मेष उत्पादन: Difference between revisions

From Vigyanwiki
No edit summary
 
(One intermediate revision by one other user not shown)
Line 398: Line 398:
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:Created On 14/03/2023]]
[[Category:Created On 14/03/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Machine Translated Page]]
[[Category:Pages with broken file links]]
[[Category:Pages with broken file links]]
Line 405: Line 406:
[[Category:Templates Vigyan Ready]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that add a tracking category]]
[[Category:Vigyan Ready]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]

Latest revision as of 16:01, 27 April 2023

घुमावदार कार्यक्षेत्र के चतुर्भुजों का परिमित तत्व जाल।

मेश पीढ़ी एक मेश बनाने की प्रथा है, जो एक निरंतर भूमध्यिक स्थान को विशिष्ट भौगोलिक और टोपोलॉजिकल कोशिकाओं में विभाजित करता है। अक्सर ये कोशिकाएं एक सरल जटिल बनाती हैं। आमतौर पर सेल ज्यामितीय प्रवेश कार्यक्षेत्र को विभाजित करते हैं। मेष कोशिकाओं का उपयोग बड़े कार्यक्षेत्र के विशिष्ट स्थानीय अनुकूलन के रूप में किया जाता है। मेष कंप्यूटर एल्गोरिदम द्वारा बनाए जाते हैं, प्रायः एक जीयूआई के माध्यम से मानव मार्गदर्शन के साथ, कार्यक्षेत्र की जटिलता और वांछित मेष प्रकार के आधार पर। एक विशिष्ट लक्ष्य एक मेष बनाने के लिए है जो सटीक रूप से इनपुट कार्यक्षेत्र भूमिमेट्री को कैप्चर करता है, उच्च गुणवत्ता वाले (अच्छे आकार वाले) कोशिकाओं के साथ, और इतने सारे सेल के बिना जो बाद के गणनाओं को अनावश्यक बनाते हैं। मेष भी अच्छी होनी चाहिए (छोटे तत्व होते हैं) उन क्षेत्रों में जो बाद के गणनाओं के लिए महत्वपूर्ण हैं।

मेष का उपयोग कंप्यूटर स्क्रीन और भौतिक सिमुलेशन जैसे समाप्त तत्व विश्लेषण या गणनात्मक तरल गतिशीलता के लिए करने के लिए किया जाता है। मेष त्रिकोणों की तरह सरल कोशिकाओं से बना है क्योंकि, उदाहरण के लिए, हम जानते हैं कि तीनों में समाप्त तत्व गणना (इंजीनियरिंग) या किरण अनुरेखण (कंप्यूटर ग्राफिक्स) जैसे ऑपरेशन कैसे करें, लेकिन हम नहीं जानते कि कैसे सीधे जटिल स्थानों और आकारों पर इन संचालन को कैसे करें जैसे कि एक सड़क पुल। हम प्रत्येक त्रिकोण पर गणना करने और त्रिकोणाओं के बीच बातचीत की गणना करके पुल की ताकत का अनुकरण कर सकते हैं, या इसे एक कंप्यूटर स्क्रीन पर खींच सकते हैं।

एक प्रमुख अंतर संरचित और गैर संरचित मेषिंग के बीच है। संरचित मेष में, मेष एक नियमित ग्रिड है, जैसे कि एक सरणी, जिसमें तत्वों के बीच निहित कनेक्टिविटी होती है। अनियंत्रित मेषिंग में, तत्व अनियमित नामुनो में एक-दूसरे से जुड़े हो सकते हैं, और अधिक जटिल कार्यक्षेत्र पकड़ सकते हैं। यह पृष्ठ मुख्य रूप से गैर संरचित मेष के बारे में है। जबकि एक मेष एक ट्राइंग्युलेशन हो सकता है, मेषिंग की प्रक्रिया बिंदु सेट ट्राईंग्यूलेशन से अलग होती है, जिसमें मेषिंग में इनपुट में मौजूद नहीं होने वाले शीर्षों को जोड़ने की स्वतंत्रता शामिल होती है। ड्राइपिंग के लिए "पंसेटिंग" (ट्रिंगलिंगिंग) सीएडी मॉडल को शीर्ष जोड़ने के लिए समान स्वतंत्रता है, लेकिन लक्ष्य जितना संभव हो उतना छोटे त्रिकोणों का उपयोग करके आकार को सटीक रूप से प्रतिनिधित्व करना है और व्यक्तिगत त्रिकोणाओं का आकार महत्वपूर्ण नहीं है। कंप्यूटर ग्राफिक्स बनावटों और यथार्थवादी रोशनी की स्थिति का प्रदर्शन इसके बजाय मेष का उपयोग करता है।

कई मेष उत्पादन सॉफ्टवेयर को सीएडी सिस्टम के साथ जोड़ा जाता है जो इसके इनपुट को परिभाषित करता है, और इसके आउटपुट लेने के लिए सिमुलेशन सॉफ़्टवेयर। इनपुट बहुत भिन्न हो सकता है, लेकिन आम रूप ठोस मॉडलिंग, जियोमेट्रिक मॉडलिंग, एनयूआरबीएस, बी-रेप, एसटीएल या पॉइंट क्लाउड हैं।

शब्दावली

शब्द "मेश उत्पत्ति," "ग्रिड जनरेशन," "मेशिंग," "और "ग्रिडिंग" अक्सर एक-दूसरे के साथ उपयोग किए जाते हैं, हालांकि बाद के दो व्यापक हैं और मेश सुधार को सम्मिलित करते हैं: मेष को गति या संख्यात्मक गणनाओं की सटीकता को बढ़ाने के उद्देश्य से बदलना जो इसके ऊपर किया जाएगा। कंप्यूटर ग्राफिक्स रेंडरिंग, और गणित में, एक मेष कभी-कभी एक टेसलेशन के रूप में संदर्भित किया जाता है।

