कणों की सूची: Difference between revisions

From Vigyanwiki
Line 133: Line 133:


{|class="wikitable" style="margin:1em auto;"
{|class="wikitable" style="margin:1em auto;"
|+Superpartners (Sparticles)
|+उच्च सहयोगी (विशेष कण)
|-
|-
! [[Superpartner]] !! Spin !!width="500"| Notes !! superpartner of:
!   [[Superpartner|उच्च सहयोगी]] !! स्पिन !! width="500" | नोट्स !! उच्च सहयोगिता:
|-
|-
| [[chargino]] || {{center| {{sfrac| 1 |2}} }} || The charginos are [[quantum superposition|superpositions]] of the [[superpartner]]s of charged Standard Model bosons: charged [[Higgs boson]] and {{nobr|[[W boson]]}}.<br/>The [[Minimal Supersymmetric Standard Model|MSSM]] predicts two pairs of charginos. || charged bosons
|   [[chargino|चार्जिनों]] || {{center| {{sfrac| 1 |2}} }} || चार्जिनों आवेशित मानक प्रणाली बोसॉन: आवेशित हिग्स बोसॉन और डब्ल्यू बोसॉन के उच्च सहयोगियों की विशेष स्थिति है।
एमएसएसएम दो जोड़ी चार्जिनों के बारे में बताता है।     
 
| charged bosons
|-
|-
| [[gluino]] || {{center| {{sfrac| 1 |2}} }} || Eight [[gluon]]s and eight gluinos. || gluon
| [[gluino]] || {{center| {{sfrac| 1 |2}} }} || आठ [[gluon|ग्लूआन्स]] तथा आठ ग्लूइनास || gluon
|-
|-
| [[gravitino]] || {{center| {{sfrac| 3 |2}} }} || Predicted by [[supergravity]] ([[Supergravity|SUGRA]]). The [[graviton]] is hypothetical, too – see previous table.  || graviton
| [[gravitino]] || {{center| {{sfrac| 3 |2}} }} || [[supergravity|उच्च गुरुत्वाकर्षण (सुग्रा)]] द्वारा बताया गया है। [[graviton|गुरुत्व]] परिकल्पना है, पिछली तालिका भी देखें। || graviton
|-
|-
| [[Higgsino]] || {{center| {{sfrac| 1| 2}} }} || For supersymmetry there is a need for several Higgs bosons, neutral and charged, according with their superpartners. || [[Higgs boson]]
| [[Higgsino]] || {{center| {{sfrac| 1| 2}} }} || For supersymmetry there is a need for several Higgs bosons, neutral and charged, according with their superpartners. || [[Higgs boson]]

Revision as of 07:26, 19 April 2023

यह ज्ञात और परिकल्पित कणों की एक सूची है।

प्राथमिक कण

प्राथमिक कण वे कण होते हैं जिनकी कोई मापनीय आंतरिक संरचना नहीं होती; अर्थात्, यह अज्ञात है कि वे अन्य कणों से बने हैं या नहीं हैं।[1] वे क्वांटम क्षेत्र सिद्धांत की मूलभूत वस्तु हैं। प्राथमिक कणों के कई समूह और उप-समूह उपस्थित हैं। प्राथमिक कणों को उनके स्पिन (भौतिकी) के अनुसार वर्गीकृत किया जाता है। फर्मियन में अर्ध-पूर्णानांक स्पिन होता है जबकि बोसॉन में पूर्णांक स्पिन होता है। 2012 में हिग्स बॉसन सहित मानक मॉडल के सभी कणों को प्रयोगात्मक रूप से देखा गया है।[2][3] गुरुत्वाकर्षण जैसे कई अन्य परिकल्पित प्राथमिक कण प्रस्तावित किए गए हैं, परन्तु प्रयोगात्मक रूप से नहीं देखे गए हैं।

फर्मियंस

फ़र्मियन कणों के दो मूलभूत वर्गों में से एक है, दूसरा बोसॉन है। फर्मियन कणों को फर्मी-डिराक सांख्यिकी द्वारा वर्णित किया गया है और पाउली अपवर्जन सिद्धांत द्वारा वर्णित क्वांटम संख्याएँ हैं। इनमें क्वार्क और लेप्टॉन, साथ ही इनमें से विषम संख्या वाले कोई भी मिश्रित कण सम्मलित हैं, जैसे कि सभी बेरोन और कई परमाणु और नाभिक होते हैं।

फर्मियंस में अर्ध-पूर्णांक स्पिन होता है; सभी ज्ञात प्राथमिक फर्मों के लिए यह 12 है | न्युट्रीनो को छोड़कर सभी ज्ञात फ़र्मियन, डायराक फ़र्मियन भी हैं; अर्थात्, प्रत्येक ज्ञात फ़र्मियन का अपना विशिष्ट प्रतिकण होता है। यह ज्ञात नहीं है कि न्यूट्रिनो एक डिराक फर्मियन है या एक मेजराना फर्मियन है[4] फर्मियंस सभी पदार्थों के मूल निर्माण खंड हैं। उन्हें इस आधार पर वर्गीकृत किया जाता है कि वे मजबूत अंतःक्रिया के माध्यम से परस्पर क्रिया करते हैं या नहीं करते हैं। मानक मॉडल में, 12 प्रकार के प्राथमिक फ़र्मियन हैं: छह क्वार्क और छह लेपटोन हैं।

