक हो सकता है।
समुच्चय सिद्धांत में
इस दावे को सटीक अर्थ देना संभव है कि SN सामान्य गणित का समष्टि है; यह ज़र्मेलो समुच्चय सिद्धांत का एक प्रतिरूप सिद्धांत है, स्वयंसिद्ध समुच्चय सिद्धांत मूल रूप से १९०८ में अर्नेस्ट ज़र्मेलो द्वारा विकसित किया गया था । ज़र्मेलो समुच्चय सिद्धांत सटीक रूप से सफल रहा क्योंकि यह ३० साल पहले कैंटर द्वारा प्रारम्भ किए गए कार्यक्रम को पूरा करते हुए सामान्य गणित को स्वयंसिद्ध करने में सक्षम था। लेकिन ज़र्मेलो समुच्चय सिद्धांत गणित की नींव में स्वयंसिद्ध समुच्चय सिद्धांत और अन्य कार्यों के आगे के विकास के लिए अपर्याप्त साबित हुआ, विशेष रूप से प्रतिरूप सिद्धांत।
एक नाटकीय उदाहरण के लिए, ऊपर अधिरचना प्रक्रिया का वर्णन ज़र्मेलो समुच्चय सिद्धांत में ही नहीं किया जा सकता है। अंतिम चरण, S को एक असीम संघ के रूप में बनाने के लिए, प्रतिस्थापन के स्वयंसिद्ध की आवश्यकता होती है, जिसे १९२२ में ज़र्मेलो-फ्रेंकेल समुच्चय सिद्धांत बनाने के लिए ज़र्मेलो समुच्चय सिद्धांत में जोड़ा गया था, जो आज व्यापक रूप से स्वीकृत स्वयंसिद्धों का समुच्चय है। इसलिए जब सामान्य गणित SN में किया जा सकता है, SN की चर्चा SN सामान्य के अतिरिक्त, मेटामैथमैटिक्स में जाती है।
लेकिन अगर उच्च-शक्ति वाले समुच्चय सिद्धांत को लाया जाता है, तो ऊपर दी गई अधिरचना प्रक्रिया खुद को एक ट्रांसफिनिट रिकर्सन की शुरुआत के रूप में प्रकट करती है। X = {}, खाली समुच्चय पर वापस जा रहे हैं, और (मानक) संकेतन को प्रस्तुत कर रहे हैं Vi Si{}, V0 = {}, V1 = P{}, और इसी तरह पहले की तरह। लेकिन जिसे अधिरचना कहा जाता था, वह अब सूची में अगला आइटम है: Vω, जहां ω पहली अनंत क्रमिक संख्या है। इसे मनमाने ढंग से क्रमिक संख्याओं तक बढ़ाया जा सकता है:
निम्न किसी भी क्रमिक संख्या i के लिए Vi को परिभाषित करता है। सभी Vi का संघ वॉन न्यूमैन समष्टि V है:
- .
प्रत्येक व्यष्टिक Vi एक समुच्चय है, लेकिन उनका संघ V एक उचित वर्ग है। नींव का स्वयंसिद्ध, जिसे ज़र्मेलो-फ्रेंकेल समुच्चय सिद्धांत समुच्चय सिद्धांत में जोड़ा गया था, उसी समय प्रतिस्थापन के स्वयंसिद्ध के रूप में कहा गया था कि प्रत्येक समुच्चय V से संबंधित है।
- कर्ट गोडेल का रचनात्मक समष्टि एल और रचनात्मकता का स्वयंसिद्ध
- अप्राप्य कार्डिनल्स ZF के प्रतिरूप और कभी-कभी अतिरिक्त स्वयंसिद्धों का उत्पादन करते हैं, और ग्रोथेंडिक समष्टि समुच्चय के अस्तित्व के समान हैं
विधेय कलन में
प्रथम-क्रम तर्क की एक व्याख्या (तर्क) में, समष्टि (या संवाद का कार्यछेत्र) व्यक्तियों (व्यक्तिगत स्थिरांक) का समूह है, जिस पर परिमाणक (तर्क)तर्क) की सीमा होती है। एक प्रस्ताव जैसे ∀x (x2 ≠ 2) अस्पष्ट है, यदि विमर्श के किसी क्षेत्र की पहचान नहीं की गई है। एक व्याख्या में, विमर्श का क्षेत्र वास्तविक संख्याओं का समुच्चय हो सकता है; एक अन्य व्याख्या में, यह प्राकृतिक संख्याओं का समुच्चय हो सकता है। यदि संवाद का क्षेत्र वास्तविक संख्याओं का समूह है, तो प्रस्ताव झूठा है, साथ x = √2 प्रति उदाहरण के रूप में; यदि प्रांत प्राकृतिकों का समुच्चय है, तो तर्कवाक्य सत्य है, क्योंकि २ किसी भी प्राकृत संख्या का वर्ग नहीं है।
श्रेणी सिद्धांत में
समष्टिों के लिए एक और दृष्टिकोण है जो ऐतिहासिक रूप से श्रेणी सिद्धांत से जुड़ा हुआ है। यह ग्रोथेंडिक समष्टि का विचार है। मोटे तौर पर, एक ग्रोथेंडिक समष्टि एक समुच्चय है जिसके अंदर समुच्चय सिद्धांत के सभी सामान्य संचालन किए जा सकते हैं। समष्टि के इस संस्करण को किसी भी समुच्चय के रूप में परिभाषित किया गया है जिसके लिए निम्नलिखित स्वयंसिद्ध हैं:[1]
- तात्पर्य
- और मतलब {u,v}, (u,v), और .