मेष चेहरों (सेल, इकाइयों) को उनके आयाम और उस संदर्भ के आधार पर अलग-अलग नाम होते हैं जिसमें मेष का उपयोग किया जाएगा। समाप्त तत्वों में, उच्चतम आयाम के मेष इकाइयों को "तत्व" कहा जाता है, "किनारों" को 1डी और "नोड्स" को 0डी कहा जाता है। यदि तत्व 3D हैं, तो 2D इकाइयां "चेहरे" हैं। कम्प्यूटेशनल ज्यामिति में, 0D बिंदुओं को शीर्ष कहा जाता है। टेट्राहेड्रा अक्सर "टेट्स" के रूप में संक्षिप्त किया जाता है; त्रिकोण "ट्रिस" हैं, चतुर्भुज "क्वाड" हैं और हेक्साहेड्रा (टोपोलॉजिकल क्यूब्स) "हेक्स" हैं।

तकनीक

कैटमुल-क्लार्क एक सतह का उपखंड

कई मेसिंग तकनीकों को डेलोनाई त्रिकोण के सिद्धांतों पर बनाया गया है, साथ ही शीर्षों को जोड़ने के लिए नियम, जैसे रूपर्ट के एल्गोरिथ्म। एक विशिष्ट विशेषता यह है कि पूरे अंतरिक्ष के एक प्रारंभिक मोटे मेष का गठन किया जाता है, फिर शीर्ष और त्रिकोण जोड़े जाते हैं। इसके विपरीत, आगे बढ़ने वाले एल्गोरिथ्म कार्यक्षेत्र सीमा से शुरू होते हैं, और तत्व जोड़ते हैं जो अंदरूनी को धीरे-धीरे भरते हैं। हाइब्रिड तकनीक दोनों कर सकती है। उन्नत फ्रंट तकनीकों का एक विशेष वर्ग तरल प्रवाह के लिए तत्वों के पतले सीमा परत को बनाता है। संरचित मेष प्रजनन में, पूरे मेष एक ग्रिड ग्राफ है, जैसे कि वर्गों का एक नियमित मेष। ब्लॉक संरचनात्मक मेष में, कार्यक्षेत्र को बड़े उप-क्षेत्रों में विभाजित किया जाता है, जिनमें से प्रत्येक एक संरचित मेष है। कुछ प्रत्यक्ष विधियां एक ब्लॉक संरचित मेष के साथ शुरू होती हैं और फिर मेष को इनपुट के अनुरूप करने के लिए स्थानांतरित करती हैं; पॉलीक्यूब पर आधारित स्वचालित हेक्स मेष जनरेशन देखें। एक अन्य प्रत्यक्ष विधि कार्यक्षेत्र सीमा के साथ संरचित कोशिकाओं को काटना है; मार्किंग क्यूबों के आधार पर मूर्ति देखें।

कुछ प्रकार के मेश दूसरों की तुलना में बनाना अधिक कठिन होते हैं। सरल मेष क्यूबिक मेष की तुलना में आसान होते हैं। एक महत्वपूर्ण श्रेणी एक ठोस क्वाड सतह मेष के अनुरूप एक हेक्स मेष उत्पन्न करना है; एक अनुसंधान उप-क्षेत्र विशिष्ट छोटे संरचनाओं के मेषों के अस्तित्व और उत्पन्न का अध्ययन करता है, जैसे कि चतुष्कोणीय समलम्बाकार। इस समस्या की कठिनाई के कारण, संयुक्त हेक्स मेष के अस्तित्व का अध्ययन किया गया है अच्छी भौगोलिक अवधारणाओं को उत्पन्न करने की समस्या के अलावा। जबकि ज्ञात एल्गोरिथ्म न्यूनतम गुणवत्ता की गारंटी के साथ सरलीकृत मेष उत्पन्न करते हैं, इस तरह की गारंटी क्यूबिक मेष के लिए दुर्लभ हैं, और कई लोकप्रिय कार्यान्वयन कुछ इनपुट से विपरीत (आंतरिक) हेक्स उत्पन्न करती हैं।

एक अन्तर्निहित सतह का भूतल त्रिकोणासन

मेष अक्सर कार्यस्थलों पर श्रृंखला में बनाए जाते हैं, यहां तक कि जब बाद में मेष पर अगले गणना सुपर कंप्यूटर पर समानांतर कंप्यूटिंग में की जाएगी। यह दोनों इस सीमा के कारण है कि अधिकांश मेष जनरेटर इंटरैक्टिव हैं, और क्योंकि मेष पीढ़ी का समय आमतौर पर समाधान समय की तुलना में नगण्य है। हालांकि, यदि मेष एकल सीरियल मशीन की स्मृति में फिट होने के लिए बहुत बड़ा है, या मेष सिमुलेशन के दौरान बदलना होगा (अनुकूलित करना होगा), तो मेषिंग समानांतर में किया जाता है।

बीजगणितीय तरीके

नोजल ज्यामिति
भौतिक स्थान में कम्प्यूटेशनल जाल

बीजगणितीय विधियों द्वारा ग्रिड निर्माण गणितीय प्रक्षेप समारोह पर आधारित है। यह एक, दो या तीन आयामों में ज्ञात समारोहों का उपयोग करके किया जाता है, जो किसी भी आकार वाले क्षेत्रों को लेते हैं। कंप्यूटेशनल कार्यक्षेत्र आयताकार नहीं हो सकता है, लेकिन सरलता के लिए, कार्यक्षेत्र को आयताकार जाता है। इन तरीकों का मुख्य लाभ यह है कि वे भौतिक ग्रिड आकार और अंतराल का स्पष्ट नियंत्रण प्रदान करते हैं। सबसे सरल प्रक्रिया जो सीमा से लैस कंप्यूटिंग मेष का उत्पादन करने के लिए उपयोग की जा सकती है, यह मानकीकरण परिवर्तन है।[1]