क्वार्क

क्वार्क हैड्रान के मूलभूत घटक हैं और मजबूत बल के माध्यम से परस्पर क्रिया करते हैं। क्वार्क भिन्नात्मक आवेश के एकमात्र आंशिक प्रभाव हैं, परन्तु क्योंकि वे तीन (बैरिऑन) के समूहों में या एक क्वार्क और एक प्रतिक्वार्क (मेसन) के जोड़े में संयोजित होते हैं, प्रकृति में केवल पूर्णांक आवेश देखा जाता है। उनके संबंधित प्रतिकण एंटीक्वार्क हैं, जो समान हैं सिवाय इसके कि वे विपरीत विद्युत आवेश को वहन करते हैं (उदाहरण के लिए ऊर्ध्व क्वार्क चार्ज + +23, जबकि ऊर्ध्व प्रतिक्वार्क में 23 आवेश - होता है), रंग आवेश, और बेरिऑन संख्या है। क्वार्क के छह प्रकार (कण भौतिकी) हैं; तीन धनावेशित क्वार्क को ऊपरी-प्रकार क्वार्क कहा जाता है जबकि तीन ऋणात्मक आवेश चार्ज वाले क्वार्क को अधो-प्रकार क्वार्क कहा जाता है।

क्वार्क्स
उत्पत्ति नाम प्रतीक प्रतिकण स्पिन आवेश
(e)
द्रव्यमान (MeV/c2) [5]
1 ऊपर u
u
12 +23 2.2+0.6
−0.4
निचे d
d
12 13 4.6+0.5
−0.4
2 चार्म c
c
12 +23 1280±30
विशेष s
s
12 13 96+8
−4
3 ऊपर t
t
12 +23 173100±600
निचे b
b
12 13 4180+40
−30


लेप्टान

लेप्टॉन प्रबल अंतःक्रिया के माध्यम से एक दूसरे को प्रभावित नहीं करते है। उनके संबंधित प्रतिकण समझने वाले हैं, जो समान हैं, इसके अतिरिक्त कि वे विपरीत विद्युत आवेश और लेप्टान संख्या को वहन करते हैं। इलेक्ट्रॉन का प्रतिकण एक प्रतिइलेक्ट्रॉन होता है, जिसे ऐतिहासिक कारणों से लगभग निरंतर पॉज़िट्रॉन कहा जाता है। कुल छह लेप्टान हैं; तीन आवेशित लेप्टान को इलेक्ट्रॉन जैसे लेप्टान कहा जाता है, जबकि उदासीन लेप्टान को न्यूट्रिनो कहा जाता है। न्यूट्रिनो को न्यूट्रिनो दोलन के लिए जाना जाता है, जिससे कि निश्चित गंध (कण भौतिकी) के न्यूट्रिनो का निश्चित द्रव्यमान नहीं होता है, बल्कि वे बड़े स्तर पर अभिलक्षणिक के अधिस्थापन में उपस्थित होते हैं। परिकल्पित भार दाहिने हाथ वाले न्यूट्रिनो, जिसे अकल्पनाशील न्यूट्रिनो कहा जाता है, को छोड़ दिया गया है।

लेप्टोन्स
उत्पत्ति नाम प्रतीक प्रतिकण स्पिन आवेश
(e)
द्रव्यमान (MeV/c2) [5]
1 इलेक्ट्रॉन
e

e+
1/2 −1 0.511[note 1]
इलेक्ट्रॉन न्यूट्रिनो
ν
e

ν
e
1/2 0 < 0.0000022
2 म्यूऑन
μ

μ+
1/2 −1 105.7[note 2]
म्यूऑन न्यूट्रिनो
ν
μ

ν
μ
1/2 0 < 0.170
3 टाऊ
τ

τ+
1/2 −1 1776.86±0.12
टाऊ न्यूट्रिनो
ν
τ

ν
τ
1/2 0 < 15.5
  1. A precise value of the electron mass is  MeV/c2.
  2. A precise value of the muon mass is  MeV/c2.

बोसोन

बोसॉन उन दो मौलिक कणों मेसॉनों से एक हैं जिनमें कणों का अभिन्न स्पिन (चक्रण) वर्ग होता है, दूसरा फ़र्मियन होता है। बोसॉन की पहचान बोस-आइंस्टीन सांख्यिकी द्वारा की जाती है और सभी में पूर्णांक चक्रण होते हैं। बोसोन या तो प्रारंभिक हो सकते हैं, जैसे फोटॉन और ग्लून्स, या मिश्रित, जैसे मेसॉन इत्यादि हैं।

मानक मॉडल के अनुसार प्राथमिक बोसोन हैं:

नाम प्रतीक प्रतिकण स्पिन आवेश (e) द्रव्यमान (GeV/c2) [5] मध्य संपर्क अवशोषित
फोटॉन γ स्वयं 1 0 0 विद्युतचुंबकीयकरण Yes
डब्ल्यू बोसॉन
W