- तात्पर्य और
- (यहाँ सभी क्रमवाचक संख्याओं का समुच्चय है।)
- अगर के साथ एक विशेषण कार्य है और , तब .
ग्रोथेंडिक समष्टि का लाभ यह है कि यह वास्तव में एक समुच्चय है, और कभी भी उचित वर्ग नहीं है। हानि यह है कि यदि कोई पर्याप्त प्रयास करता है, तो वह ग्रोथेंडिक समष्टि को छोड़ सकता है।[citation needed]
ग्रोथेंडिक समष्टि U का सबसे आम उपयोग U को सभी समुच्चयों की श्रेणी के प्रतिस्थापन के रूप में लेना है। एक का कहना है कि एक समुच्चय S U'-'छोटा' है यदि एस ∈U, और U'-'बड़ा' अन्यथा। सभी U-छोटे समुच्चयों की श्रेणी U-'समुच्चय' में सभी U-छोटे समुच्चय वस्तु के रूप में हैं और इन समुच्चयों के बीच सभी प्रकार्यों के रूप में हैं। वस्तु समुच्चय और आकारिकी समुच्चय दोनों ही समुच्चय हैं, इसलिए उचित वर्गों का आह्वान किए बिना सभी समुच्चयों की श्रेणी पर चर्चा करना संभव हो जाता है। तब इस नई श्रेणी के संदर्भ में अन्य श्रेणियों को परिभाषित करना संभव हो जाता है। उदाहरण के लिए, सभी U-छोटी श्रेणियों की श्रेणी उन सभी श्रेणियों की श्रेणी है, जिनका वस्तु समुच्चय और जिनका आकारिकी समुच्चय U में है। फिर समुच्चय सिद्धांत के सामान्य तर्क सभी श्रेणियों की श्रेणी पर लागू होते हैं, और किसी को नहीं करना पड़ता है गलती से उचित कक्षाओं के बारे में बात करने की चिंता। क्योंकि ग्रोथेंडिक समष्टि बहुत बड़े हैं, यह लगभग सभी अनुप्रयोगों में पर्याप्त है।
प्रायः ग्रोथेंडिक समष्टिों के साथ काम करते समय, गणितज्ञ टार्स्की-ग्रोथेंडिक समुच्चय सिद्धांत को मानते हैं: किसी भी समुच्चय x के लिए, एक समष्टि U अस्तित्व है जैसे कि x ∈U। इस स्वयंसिद्ध का समस्या यह है कि किसी भी समुच्चय का सामना कुछ U के लिए U-छोटा होता है, इसलिए सामान्य ग्रोथेंडिक समष्टि में किए गए किसी भी तर्क को लागू किया जा सकता है।[2] यह स्वयंसिद्ध दुर्गम कार्डिनल्स के अस्तित्व से निकटता से संबंधित है।
प्रकार सिद्धांत में
कुछ प्रकार के सिद्धांतों में, विशेष रूप से आश्रित प्रकार वाले प्रणालियों में, स्वयं को शब्द (तर्क) के रूप में माना जा सकता है। समष्टि नामक एक प्रकार है (प्रायः निरूपित किया जाता है ) जिसके तत्वों में प्रकार हैं। गिरार्ड के विरोधाभास (प्रकार सिद्धांत के लिए रसेल के विरोधाभास का एक एनालॉग) जैसे विरोधाभासों से बचने के लिए, प्रकार के सिद्धांतों को प्रायः ऐसे समष्टिों के एक गणनीय समुच्चय पदानुक्रम से सुसज्जित किया जाता है, जिसमें प्रत्येक समष्टि अगले एक का एक शब्द होता है।