वर्णन समारोह के साथ एक नोजल के लिए वाई-दिशा में एक समान विभाजन का उपयोग करके ग्रिड को आसानी से एक्स-दिशा में समान रूप से अंतर वृद्धि के साथ उत्पन्न किया जा सकता है, जिसे इसके द्वारा वर्णित किया गया है

यहां नोज़ल दीवार के y-निर्देशांक को दर्शाता है। दिए गए मानों के लिए (, ), के मान (, ) आसानी से प्राप्त किया जा सकता है।

विभेदक समीकरण विधियाँ

बीजगणितीय विधियों की तरह, अवकल संतुलन विधियां भी ग्रिड उत्पन्न करने के लिए उपयोग की जाती हैं। [[आंशिक अंतर समीकरण]] (पीडीई) का उपयोग करने का लाभ यह है कि ग्रिड जनरेक्शन के समाधान को मेष उत्पन्न करने के लिए उपयोग किया जा सकता है। ग्रिड निर्माण को पारंपरिक विभेद संतुलनों के सभी तीन वर्गों का उपयोग करके किया जा सकता है।

अण्डाकार योजनाएं

अण्डाकार आंशिक अंतर समीकरण में आमतौर पर बहुत चिकनी समाधान होते हैं जो चिकनी परिदृश्यों का कारण बनते हैं। एक लाभ के रूप में अपनी चिकनाई का उपयोग करते हुए लैप्लास के अनुपात का उपयोग बेहतर तरीके से किया जा सकता है क्योंकि जेकोबियन मैट्रिक्स और निर्धारक कार्यों के लिए अधिकतम सिद्धांत के परिणामस्वरूप सकारात्मक होने के लिए पाया गया था। क्रॉली (1962) और विंसलो (1966) द्वारा भौतिक कार्यक्षेत्र को गणनात्मक स्तर में परिवर्तित करके पीडीई पर किए गए व्यापक काम के बाद[2] , पॉइसन के अनुमान का उपयोग करते हुए नक्शाकरण, थॉम्पसन एट अल। (1974)[3] ने ग्रेट्स उत्पन्न करने के लिए एलिप्टिक पीडीईके बारे में व्यापक रूप से काम किया है। पॉइसन ग्रिड जनरेटरों में, नक्शाकरण वांछित ग्रेड बिंदुओं को चिह्नित करके किया जाता है भौतिक क्षेत्र की सीमा पर, आंतरिक बिंदु वितरण निम्नलिखित संतुलनों के समाधान के माध्यम से निर्धारित के साथ

यहां, कम्प्यूटेशनल कार्यक्षेत्र में निर्देशांक हैं, जबकि पी और क्यू डी के भीतर बिंदु रिक्ति के लिए जिम्मेदार हैं। कम्प्यूटेशनल स्पेस में उपरोक्त समीकरणों को बदलने से फॉर्म के दो अण्डाकार आंशिक अंतर समीकरण का एक सेट प्राप्त होता है,

यहां

समीकरणों की इन प्रणालियों को कम्प्यूटेशनल प्लेन में समान रूप से दूरी वाले ग्रिड पर हल किया जाता है जो हमें प्रदान करता है भौतिक स्थान में प्रत्येक बिंदु के निर्देशांक। अण्डाकार आंशिक अंतर समीकरण का उपयोग करने का लाभ यह है कि उनसे जुड़ा समाधान चिकना है परिणामस्वरूप ग्रिड चिकना होता है । लेकिन, पी और क्यू का विनिर्देशन एक कठिन कार्य बन जाता है जिससे यह अपने नुकसानों को जोड़ती है। इसके अलावा, ग्रिड को प्रत्येक समय चरण के बाद गणना की जानी चाहिए जो गणना समय तक जोड़ता है।[4]

हाइपरबोलिक योजनाएं

यह ग्रिड जनरेटिंग योजना आम तौर पर खुले कार्यक्षेत्र के साथ समस्याओं के लिए लागू होती है जो भौतिक समस्या का वर्णन करने वाले पीडीई के प्रकार के अनुरूप होती है। हाइपरबोलिक पीडीई से जुड़े लाभ यह है कि ग्रिड उत्पन्न करने के लिए नियंत्रण संतुलनों को केवल एक बार हल किया जाना चाहिए। प्रारंभिक बिंदु वितरण, लगभग सीमा स्थितियों के साथ, आवश्यक इनपुट बनाता है और समाधान तब बाहर की ओर मार्च किया जाता है। स्टीगर और सोरेनसन (1980)[5] मेश जनरेशन के लिए हाइपरबोलिक पीडीई का उपयोग करने वाली वॉल्यूम ऑर्थोगोनलिटी विधि प्रस्तावित की । एक 2-डी समस्या के लिए, कंप्यूटिंग अंतरिक्ष को ध्यान में रखते हुए डी , जेकोबियन मैट्रिक्स और निर्धारक के व्युत्क्रम द्वारा दिया गया है,

यहाँ कम्प्यूटेशनल स्पेस में दिए गए क्षेत्र के लिए भौतिक स्थान में क्षेत्र का प्रतिनिधित्व करता है। दूसरा समीकरण भौतिक स्थान में सीमा पर ग्रिड लाइनों की ओर्थोगोनलिटी को जोड़ता है जिसे इस रूप में लिखा जा सकता है

के लिए और सतहों का लंबवत होना समीकरण बन जाता है

समीकरणों की ऐसी प्रणाली से जुड़ी समस्या का विनिर्देशन है . का खराब चयन जाल भर में इस जानकारी के झटके और असंतत प्रसार का कारण बन सकता है। जबकि मेश ऑर्थोगोनल होने के कारण बहुत तेजी से उत्पन्न होता है जो इस पद्धति के साथ एक लाभ के रूप में सामने आता है।