W+
1 ±1 80.385±0.015 प्रभावहीन संपर्क Yes
जेड बोसॉन
Z
स्वयं 1 0 91.1875±0.0021 प्रभावहीन संपर्क Yes
ग्लूऑन
g
स्वयं 1 0 0 प्रभावी संपर्क Yes
हिग्स बोसॉन
H0
स्वयं 0 0 125.09±0.24 द्रव्यमान Yes

हिग्स बोसोन को मुख्य रूप से द्रव्यमान की उत्पत्ति की व्याख्या करने के लिए इलेक्ट्रोवीक सिद्धांत द्वारा सिद्ध किया गया है। हिग्स तंत्र के रूप में जानी जाने वाली प्रक्रिया में, मानक मॉडल में हिग्स बोसोन और अन्य गेज बोसोन SU(2) के सरल समरूपता को तोड़कर गेज समरूपता द्रव्यमान प्राप्त करते हैं। न्यूनतम अतिसममित मानक मॉडल (एमएसएसएम) कई हिग्स बोसोन की भविष्यवाणी करता है। 4 जुलाई 2012 को नए कण की खोज हुई जिसका द्रव्यमान 125 और 127 GE V/c2 घोषित किया गया था; भौतिकविदों को संदेह था कि यह हिग्स बोसॉन था। तब से, कण को ​​मानक मॉडल द्वारा हिग्स कणों के लिए कई प्रकारों से प्रभाव, परस्पर क्रिया और क्षय दिखाया गया है, साथ ही समानता और शून्य स्पिन, हिग्स बोसोन के दो मूलभूत गुण हैं। इसका यह भी अर्थ है कि यह प्रकृति में ढूंढा गया पहला प्राथमिक अदिश कण है।

प्रकृति के चार मौलिक बलों के लिए उत्तरदायी प्राथमिक बोसोन को मुलभुत बल (गेज बोसोन) कहा जाता है। मजबूत अंतःक्रिया की मध्यस्थता ग्लूऑन द्वारा की जाती है, कमजोर अंतःक्रिया की मध्यस्थता W और Z बोसोन द्वारा की जाती है।

काल्पनिक कण

गुरुत्वाकर्षण

नाम प्रतीक प्रतिकण स्पिन आवेश (e) द्रव्यमान (GeV/c2) [5] मध्य संपर्क अवशोषित
गुरुत्व G स्वयं 2 0 0 गुरुत्वाकर्षण No

गुरुत्वाकर्षण परिकल्पित कण है जिसे गुरुत्वाकर्षण बल की मध्यस्थता के लिए मानक मॉडल के कुछ विस्तारों में सम्मिलित किया गया है। यह ज्ञात और परिकल्पित कणों के बीच असामान्य श्रेणी में है: अप्रमाणित कण के रूप में जिसके बारे में न तो बताया गया है और न ही मानक मॉडल के लिए आवश्यक है, यह नीचे परिकल्पित कणों की तालिका में है परन्तु गुरुत्वाकर्षण बल अपने आप में एक निश्चितता है, और उस ज्ञात बल को क्वांटम क्षेत्र सिद्धांत के रूप में व्यक्त करने के लिए इसे मध्यस्थ करने के लिए बोसॉन की आवश्यकता होती है।

यदि यह उपस्थित है, तो गुरुत्वाकर्षण के विशेष सापेक्षता में द्रव्यमान होने की आशा है क्योंकि गुरुत्वाकर्षण बल की बहुत लंबी सीमा होती है, और प्रकाश की गति से फैलता हुआ प्रतीत होता है। गुरुत्वाकर्षण स्पिन (भौतिकी) -2 बोसोन होना चाहिए क्योंकि गुरुत्वाकर्षण का स्रोत प्रतिबल-ऊर्जा टेन्सर (प्रदिश) है, एक दूसरे क्रम का टेंसर (विद्युत चुंबकत्व के स्पिन-1 फोटॉन की तुलना में, जिसका स्रोत चार-धारा है, प्रथम-क्रम टेंसर) होता है। इसके अतिरिक्त, यह दिखाया जा सकता है कि कोई भी द्रव्यमान रहित स्पिन-2 क्षेत्र गुरुत्वाकर्षण से अप्रभेद्य बल को उत्पन्न कर देता है, क्योंकि द्रव्यमान रहित स्पिन-2 क्षेत्र प्रतिबल-ऊर्जा टेंसर को उसी प्रकार जोड़ेगा जैसे गुरुत्वाकर्षण संबंधी क्रिया करते हैं। इस परिणाम से पता चलता है कि, यदि द्रव्यमान रहित स्पिन-2 कण की खोज की जाती है, तो यह गुरुत्वाकर्षण होना चाहिए।[6]


सुपरसिमेट्रिक सिद्धांतों द्वारा अनुमानित कण

सुपरसिमेट्री (अतिसममिति) सिद्धांत अत्यधिक कणों के अस्तित्व के बारे में बताता हैं, जिनमें से किसी की भी प्रयोगात्मक रूप से पुष्टि नहीं की गई है।