कम से कम दो प्रकार के समष्टि हैं जिन पर एक प्रकार के सिद्धांत में विचार किया जा सकता है: रसेल-शैली के समष्टि (बर्ट्रेंड रसेल के नाम पर) और तार्स्की-शैली के समष्टि (अल्फ्रेड टार्स्की के नाम पर)।[3][4][5] एक रसेल-शैली का समष्टि एक प्रकार है जिसकी शर्तें प्रकार हैं।[3]एक तर्स्की-शैली समष्टि एक प्रकार है जो एक व्याख्या संचालन के साथ मिलकर हमें इसकी शर्तों को प्रकारों के रूप में मानने की अनुमति देता है।[3]
उदाहरण के लिए:[6]
मार्टिन-लोफ प्रकार सिद्धांत की खुलापन विशेष रूप से तथाकथित ब्रह्मांडों की शुरूआत में प्रकट होता है। प्रकार के समष्टि प्रतिबिंब की अनौपचारिक धारणा को समाहित करते हैं जिसकी भूमिका को निम्नानुसार समझाया जा सकता है। वर्ग सिद्धांत के एक विशेष औपचारिकरण को विकसित करने के दौरान, वर्ग सिद्धांतकार प्रकारों के नियमों पर वापस देख सकता है, सी कहते हैं, जिन्हें अब तक प्रस्तुत किया गया है और यह पहचानने का चरण निष्पादित कर सकता है कि वे मार्टिन-लोफ के अनौपचारिक शब्दार्थ के अनुसार मान्य हैं। 'आत्मनिरीक्षण' का यह कार्य उन धारणाओं से अवगत होने का एक प्रयास है जिन्होंने अतीत में हमारे निर्माणों को नियंत्रित किया है। यह एक "[प्रतिबिंब सिद्धांत]] को जन्म देता है जो स्थूलतः कहता है कि हम जो कुछ भी प्रकारों के साथ करने के आदी हैं, वह एक समष्टि के अंदर किया जा सकता है" (मार्टिन-लोफ १९७५,८३) । औपचारिक स्तर पर, यह प्रकार सिद्धांत के सामयिक औपचारिकरण के विस्तार की ओर जाता है जिसमें सी की प्रकार बनाने की क्षमता एक प्रकार के समष्टि Uc दर्पण C में निहित हो जाती है।
यह भी देखें
- संवाद का क्षेत्र
- ग्रोथेंडिक समष्टि
- हरब्रांड समष्टि
- मुक्त वस्तु
- खुला सूत्र
- अंतरिक्ष (गणित)
टिप्पणियाँ
- ↑ Mac Lane 1998, p. 22
- ↑ Low, Zhen Lin (2013-04-18). "श्रेणी सिद्धांत के लिए ब्रह्मांड". arXiv:1304.5227v2 [math.CT].
- ↑ 3.0 3.1 3.2 "Universe in Homotopy Type Theory" in nLab
- ↑ Zhaohui Luo, "Notes on Universes in Type Theory", 2012.
- ↑ Per Martin-Löf, Intuitionistic Type Theory, Bibliopolis, 1984, pp. 88 and 91.
- ↑ Rathjen, Michael (October 2005). "The Constructive Hilbert Program and the Limits of Martin-Löf Type Theory". Synthese. 147: 81–120. doi:10.1007/s11229-004-6208-4. S2CID 143295. Retrieved September 21, 2022.
संदर्भ
- मैक लेन, सॉन्डर्स (१९९८) । कामकाजी गणितज्ञ के लिए श्रेणियाँ. स्प्रिंगर-वर्लाग न्यूयॉर्क, इंक।
बाहरी संबंध
- "Universe", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
- Weisstein, Eric W. "Universal Set". MathWorld.