परवलयिक योजनाएं

समाधान तकनीक हाइपरबोलिक पीडीई के समान है, जिससे समाधान को प्रारंभिक डेटा सतह से दूर आगे बढ़ाया जाता है और अंत में सीमा स्थितियों को पूरा करता है। नाकामुरा (1982) और एडवर्ड्स (1985) ने पैराबोलिक ग्रिड उत्पादन के लिए बुनियादी विचार विकसित किए। विचार या तो लाप्लास या पोयसन संतुलन का उपयोग करता है और विशेष रूप से उन भागों का इलाज करता है जो अण्डाकार व्यवहार को नियंत्रित करते हैं। प्रारंभिक मूल्यों को सतह के साथ बिंदु के समन्वय के रूप में दिया जाता है और समाधान को वस्तु की बाहरी सतह पर आगे बढ़ाते हुए किनारों के साथ सीमा स्थितियों को संतुष्ट करते हैं।

ग्रिड अंतरिक्ष का नियंत्रण अभी तक सुझाव नहीं दिया गया है। नाकामुरा और एडवर्ड्स, ग्रिड नियंत्रण अनियमित अंतराल का उपयोग करके किया गया था। पैराबोलिक ग्रिड जनरेटिंग हाइपरबोलिक ग्रिडिंग जनरेटर की तुलना में एक फायदा दिखाता है कि, कोई झटके या अस्थिरताएं नहीं होती हैं और ग्रेड अपेक्षाकृत चिकनी है। ग्रिड बिंदुओं को नियंत्रित करने के लिए प्रारंभिक मूल्यों की विनिर्देशन और चरण आकार का चयन समय लेने वाला है, लेकिन ये तकनीकें परिचित और अनुभव प्राप्त होने पर प्रभावी हो सकती हैं।

परिवर्तनशील तरीके

इस विधि में एक तकनीक शामिल है जो ग्रिड (स्थानिक सूचकांक) चिकनाई, ओर्थोगोनालिटी और वॉल्यूम भिन्नता को कम करता है। यह विधि ग्रिड उत्पादन समस्याओं को हल करने के लिए गणितीय मंच बनाती है। इस विधि में, प्रत्येक पुनरावृत्ति के बाद एक नया मेष द्वारा एक वैकल्पिक ग्रिड उत्पन्न किया जाता है और पश्च अंतर विधि का उपयोग करके ग्रेड की गति की गणना की जाती है। यह तकनीक एक शक्तिशाली तकनीक है जिसमें एक नुकसान है कि ग्रिड से संबंधित संतुलनों को हल करने के लिए प्रयास की आवश्यकता होती है। सीपीयू समय को कम करने वाले अभिन्न को कम करने के लिए और काम करने की जरूरत है।

असंरचित ग्रिड पीढ़ी

इस योजना का मुख्य महत्व यह है कि यह एक ऐसी विधि प्रदान करती है जो स्वचालित रूप से ग्रिड उत्पन्न करेगी। इस पद्धति का उपयोग करते हुए, ग्रिड को तत्व की सतह के अनुसार ब्लॉक में विभाजित किया जाता है और उपयुक्त कनेक्टिविटी सुनिश्चित करने के लिए एक संरचना प्रदान की जाती है। डेटा की व्याख्या करने के लिए द्रव गतिकी सॉल्वर का उपयोग किया जाता है। जब एक असंरचित योजना नियोजित की जाती है, तो मुख्य रुचि उपयोगकर्ता की मांग को पूरा करने के लिए होती है और इस कार्य को पूरा करने के लिए एक ग्रिड जनरेटर का उपयोग किया जाता है। संरचित योजना में सूचना भंडारण ग्रिड से ग्रिड के बजाय सेल (ज्यामिति) से सेल है और इसलिए अधिक मेमोरी स्पेस की आवश्यकता है। यादृच्छिक सेल स्थान के कारण, संरचित योजना की तुलना में असंरचित में सॉल्वर दक्षता कम है।[6] ग्रिड निर्माण के समय कुछ बातों का ध्यान रखना आवश्यक है। उच्च रिज़ॉल्यूशन वाला ग्रिड बिंदु संरचित और असंरचित दोनों के लिए कठिनाई पैदा करता है। उदाहरण के लिए, सीमा परत के मामले में, संरचित योजना प्रवाह की दिशा में लम्बी ग्रिड बनाती है। दूसरी ओर, असंरचित ग्रिडों को सीमा परत में उच्च सेल घनत्व की आवश्यकता होती है क्योंकि त्रुटियों से बचने के लिए सेल को यथासंभव समबाहु होना चाहिए।[7] हमें यह पहचानना चाहिए कि कम्प्यूटेशनल ग्रिड जाल में सेल और सेल के सभी पड़ोसियों की पहचान करने के लिए कौन सी जानकारी आवश्यक है। हम असंरचित ग्रिड के लिए कहीं भी मनमाने बिंदुओं का पता लगाने का विकल्प चुन सकते हैं। बिंदुओं को स्वतंत्र रूप से सम्मिलित करने के लिए एक बिंदु सम्मिलन योजना का उपयोग किया जाता है और सेल कनेक्टिविटी निर्धारित की जाती है। इससे पता चलता है कि जैसे ही वे डाले जाते हैं, बिंदु की पहचान की जाती है। बिंदुओं को सम्मिलित करने के बाद नई कनेक्टिविटी स्थापित करने के लिए तर्क निर्धारित किया जाता है। डेटा जो ग्रिड बिंदु बनाता है जो ग्रिड सेल की पहचान करता है, की आवश्यकता होती है। जैसा कि प्रत्येक सेल का निर्माण होता है, इसे क्रमांकित किया जाता है और अंक क्रमबद्ध होते हैं। इसके अलावा पड़ोसी सेल की जानकारी की जरूरत है।