उच्च सहयोगी (विशेष कण)
उच्च सहयोगी स्पिन नोट्स उच्च सहयोगिता:
चार्जिनों
 1 /2
चार्जिनों आवेशित मानक प्रणाली बोसॉन: आवेशित हिग्स बोसॉन और डब्ल्यू बोसॉन के उच्च सहयोगियों की विशेष स्थिति है।

एमएसएसएम दो जोड़ी चार्जिनों के बारे में बताता है।

charged bosons
gluino
 1 /2
आठ ग्लूआन्स तथा आठ ग्लूइनास gluon
gravitino
 3 /2
उच्च गुरुत्वाकर्षण (सुग्रा) द्वारा बताया गया है। गुरुत्व परिकल्पना है, पिछली तालिका भी देखें। graviton
Higgsino
 1/ 2
For supersymmetry there is a need for several Higgs bosons, neutral and charged, according with their superpartners. Higgs boson
neutralino
 1 /2
The neutralinos are superpositions of the superpartners of neutral Standard Model bosons: neutral Higgs boson, Z boson and photon.
The lightest neutralino is a leading candidate for dark matter.
The MSSM predicts four neutralinos.
neutral bosons
photino
 1 /2
Mixing with zino and neutral Higgsinos for neutralinos. photon
sleptons
0
The superpartners of the leptons (electron, muon, tau) and the neutrinos. leptons
sneutrino
0
Introduced by many extensions of the Standard Supermodel, and may be needed to explain the LSND results.
A special role has the sterile sneutrino, the supersymmetric counterpart of the hypothetical right-handed neutrino, called the "sterile neutrino".
neutrino
squarks
0
The stop squark (superpartner of the top quark) is thought to have a low mass and is often the subject of experimental searches. quarks
wino, zino
 1 /2
The charged wino mixing with the charged Higgsino for charginos, for the zino see line above. W± and Z0 bosons

ठीक फोटॉन की तरह, Z बोसॉन और W± बोसॉन B0, W0, W1, और W2 क्षेत्र, फ़ोटोनो, ज़िनो और विनो± बिनो0, विनो 0, विनो1, और विनो2 अधिस्थापन है। इससे कोई प्रभाव नहीं पड़ता कि कोई मूल गौगिनो या इस उच्च स्थान को आधार के रूप में उपयोग करता है, केवल भविष्यवाणी किए गए भौतिक कण न्यूट्रलिनो और चार्जिनो हैं जो कि हिग्सिनो के साथ मिलकर अधिस्थापन के रूप में हैं।

अन्य काल्पनिक बोसोन और फ़र्मियन

अन्य सिद्धांतों में अतिरिक्त प्राथमिक बोसोन और फ़र्मियन के अस्तित्व के बारे में बताया गया है, साथ ही कुछ सिद्धांत इन कणों के लिए अतिरिक्त उच्चसहभागिता भी मानते हैं:

Other hypothetical bosons and fermions
Name Spin Notes
axion
0
A pseudoscalar particle introduced in Peccei–Quinn theory to solve the strong-CP problem.
axino
 1 /2
Superpartner of the axion. Forms a supermultiplet, together with the saxion and axion, in supersymmetric extensions of Peccei–Quinn theory.
branon
?
Predicted in brane world models.
digamma
?
Proposed resonance of mass near 750 GeV that decays into two photons.
dilaton
0
Predicted in some string theories.
dilatino
 1 /2
Superpartner of the dilaton.
dual graviton
2
Has been hypothesized as dual of graviton under electric–magnetic duality in supergravity.
graviphoton
1
Also known as "gravivector".[7]
graviscalar
0
Also known as "radion".
inflaton
0
Unidentified scalar force-carrier that is presumed to have physically caused cosmological “inflation” – the rapid expansion from 10−35 to 10−34 seconds after the Big Bang.
magnetic photon
?
Predicted in 1966.[8]
majoron
0
Predicted to understand neutrino masses by the seesaw mechanism.
majorana fermion  1 /2;  3 /2 ? ... gluino, neutralino, or other – is its own antiparticle.
saxion
0
X17 particle
?
possible cause of anomalous measurement results near 17 MeV, and possible candidate for dark matter.
X and Y bosons
1
These leptoquarks are predicted by GUT theories to be heavier equivalents of the W and Z.
W′ and Z′ bosons
1


अन्य काल्पनिक प्राथमिक कण

  • हिग्स-डबलट मॉडल मानक मॉडल से परे भौतिकी के कुछ सिद्धांतों द्वारा परिकल्पित हैं।
  • कलुज़ा-क्लेन टावर्स के कण की भविष्यवाणी अतिरिक्त आयामों के कुछ मॉडलों द्वारा की जाती है। अतिरिक्त-आयामी गति चार-आयामी स्पेसटाइम (समष्टि काल) में अतिरिक्त द्रव्यमान के रूप में प्रकट होती है।
  • लेप्टोक्वार्क, टेक्नीकलर (भौतिकी) सिद्धांतों जैसे मानक मॉडल के विभिन्न विस्तारों द्वारा भविष्यवाणी की गई बैरियन संख्या और लेप्टान संख्या दोनों को ले जाने वाले बोसोन हैं।
  • मिरर कण की भविष्यवाणी उन सिद्धांतों द्वारा की जाती है जो समता समरूपता (भौतिकी) को पुनर्स्थापित करते हैं।
  • चुंबकीय मोनोपोल गैर-शून्य चुंबकीय आवेश वाले कणों का सामान्य नाम है। कुछ जीयूटी द्वारा उनकी भविष्यवाणी की जाती है।
  • क्वार्क और लेप्टान के उप-कणों के रूप में प्रीऑन का सुझाव दिया गया था, परन्तु आधुनिक कोलाइडर (संघट्टक) प्रयोगों ने उनके अस्तित्व को हटा दिया है।