अनुकूली ग्रिड

पिछली विधियों का उपयोग करके आंशिक विभेद संतुलनों को हल करने में एक समस्या यह है कि ग्रिड का निर्माण किया जाता है और समाधान के विवरण ज्ञात होने से पहले भौतिक क्षेत्र में बिंदु वितरित किए जाते हैं। इसलिए दी गई समस्या के लिए ग्रिड सबसे अच्छा हो भी सकता है और नहीं भी।[8] समाधानों की सटीकता में सुधार करने के लिए अनुकूलन विधियों का उपयोग किया जाता है। अअनुकूली विधि को 'एच' विधि के रूप में संदर्भित किया जाता है यदि जाल शोधन का उपयोग किया जाता है, 'आर' विधि यदि ग्रिड बिंदु की संख्या तय की जाती है और पुनर्वितरित नहीं होती है और 'पी' यदि परिमित-तत्व सिद्धांत में समाधान योजना का क्रम बढ़ जाता है। समवितरण योजना का उपयोग करके बहु-आयामी समस्याओं को कई तरीकों से पूरा किया जा सकता है। सबसे सरल समझने के लिए पोइसन ग्रिड जनरेटर नियंत्रण फ़ंक्शन के साथ वजन फंक्शन की समान वितरण के आधार पर हैं, जिसमें विसारण वांछित सेल वॉल्यूम की बहुतायत के रूप में सेट किया गया है। समवितरणयोजना को अनियमित समस्या पर भी लागू किया जा सकता है। समस्या यह है कि यदि मेष बिंदु मूवमेंट बहुत बड़ा है तो कनेक्टिविटी बाधित होती हैं।

स्थिर प्रवाह और समय-सटीक प्रवाह गणना इस अनुकूलन विधि के माध्यम से हल की जा सकती है। ग्रिड को परिष्कृत किया जाता है और इसे एक स्थिर प्रवाह समस्या में समायोजित करने के लिए पहले से निर्धारित संख्या में पुनरावृत्ति के बाद। ग्रिड परिवर्तनों को समायोजित करना बंद कर देगा एक बार समाधान एकत्र हो जाता है। समय पर सटीक मामले में भौतिक समस्या के आंशिक मतभेद संतुलनों और ग्रिड आंदोलन का वर्णन करने वालों को जोड़ना आवश्यक है।

सेल टोपोलॉजी

आमतौर पर कोशिकाएँ बहुभुज या बहुतल होती हैं और एक बहुभुज जाल बनाती हैं जो कार्यक्षेत्र को विभाजित करती है। द्वि-आयामी तत्वों के महत्वपूर्ण वर्गों में त्रिभुज (सरलीकृत) और चतुर्भुज (स्थलीय वर्ग) शामिल हैं। तीन आयामों में सबसे आम कोशिकाएं टेट्राहेड्रा (सरलीकृत) और हेक्साहेड्रा (टोपोलॉजिकल क्यूब्स) हैं। सिंप्लेक्स मेश किसी भी आयाम का हो सकता है और इसमें महत्वपूर्ण उदाहरण के रूप में त्रिकोण (2D) और टेट्राहेड्रा (3D) शामिल हैं। घनीय मेश पैन-डायमेंशनल श्रेणी है जिसमें क्वाड्स (2D) और हेक्स (3D) शामिल हैं। 3डी में, 4-तरफा पिरामिड और 3-तरफा प्रिज्म मिश्रित सेल प्रकार के अनुरूप जाल में दिखाई देते हैं।

सेल आयाम

मेष एक भौगोलिक स्थान में सम्मिलित है जो आमतौर पर दो या तीन आयाम है, हालांकि कभी-कभी समय आयाम जोड़कर आयाम को एक से बढ़ाया जाता है। आला संदर्भों में उच्च आयामी जाल का उपयोग किया जाता है। एक आयामी जाल भी उपयोगी होते हैं। एक महत्वपूर्ण श्रेणी सतह जाल है, जो एक घुमावदार सतह का प्रतिनिधित्व करने के लिए 3डी में एम्बेडेड 2डी जाल हैं।

द्वैत

मेशिंग में दोहरे रेखांकन की कई भूमिकाएँ होती हैं। एक Delaunay त्रिभुज सरल जाल को दोहराकर एक पॉलीहेड्रल वोरोनोई आरेख जाल बना सकता है। एक सतहों की व्यवस्था उत्पन्न करके एक क्यूबिक मेष बना सकता है और क्रॉससेक्शन ग्राफ को दोगुना कर सकता है. स्थानिक मोड़ निरंतरता देखें। कभी-कभी एक ही सिमुलेशन में प्राइमल मेष और इसके दोहरे जाल दोनों का उपयोग किया जाता है; हॉज स्टार ऑपरेटर देखें। यह विचलन और कर्ल (गणित) संचालकों से जुड़े भौतिकी से उत्पन्न होता है, जैसे फ्लक्स और vorticity या इलेक्ट्रोमैग्नेटिज्म | बिजली और चुंबकत्व, जहां एक चर स्वाभाविक रूप से मौलिक चेहरों पर रहता है और इसका समकक्ष दोहरे चेहरों पर रहता है।

उपयोग द्वारा मेश प्रकार

परिमित तत्व विश्लेषण के लिए बनाए गए त्रि-आयामी जाल में चतुर्पाश्वीय, पिरामिड (ज्यामिति), प्रिज्म (ज्यामिति) या षट्फलक शामिल होना चाहिए। परिमित आयतन विधि के लिए उपयोग किए जाने वालों में मनमाने पॉलीहेड्रॉन शामिल हो सकते हैं। परिमित अंतर विधियों के लिए उपयोग किए जाने वालों में हेक्साहेड्रा के टुकड़े-टुकड़े संरचित सरणियाँ होती हैं जिन्हें मल्टी-ब्लॉक स्ट्रक्चर्ड मेश के रूप में जाना जाता है। 4-पक्षीय पिरामिड हेक्स को टेट्स से अनुरूप रूप से जोड़ने के लिए उपयोगी होते हैं। 3 पक्षीय प्रिज्मों का उपयोग सीमा परतों के लिए किया जाता है जो वस्तु के दूर के अंदर के एक टट मेष से मेल खाते हैं.

सरफेस मेश कंप्यूटर ग्राफिक्स में उपयोगी होते हैं जहां वस्तुओं की सतह प्रकाश (उपसतह स्कैटरिंग भी) को दर्शाती है और एक पूर्ण 3डी मेश की आवश्यकता नहीं होती है। सरफेस मेश का उपयोग ऑटो मैन्युफैक्चरिंग में शीट मेटल जैसी पतली वस्तुओं को मॉडल करने और आर्किटेक्चर में एक्सटीरियर बनाने के लिए भी किया जाता है। उच्च (जैसे, 17) आयामी घनाकार जाल खगोल भौतिकी और स्ट्रिंग सिद्धांत में आम हैं।

गणितीय परिभाषा और वेरिएंट

जाल की सटीक परिभाषा क्या है? ऐसा कोई सार्वभौमिक रूप से स्वीकृत गणितीय विवरण नहीं है जो सभी संदर्भों में लागू हो। हालाँकि, कुछ गणितीय वस्तुएँ स्पष्ट रूप से जाल हैं: एक सरल परिसर एक जाल है जो सरलताओं से बना है। अधिकांश पॉलीहेड्रल (जैसे घनीय) मेश कंफर्मल होते हैं, जिसका अर्थ है कि उनके पास सीडब्ल्यू कॉम्प्लेक्स की सेल संरचना होती है, जो एक साधारण कॉम्प्लेक्स का सामान्यीकरण है। एक जाल को सरल होने की आवश्यकता नहीं है क्योंकि सेल के नोड्स का एक मनमाना उपसमुच्चय आवश्यक रूप से एक सेल नहीं है: उदाहरण के लिए, एक क्वाड के तीन नोड एक सेल को परिभाषित नहीं करते हैं। हालाँकि, दो कोशिकाएँ कोशिकाओं पर प्रतिच्छेद करती हैं: उदा। क्वाड के आंतरिक भाग में कोई नोड नहीं होता है। दो कोशिकाओं का प्रतिच्छेदन कई कोशिकाएं हो सकती हैं: उदाहरण के लिए, दो क्वाड दो किनारों को साझा कर सकते हैं। एक चौराहा एक से अधिक सेल होने के कारण कभी-कभी मना किया जाता है और शायद ही कभी वांछित होता है; कुछ मेश सुधार तकनीकों (जैसे पिलोइंग) का लक्ष्य इन विन्यास को हटाना है। कुछ संदर्भों में, एक संस्थानिक जाल और एक ज्यामितीय जाल के बीच अंतर किया जाता है जिसका एम्बेडिंग कुछ गुणवत्ता मानदंडों को पूरा करता है।

महत्वपूर्ण जाल वेरिएंट जो सीडब्ल्यू कॉम्प्लेक्स नहीं हैं, उनमें गैर-अनुरूप जाल शामिल हैं जहां कोशिकाएं सख्ती से आमने-सामने नहीं मिलती हैं, लेकिन फिर भी कोशिकाएं कार्यक्षेत्र का विभाजन करती हैं। इसका एक उदाहरण एक अष्टक है, जहां तत्व के चेहरे को आसन्न तत्वों के चेहरों से विभाजित किया जा सकता है। इस तरह के मेश फ्लक्स-आधारित सिमुलेशन के लिए उपयोगी होते हैं। ओवरसेट ग्रिड में, कई कंफर्मल मेश होते हैं जो ज्यामितीय रूप से ओवरलैप होते हैं और कार्यक्षेत्र को विभाजित नहीं करते हैं; उदाहरण देखें, ओवरफ्लो (सॉफ्टवेयर) | ओवरफ्लो, ओवरसेट ग्रिड फ्लो सॉल्वर। तथाकथित मेशलेस या मेशफ्री तरीके अक्सर कार्यक्षेत्र के कुछ मेश-जैसे विवेक का उपयोग करते हैं, और अतिव्यापी समर्थन के साथ आधार कार्य करते हैं। कभी-कभी प्रत्येक सिमुलेशन डिग्री-ऑफ़-फ्रीडम पॉइंट के पास एक स्थानीय जाल बनाया जाता है, और ये जाल ओवरलैप हो सकते हैं और एक दूसरे के लिए गैर-अनुरूप हो सकते हैं।

अंतर्निहित त्रिभुज डेल्टा परिसर पर आधारित होते हैं: प्रत्येक त्रिकोण के किनारों की लंबाई, और चेहरे के किनारों के बीच एक ग्लूइंग मानचित्र। (कृपया विस्तार करें)

उच्च क्रम वाले तत्व

कई जाल रैखिक तत्वों का उपयोग करते हैं, जहां अमूर्त से वास्तविक तत्व तक मानचित्रण रैखिक होता है, और जाल के किनारे सीधे खंड होते हैं। उच्च क्रम बहुपद मानचित्रण आम हैं, विशेष रूप से द्विघात। उच्च-क्रम तत्वों के लिए एक प्राथमिक लक्ष्य कार्यक्षेत्र सीमा का अधिक सटीक रूप से प्रतिनिधित्व करना है, हालांकि जाल के आंतरिक भाग में भी उनके पास सटीकता लाभ है। घनीय मेश के लिए प्रेरणाओं में से एक यह है कि रैखिक घनीय तत्वों में द्विघात सरल तत्वों के समान संख्यात्मक लाभ होते हैं। समज्यामितीय विश्लेषण सिमुलेशन तकनीक में, कार्यक्षेत्र सीमा वाले मेश सेल एक रेखीय या बहुपद सन्निकटन के बजाय सीधे सीएडी प्रतिनिधित्व का उपयोग करते हैं।