समग्र कण

समग्र कण प्राथमिक कणों की बाध्य अवस्थाएँ हैं।

हैड्रोन

हैड्रोन को मजबूत अंतःक्रियात्मक मिश्रित कणों के रूप में परिभाषित किया गया है। या तो हैड्रोन्स हैं:

  • मिश्रित फ़र्मियन (विशेष रूप से 3 क्वार्क), जिस स्थिति मेसन में उन्हें बेरोन कहा जाता है।
  • मिश्रित बोसोन (विशेष रूप से 2 क्वार्क), जिस स्थिति में उन्हें मेसॉन कहा जाता है।

क्वार्क मॉडल, पहली बार 1964 में मरे गेल-मान और जॉर्ज ज़्विग (जिन्हें क्वार्क अणु कहा जाता है) द्वारा स्वतंत्र रूप से प्रस्तावित किया गया था, संतुलित क्वार्क और/या प्रतिक्वार्क से बने ज्ञात हैड्रोन का वर्णन करते हैं, जो मजबूत अंतःक्रिया से बंधे होते हैं, जो ग्लून्स द्वारा मध्यस्थ होता है। (क्वार्क और ग्लून्स के बीच की परस्पर क्रिया को क्वांटम क्रोमोडायनामिक्स के सिद्धांत द्वारा वर्णित किया गया है।) प्रत्येक हैड्रॉन में आभासी क्वार्क- प्रतिक्वार्क जोड़े का का ढेर उपस्थित है।

बेरियन्स

कुल स्पिन के साथ तीन यू, डी या एस-क्वार्क का संयोजन 32 तथाकथित बेरियन डिक्यूप्लेट बनाते हैं।
प्रोटॉन क्वार्क संरचना: 2 अप क्वार्क और 1 डाउन क्वार्क। ग्लूऑन ट्यूब या फ्लक्स ट्यूब को अब वाई आकार के रूप में जाना जाता है।

साधारण बेरोन (समग्र फ़र्मियन) में प्रत्येक में तीन संतुलित क्वार्क या तीन संतुलित प्रतिक्वार्क होते हैं।

मेसॉन

स्पिन 0 के मेसॉन एक नॉनेट बनाते हैं।

साधारण मेसॉन संतुलित क्वार्क और संतुलित प्रतिक्वार्क से बने होते हैं। क्योंकि मेसॉन में पूर्णांक स्पिन (भौतिकी) (0 या 1) होता है और वे स्वयं प्राथमिक कण नहीं होते हैं, उन्हें "मिश्रित" बोसोन के रूप में वर्गीकृत किया जाता है, चूँकि प्राथमिक कण फरमिओन्स से बने होते हैं। मेसन के उदाहरणों में पिओन, कओन और j/ψ सम्मिलित हैं। क्वांटम हाइड्रोडायनामिक्स (द्रवगति विज्ञान) में, मेसॉन न्यूक्लियंस के बीच अवशिष्ट मजबूत बल की मध्यस्थ करते हैं।

एक समय या किसी अन्य पर, निम्नलिखित सभी असाधारण मेसॉन के लिए धनात्मक संकेत की सूचना मिली है, परन्तु उनके अस्तित्व की पुष्टि अभी तक नहीं हुई है।

  • चतुष्यक्वार्क में दो संतुलित क्वार्क और दो संतुलित प्रतिक्वार्क होते हैं;
  • गोंदबॉल ग्लून्स की बाध्य अवस्था है जिसमें कोई संतुलित क्वार्क नहीं होता है;
  • मिश्रित (कण भौतिकी) मेसॉन में एक या एक से अत्यधिक संतुलित क्वार्क-प्रतिक्वार्क जोड़े और एक या अत्यधिक वास्तविक ग्लून्स होते हैं।

परमाणु नाभिक

हीलियम परमाणु का अर्ध-सटीक चित्रण। नाभिक में, प्रोटॉन लाल रंग में होते हैं और न्यूट्रॉन बैंगनी रंग में होते हैं। वास्तव में, नाभिक गोलाकार रूप से सममित भी होता है।

परमाणु नाभिक में सामान्य तौर पर प्रोटॉन और न्यूट्रॉन होते हैं, चूँकि विजातीय नाभिक में अन्य बेरोन सम्मिलित हो सकते हैं, जैसे कि हाइपरट्रिटॉन जिसमें हाइपरॉन होता है। ये बेरोन (प्रोटॉन, न्यूट्रॉन, हाइपरॉन इत्यादि) जिनमें नाभिक सम्मिलित होते हैं, न्यूक्लियॉन कहलाते हैं। प्रत्येक प्रकार के नाभिक को न्यूक्लाइड कहा जाता है, और प्रत्येक न्यूक्लाइड को प्रत्येक प्रकार के न्यूक्लिऑन की विशिष्ट संख्या द्वारा परिभाषित किया जाता है।

  • आइसोटोप (समस्थानिक ) न्यूक्लाइड होते हैं जिनमें प्रोटॉन की संख्या समान होती है परन्तु न्यूट्रॉन की संख्या भिन्न होती है।
  • इसके विपरीत, आइसोटोनिक (समन्यूट्रॉनिक) न्यूक्लाइड होते हैं जिनमें न्यूट्रॉन की संख्या समान होती है परन्तु प्रोटॉन की संख्या भिन्न होती है।
  • सम्भारिक (न्यूक्लाइड) न्यूक्लाइड होते हैं जिनमें न्यूक्लिऑन की कुल संख्या समान होती है परन्तु जो प्रत्येक प्रकार के न्यूक्लिऑन की संख्या में भिन्न होती है। परमाणु प्रतिक्रियाएं न्यूक्लाइड को दूसरे में बदल सकती हैं।

परमाणु

परमाणु सबसे छोटे उदासीन कण होते हैं जिनमें पदार्थ को रासायनिक अभिक्रियाओं द्वारा विभाजित किया जा सकता है। परमाणु में एक छोटा, भारी नाभिक होता है जो अपेक्षाकृत बड़े, बहुत अत्यधिक मात्रा के हल्के इलेक्ट्रॉनों से घिरा होता है। परमाणु नाभिक में सामान्यतौर पर 1 या अत्यधिक प्रोटॉन और 0 या अत्यधिक न्यूट्रॉन होते हैं। बदले में, प्रोटॉन और न्यूट्रॉन क्वार्क से बने होते हैं। प्रत्येक प्रकार का परमाणु विशिष्ट रासायनिक तत्व के समान होता है। आज तक, 118 तत्वों की खोज या निर्माण किया गया है।

असाधारण परमाणु प्रोटॉन, न्यूट्रॉन और इलेक्ट्रॉनों के अतिरिक्त या उनके स्थान पर कणों से बने हो सकते हैं, जैसे कि हाइपरॉन्स या म्यूऑन होते हैं। उदाहरणों में पिओनियम और (
π

π+
) और क्वार्कोनियम परमाणु सम्मिलित होते हैं।

लेप्टोनिक परमाणु

लेप्टोनिक परमाणु, -सब कुछ का उपयोग करके नामित, लेप्टान और प्रतिलेप्टन की बाध्य अवस्था द्वारा गठित असाधरण परमाणु हैं। ऐसे परमाणुओं के उदाहरणों में पॉजिट्रोनियम (
e

e+
), म्यूओनियम (
e

μ+
), और सही म्यूओनियम (
μ

μ+
) होता है। इनमें से पॉज़िट्रोनियम और म्यूओनियम को प्रायोगिक रूप से देखा गया है, जबकि वास्तविक म्यूओनियम सिर्फ सैद्धांतिक ही रहता है।

अणु

अणु सबसे छोटे कण होते हैं जिनमें पदार्थ के रासायनिक गुणों को बनाए रखते हुए पदार्थ को विभाजित किया जा सकता है। प्रत्येक प्रकार का अणु एक विशिष्ट रासायनिक पदार्थ से मिलता है। अणु दो या दो से अत्यधिक परमाणुओं का योग होता है। परमाणु निश्चित अनुपात में जुड़कर अणु का निर्माण करते हैं। अणु पदार्थ की सबसे प्रारंभिक इकाइयों में से एक है।

आयन

आयन आवेशित परमाणु (एकपरमाण्विक आयन) या अणु (बहुपरमाणुक आयन) होते हैं। इनमें वे धनायन सम्मिलित हैं जिनका शुद्ध धनात्मक आवेश होता है, और ऐसे आयन जिनमें शुद्ध ऋणात्मक आवेश होता है।

क्वासिपार्टिकल्स

[[अर्ध कण]] प्रभावी कण होते हैं जो कई कण प्रणालियों में उपस्थित होते हैं। संघनित पदार्थ भौतिकी के क्षेत्र समीकरण उल्लेखनीय रूप से उच्च ऊर्जा कण भौतिकी के समान हैं। परिणामस्वरूप, कण भौतिकी का अधिकांश सिद्धांत संघनित पदार्थ भौतिकी पर भी क्रियान्वित होता है; विशेष रूप से, अर्ध-कण कहलाने वाले क्षेत्र उत्तेजनाओं का चयन होता है, जिसे बनाया और ढूंढा जा सकता है। इसमे सम्मिलित है:

  • कोई भी दो आयामी प्रणालियों में फ़र्मियन और बोसोन का सामान्यीकरण है, जैसे ग्राफीन की पृष्ठ जो स्थैतिकी के आँकड़ों का पालन करती हैं।
  • डिस्लॉन स्थिर विस्थापन के आसपास क्रिस्टल अव्यवस्था के स्थानीयकृत सामूहिक उत्तेजना हैं।
  • एक्ससीटोन्स एक इलेक्ट्रॉन छिद्र की बंधी हुई अवस्थाएँ हैं।
  • हॉफियन सांस्थानिक सॉलिटॉन हैं जो स्किर्मियन के 3डी समकक्ष हैं।
  • मैग्नोस पदार्थ में इलेक्ट्रॉन स्पिन के अनुकूल उत्तेजना हैं।
  • फोनन क्रिस्टल जालक में कंपन मोड हैं।
  • प्लास्मोन प्लाज्मा (भौतिकी) के सुसंगत उत्तेजना हैं।
  • प्लेक्टॉन्स सैद्धांतिक प्रकार के कण हैं जो किसी भी दो से अत्यधिक आयामों के स्थैतिकी के आँकड़ों के सामान्यीकरण के रूप में कार्य करते हैं।
  • पोलारिटोन ऋणायन अर्ध-कणों के साथ फोनोन का मिश्रण है।
  • पोलरॉन गतिमान, आवेशित (अर्ध-) कण होते हैं जो किसी पदार्थ में आयनों से घिरे होते हैं।
  • स्कीरमिओन्स क्षेत्र का सामयिक समाधान है, जिसका उपयोग न्यूक्लियॉन के निम्न-ऊर्जा गुणों, जैसे अक्षीय वेक्टर वर्तमान युग्मन और द्रव्यमान को मॉडल करने के लिए किया जाता है।

काला पदार्थ प्रार्थक

निम्नलिखित श्रेणियां अद्वितीय या विशिष्ट नहीं हैं: उदाहरण के लिए, या तो कमजोर अंतःक्रियात्मक भारी कण या डब्ल्यूआईएसपी (क्वांटम यांत्रिकी) भी कमजोर अंतःक्रियात्मक कण है।

  • बड़े स्तर पर कण परस्पर क्रिया कर रहा है (कमजोर रूप से परस्पर क्रिया करने वाला भारी कण) कई कणों में से एक है जो काले द्रव्य (जैसे कि न्यूट्रलिनो या स्टेराइल न्यूट्रिनो) की व्याख्या कर सकता है।
  • डब्ल्यूआईएसपी (क्वांटम यांत्रिकी) (कमजोर रूप से परस्पर क्रिया करने वाला पतला कण) कम द्रव्यमान वाले कणों में से कोई एक है जो काले द्रव्य (जैसे एक्सिऑन) की व्याख्या कर सकता है।
  • जीआईएमपी (गुरुत्वाकर्षण परस्पर क्रिया विशाल कण) एक कण है जो उपरोक्त डब्ल्यूआईएमपी के स्थान पर काले द्रव्य की वैकल्पिक व्याख्या प्रदान करता है
  • एसआईएमपी (दृढ़ता से बड़े स्तर पर परस्पर क्रिया करने वाला कण) एक ऐसा कण है जो आपस में मजबूत और सामान्य पदार्थ के साथ कमजोर रूप से संपर्क करता है और काले द्रव्य बना सकता है
  • एसएमपी (स्थिर विशाल कण) एक कण है जो लंबे समय तक जीवित रहता है और इसमें पर्याप्त द्रव्यमान होता है जो काला पदार्थ हो सकता है
  • एफआईपी (कमजोर रूप से परस्पर क्रिया करने वाला कण) एक ऐसा कण है जो पारंपरिक पदार्थ के साथ बहुत कमजोर प्रकार से परस्पर क्रिया करता है और काले पदार्थ के लिए जिम्मेदार हो सकता है
  • एलएसपी (सबसे हल्का अतिसममित कण) एक कण है जो अतिसममित में डब्ल्यूआईएमपीएस के प्रतियोगी के रूप में पाया जाता है
  • प्रतियोगी

डार्क एनर्जी के उम्मीदवार

  • चमेलेऑन कण गहरी ऊर्जा के लिए संभावित प्रार्थक है।
  • एक्सीलरॉन कण गहरी ऊर्जा के लिए एक और प्रार्थक है।

गति से वर्गीकरण

  • ब्रैडियन (या टार्डीयन) निर्वात में प्रकाश की गति से धीमी गति से चलती है और इसमें जो शून्य नहीं होता है, वास्तविक संख्या विराम द्रव्यमान होता है।
  • द्रव्यमान रहित कण निर्वात में प्रकाश के समान गति से चलता है और उसका कोई स्थिर द्रव्यमान नहीं होता है।
  • टैचियन एक परिकल्पित कण है जो प्रकाश से भी तेज गति से चलता है इसलिए वे विरोधाभासी रूप से समय को उल्टा अनुभव करेंगे (सापेक्षता के सिद्धांत के व्युत्क्रम के कारण) और प्रतिस्थापित नियमों का विरोध करेंगे। टैचियन में कल्पित (जटिल) विराम द्रव्यमान होता है।