मेष सुधार

एक मेष में सुधार करने में इसकी विशिष्ट कनेक्टिविटी, उसके कोशिकाओं की निरंतर भौगोलिक स्थिति, या दोनों को बदलना शामिल है। विशिष्ट परिवर्तन के लिए, सरल तत्वों के लिए एक किनारों को विनिमय करता है और नोड्स को जोड़ता है / हटाता है। क्यूबिक (क्वाड / हेक्स) मेष के लिए समान प्रकार के संचालन किए जाते हैं, हालांकि कम संभव संचालन हैं और स्थानीय परिवर्तन वैश्विक परिणाम हैं। उदाहरण के लिए, एक हेक्साहेड्रल मेष में, दो नोड्स को जोड़कर सेल बनाए जाते हैं जो हेक्सेस नहीं हैं, लेकिन यदि एक चौथा पक्ष पर डायग्नल विपरीत नोडों को जोड़ा जाता है और यह एक पूरे चेहरे से जुड़े हेक्स कॉलम को टूटने में प्रसारित होता है, तो बाकी सभी कोशिकाएं अभी भी हेक्स हैं। अनुकूली जाल शोधन में, तत्वों को उन क्षेत्रों में विभाजित किया जाता है जहां गणना की जाने वाली फ़ंक्शन का एक उच्च ग्रेडेंट होता है। मेष भी मोटे होते हैं, कुशलता के लिए तत्वों को हटाते हैं। मल्टीग्रिड विधि संख्यात्मक समाधान को तेज करने के लिए परिष्करण और मोटापा के समान कुछ करती है, लेकिन वास्तव में मेष को बदलने के बिना।

निरंतर परिवर्तनों के लिए, नोड्स को स्थानांतरित किया जाता है, या तत्वों के बहुभाषीय क्रम को बदलकर उच्च-आयामी चेहरों को बदल दिया जाता है। गुणवत्ता में सुधार करने के लिए नोड्स को स्थानांतरित करने का नाम "स्मिटिंग" या "र-रेफाइनमेंट" है और तत्वों की क्रम में वृद्धि "पी-रेफेनमेंट" कहा जाता है। नोड्स को सिमुलेशन में भी स्थानांतरित किया जाता है जहां वस्तुओं का आकार समय के साथ बदल जाता है। यह तत्वों के आकार को कम करता है। यदि वस्तु पर्याप्त रूप से विकृत होती है, तो पूरे वस्तु को फिर से मिश्रित किया जाता है और वर्तमान समाधान को पुराने मेष से नए मेष पर माप दिया जाता है।

अनुसंधान समुदाय

अभ्यासी

गणित, कंप्यूटर विज्ञान और अभियांत्रिकी में योगदान के साथ यह क्षेत्र अत्यधिक अंतःविषय है। मेशिंग आर एंड डी को असतत और निरंतर गणित और संगणना पर समान ध्यान देने से अलग किया जाता है, जैसा कि कम्प्यूटेशनल ज्यामिति के साथ होता है, लेकिन ग्राफ सिद्धांत (असतत) और संख्यात्मक विश्लेषण (निरंतर) के विपरीत। मेष पीढ़ी भ्रामक रूप से कठिन है: मनुष्यों के लिए यह देखना आसान है कि किसी दिए गए ऑब्जेक्ट का जाल कैसे बनाया जाए, लेकिन मनमानी इनपुट के लिए अच्छे निर्णय लेने के लिए कंप्यूटर को प्रोग्राम करना मुश्किल है। प्रकृति और मानव निर्मित वस्तुओं में अनंत प्रकार की ज्यामिति पाई जाती है। कई मेश पीढ़ी के शोधकर्ता मेश के पहले उपयोगकर्ता थे। मेष पीढ़ी को व्यापक रूप से ध्यान, समर्थन और धन प्राप्त करना जारी है क्योंकि जाल बनाने के लिए मानव-समय मेष समाप्त होने के बाद गणना को स्थापित करने और हल करने के समय को बौना कर देता है। संख्यात्मक सिमुलेशन और कंप्यूटर ग्राफिक्स का आविष्कार होने के बाद से सदैव यही स्थिति रही है, क्योंकि जैसे-जैसे कंप्यूटर हार्डवेयर और सरल समीकरण-समाधान सॉफ्टवेयर में सुधार हुआ है, लोगों को अधिक निष्ठा, वैज्ञानिक अंतर्दृष्टि के लिए एक ड्राइव में बड़े और अधिक जटिल ज्यामितीय मॉडल के लिए तैयार किया गया है।

पत्रिकाओं

मेष अनुसंधान विभिन्न पत्रिकाओं में प्रकाशित किया जाता है। यह प्रगति करने के लिए आवश्यक अनुसंधान की अंतःविषय प्रकृति के अनुरूप है, और साथ ही मेष का उपयोग करने वाले अनुप्रयोगों की व्यापक विविधता भी है। लगभग 150 मेसिंग प्रकाशन हर साल 20 पत्रिकाओं में दिखाई देते हैं, जिनमें से अधिकतम 20 प्रकाशन किसी भी एक पत्रिका में प्रकट होते हैं। कोई अखबार नहीं है जिसका मुख्य विषय मशहूर है। जो पत्रिकाएं प्रति वर्ष कम से कम 10 मेसिंग दस्तावेज प्रकाशित करती हैं, वे नीचे बोल्ड में दिए गए हैं।

सम्मेलन

(सम्मेलन जिनका प्राथमिक विषय मेशिंग है बोल्ड में हैं।)

  • वांतरिक्ष विज्ञान बैठक एआईएए (15 मेशिंग वार्ता/पत्र)
  • कम्प्यूटेशनल ज्यामिति CCCG पर कनाडा का सम्मेलन
  • CompIMAGE: छवियों में दर्शाई गई वस्तुओं की अंतर्राष्ट्रीय संगोष्ठी कम्प्यूटेशनल मॉडलिंग
  • कम्प्यूटेशनल द्रव गतिकी सम्मेलन एआईएए
  • कम्प्यूटेशनल द्रव गतिकी सम्मेलन ECCOMAS
  • कम्प्यूटेशनल साइंस एंड इंजीनियरिंग सीएस एंड ई
  • न्यूमेरिकल ग्रिड जनरेशन आईएसजीजी पर सम्मेलन
  • यूरोग्राफिक्स वार्षिक सम्मेलन (यूरोग्राफिक्स)] (कंप्यूटर ग्राफिक्स फोरम में कार्यवाही)
  • ज्यामितीय और भौतिक मॉडलिंग SIAM
  • आइसोजियोमेट्रिक विश्लेषण आईजीए पर अंतर्राष्ट्रीय सम्मेलन
  • कम्प्यूटेशनल ज्यामिति पर संगोष्ठी
  • न्यूमेरिकल ज्योमेट्री, ग्रिड जनरेशन एंड साइंटिफिक कंप्यूटिंग (NUMGRID) (कम्प्यूटेशनल विज्ञान और इंजीनियरिंग में व्याख्यान नोट्स में कार्यवाही)
  • SIAM इंटरनेशनल मेशिंग राउंडटेबल (SIAM IMR)। 1992-2021 से एक स्वतंत्र वार्षिक सम्मेलन, और 2022 से SIAM PP या SIAM CS&E के साथ एक SIAM कार्यशाला समवर्ती। कार्यवाही की समीक्षा की।
  • SIGGRAPH (ग्राफिक्स पर एसीएम लेनदेन में कार्यवाही)
  • ज्यामिति प्रसंस्करण (यूरोग्राफिक्स) पर संगोष्ठी (कंप्यूटर ग्राफिक्स फोरम में कार्यवाही)
  • इंजीनियरिंग पर विश्व कांग्रेस

वर्कशॉप

वर्कशॉप जिनका प्राथमिक विषय मेशिंग है बोल्ड में हैं।

  • ज्यामिति पर सम्मेलन: सिद्धांत और अनुप्रयोग सीजीटीए
  • कम्प्यूटेशनल ज्यामिति यूरोसीजी पर यूरोपीय कार्यशाला
  • कम्प्यूटेशनल ज्यामिति पर कार्यशाला
  • तरल पदार्थ FEF में परिमित तत्व
  • मेशट्रेंड्स संगोष्ठी (डब्ल्यूसीसीएम या यूएसएनसीसीएम वैकल्पिक वर्षों में)
  • गणित और इंजीनियरिंग में पॉलीटॉपल एलिमेंट मेथड्स
  • टेट्राहेड्रॉन कार्यशाला

यह भी देखें

संदर्भ

  1. Anderson, Dale (2012). कम्प्यूटेशनल द्रव यांत्रिकी और ताप हस्तांतरण, यांत्रिकी और तापीय विज्ञान में कम्प्यूटेशनल और भौतिक प्रक्रियाओं में तीसरा संस्करण श्रृंखला. CRC Press. pp. 679–712. ISBN 978-1591690375.
  2. Winslow, A (1966). "अर्ध-रैखिक प्वासों समीकरण का संख्यात्मक समाधान". J. Comput. Phys. 1 (2): 149–172. doi:10.1016/0021-9991(66)90001-5.
  3. Thompson, J.F.; Thames, F.C.; Mastin, C.W. (1974). "मनमाने ढंग से दो आयामी निकायों की संख्या वाले क्षेत्र के लिए बॉडी-फिटेड वक्रीय समन्वय प्रणाली की स्वचालित संख्यात्मक पीढ़ी". J. Comput. Phys. 15 (3): 299–319. Bibcode:1974JCoPh..15..299T. doi:10.1016/0021-9991(74)90114-4.
  4. Young, David (1954). "अण्डाकार प्रकार के आंशिक अंतर समीकरणों को हल करने के लिए पुनरावृत्त तरीके". Transactions of the American Mathematical Society. 76 (1): 92–111. doi:10.2307/1990745. ISSN 1088-6850. JSTOR 1990745.
  5. Steger, J.L; Sorenson, R.L (1980). "बॉडी फिटेड निर्देशांक उत्पन्न करने के लिए हाइपरबोलिक आंशिक अंतर समीकरण का उपयोग, न्यूमेरिकल ग्रिड जनरेशन तकनीक" (PDF). NASA Conference Publication 2166: 463–478.
  6. Venkatakrishnan, V; Mavriplis, D. J (May 1991). "असंरचित मेश के लिए अंतर्निहित सॉल्वर". Journal of Computational Physics. 105 (1): 23. doi:10.1006/jcph.1993.1055. hdl:2060/19910014812.
  7. Weatherill, N.P (September 1992). "कम्प्यूटेशनल द्रव गतिकी में डेलौने त्रिकोणासन". Computers & Mathematics with Applications. 24 (5–6): 129–150. doi:10.1016/0898-1221(92)90045-j.
  8. Anderson, D.A; Sharpe H.N. (July 1993). "तेल जलाशय सिमुलेशन के लिए निश्चित आंतरिक सीमाओं के साथ ऑर्थोगोनल अनुकूली ग्रिड जनरेशन". SPE Advanced Technology Series. 2. 1 (2): 53–62. doi:10.2118/21235-PA.


ग्रन्थसूची


बाहरी संबंध

Mesh generators

Many commercial product descriptions emphasize simulation rather than the meshing technology that enables simulation.

Multi-domain partitioned mesh generators

These tools generate the partitioned meshes required for multi-material finite element modelling.

  • MDM(Multiple Domain Meshing) generates unstructured tetrahedral and hexahedral meshes for a composite domain made up of heterogeneous materials, automatically and efficiently
  • QMDM (Quality Multi-Domain Meshing) produces a high quality, mutually consistent triangular surface meshes for multiple domains
  • QMDMNG, (Quality Multi-Domain Meshing with No Gap), produces a quality meshes with each one a two-dimensional manifold and no gap between two adjacent meshes.
  • SOFA_mesh_partitioning_tools generates partitioned tetrahedral meshes for multi-material FEM, based on CGAL.
Articles
Research groups and people
Models and meshes

Useful models (inputs) and meshes (outputs) for comparing meshing algorithms and meshes.

CAD models

Modeling engines linked with mesh generation software to represent the domain geometry.

Mesh file formats

Common (output) file formats for describing meshes.

Mesh visualizers
Tutorials