अन्य

  • कैलोरन्स, परिमित तापमान सामान्यीकरणका उदाहरण है।
  • डायोन विद्युत और चुंबकीय दोनों आवेशों वाले परिकल्पित कण हैं।
  • जियोन (भौतिकी) विद्युत चुम्बकीय या गुरुत्वाकर्षण तरंगें हैं जो सीमित क्षेत्र में एक साथ अपने स्वयं के ऊर्जा क्षेत्र के गुरुत्वाकर्षण आकर्षण द्वारा आयोजित की जाती हैं।
  • गोल्डस्टोन बोसोन एक ऐसे क्षेत्र का द्रव्यमान रहित उत्तेजना है जो सहज समरूपता को तोड़ रहा है। पिओन्स क्वासी-गोल्डस्टोन बोसोन (क्वैसी- क्योंकि वे वास्तव में द्रव्यमान रहित नहीं हैं) टूटी हुई चिरलिटी (भौतिकी) समभारिक प्रचक्रण समरूपता क्वांटम क्रोमोडायनामिक्स के हैं।
  • गोल्डस्टीनो उच्च समरूपता के सहजता से टूटने से उत्पन्न फ़र्मियन हैं; वे गोल्डस्टोन बोसोन के उच्च समरूपता के समकक्ष हैं।
  • इंस्टेंटन, क्षेत्र विन्यास जो यूक्लिडियन क्रिया का स्थानीय न्यूनतम है। सुरंग निर्माण में होने वाली सही गणनाओं के लिए इंस्टेंसन्स का प्रयोग किया जाता है।
  • पोमेरन्स, रेगे सिद्धांत में हैड्रोन के प्रत्यास्थ प्रकीर्णन और रेगे ध्रुवों के स्थान की व्याख्या करते थे।
  • स्पैलेरॉन एक क्षेत्र विन्यास है जो यूक्लिडियन क्रिया पल्याण बिंदु है। स्पैलेरॉन का उपयोग गैर-सुरंग दरों की सही गणनाओं में किया जाता है।
  • लघु आवेशित कण परिकल्पित उपपरमाण्विक कण होते हैं जो इलेक्ट्रॉन आवेश के छोटे अंश से आवेशित होते हैं।
  • सतत चक्रण कण पोंकारे समूह के अभ्यावेदन के वर्गीकरण से संबंधित परिकल्पित द्रव्यमान रहित कण हैं |

यह भी देखें

  • मानक हिग्स मॉडल का विकल्प
  • क्रोनो
  • चैरलिटी और मौलिक
  • कल्पित तत्व, पदार्थ, समस्थानिक और उपपरमाण्विक कणों की सूची
  • अत्यधिक मात्रा में कण
  • स्पूरिऑन- कल्पित कण गणितीय रूप से विश्लेषण करने के किये क्षय में डाला जाता है जैसे की यह सम्भारिक प्रचक्रण संरक्षित करता है।
  • कण खोज की समयरेखा

संदर्भ

  1. Sylvie Braibant; Giorgio Giacomelli; Maurizio Spurio (2012). Particles and Fundamental Interactions: An Introduction to Particle Physics (1st ed.). Springer. p. 1. ISBN 978-94-007-2463-1.
  2. Khachatryan, V.; et al. (CMS Collaboration) (2012). "Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC". Physics Letters B. 716 (2012): 30–61. arXiv:1207.7235. Bibcode:2012PhLB..716...30C. doi:10.1016/j.physletb.2012.08.021.
  3. Abajyan, T.; et al. (ATLAS Collaboration) (2012). "एलएचसी में एटलस डिटेक्टर के साथ मानक मॉडल हिग्स बोसोन की खोज में एक नए कण का अवलोकन". Physics Letters B. 716 (2012): 1–29. arXiv:1207.7214. Bibcode:2012PhLB..716....1A. doi:10.1016/j.physletb.2012.08.020. S2CID 119169617.
  4. Kayser, Boris (2010). "न्यूट्रिनो के बारे में दो प्रश्न". arXiv:1012.4469 [hep-ph].
  5. 5.0 5.1 5.2 5.3 Particle Data Group (2016). "Review of Particle Physics". Chinese Physics C. 40 (10): 100001. Bibcode:2016ChPhC..40j0001P. doi:10.1088/1674-1137/40/10/100001. hdl:1983/c6dc3926-daee-4d0e-9149-5ff3a8120574. S2CID 125766528.
  6. For a comparison of the geometric derivation and the (non-geometric) spin-2 field derivation of general relativity, refer to box 18.1 (and also 17.2.5) of Misner, C. W.; Thorne, K. S.; Wheeler, J. A. (1973). Gravitation. W. H. Freeman. ISBN 0-7167-0344-0.
  7. Maartens, R. (2004). "Brane-world gravity" (PDF). Living Reviews in Relativity. 7 (1): 7. arXiv:gr-qc/0312059. Bibcode:2004LRR.....7....7M. doi:10.12942/lrr-2004-7. PMC 5255527. PMID 28163642.
  8. Salam, A. (1966). "Magnetic monopole and two photon theories of C-violation". Physics Letters. 22 (5): 683–684. Bibcode:1966PhL....22..683S. doi:10.1016/0031-9163(66)90704-9.