विभेदक (गणित): Difference between revisions

From Vigyanwiki
(TEXT)
(TEXT)
Line 48: Line 48:
{{Calculus |Differential}}
{{Calculus |Differential}}


गणितीय रूप से अवकलन की धारणा को सटीक बनाने के लिए कई दृष्टिकोण हैं।
गणितीय रूप से विभेदक की धारणा को सटीक बनाने के लिए कई दृष्टिकोण हैं।
# रेखीय नक्शे के रूप में विभेदक। यह दृष्टिकोण विभेदक ज्यामिति में कुल व्युत्पन्न और [[बाहरी व्युत्पन्न]] की परिभाषा को रेखांकित करता है।<ref>{{Harvnb|Darling|1994}}.</ref>
# रेखीय मानचित्र के रूप में विभेदक। यह दृष्टिकोण विभेदक ज्यामिति में कुल व्युत्पन्न और [[बाहरी व्युत्पन्न]] की परिभाषा को रेखांकित करता है।<ref>{{Harvnb|Darling|1994}}.</ref>
# क्रमविनिमेय वलयों के [[ nilpotent ]] तत्वों के रूप में अवकलन। यह दृष्टिकोण बीजगणितीय ज्यामिति में लोकप्रिय है।<ref name="Harris1998">{{Harvnb|Eisenbud|Harris|1998}}.</ref>
# क्रमविनिमेय वलयों के[[ nilpotent | निलपोटेंट]] तत्वों के रूप में अवकलन है। यह दृष्टिकोण बीजगणितीय ज्यामिति में लोकप्रिय है।<ref name="Harris1998">{{Harvnb|Eisenbud|Harris|1998}}.</ref>
# सेट सिद्धांत के चिकने मॉडल में विभेदक। इस दृष्टिकोण को [[ सिंथेटिक अंतर ज्यामिति | सिंथेटिक विभेदक ज्यामिति]] या [[चिकना अत्यल्प विश्लेषण|सुचारू अत्यल्प विश्लेषण]] के रूप में जाना जाता है और यह बीजगणितीय ज्यामितीय दृष्टिकोण से निकटता से संबंधित है, सिवाय इसके कि [[ टोपोस सिद्धांत ]] के विचारों का उपयोग उस तंत्र को छिपाने के लिए किया जाता है जिसके द्वारा निलपोटेंट अतिसूक्ष्म प्रस्तावित किए जाते हैं।<ref>See {{Harvnb|Kock|2006}} and {{Harvnb|Moerdijk|Reyes|1991}}.</ref>
# समुच्चय सिद्धांत के सुचारू प्रतिरूप में विभेदक है। इस दृष्टिकोण को[[ सिंथेटिक अंतर ज्यामिति | संश्लिष्ट विभेदक ज्यामिति]] या [[चिकना अत्यल्प विश्लेषण|सुचारू अत्यल्प विश्लेषण]] के रूप में जाना जाता है और यह बीजगणितीय ज्यामितीय दृष्टिकोण से निकटता से संबंधित है, अतिरिक्त इसके कि[[ टोपोस सिद्धांत ]]के विचारों का उपयोग उस तंत्र को छिपाने के लिए किया जाता है जिसके द्वारा निलपोटेंट अतिसूक्ष्म प्रस्तावित किए जाते हैं।<ref>See {{Harvnb|Kock|2006}} and {{Harvnb|Moerdijk|Reyes|1991}}.</ref>
# [[अति वास्तविक संख्या]] सिस्टम में अतिसूक्ष्म के रूप में विभेदक, जो वास्तविक संख्याओं के विस्तार हैं जिनमें इनवर्टिबल अतिसूक्ष्म और असीम रूप से बड़ी संख्याएं होती हैं। यह [[अब्राहम रॉबिन्सन]] द्वारा प्रतिपादित अमानक विश्लेषण का दृष्टिकोण है।<ref name="nonstd">See {{Harvnb|Robinson|1996}} and {{Harvnb|Keisler|1986}}.</ref>
# [[अति वास्तविक संख्या]] पद्धति में अतिसूक्ष्म के रूप में विभेदक, जो वास्तविक संख्याओं के विस्तार होते हैं जिनमें प्रतिलोम अतिसूक्ष्म और असीम रूप से बड़ी संख्याएं होती हैं। यह [[अब्राहम रॉबिन्सन]] द्वारा प्रतिपादित अमानक विश्लेषण का दृष्टिकोण है।<ref name="nonstd">See {{Harvnb|Robinson|1996}} and {{Harvnb|Keisler|1986}}.</ref>
ये दृष्टिकोण एक-दूसरे से बहुत अलग हैं, लेकिन उनके पास मात्रात्मक होने का विचार आम है, यानी यह नहीं कह रहा है कि एक विभेदक असीम रूप से छोटा है, लेकिन यह कितना छोटा है।
ये दृष्टिकोण एक-दूसरे से बहुत अलग हैं, लेकिन उनके पास मात्रात्मक होने का विचार सामान्य है, अर्थात् यह नहीं कह रहा है कि एक विभेदक असीम रूप से छोटा है, लेकिन यह कितना छोटा है।


=== रेखीय नक्शे के रूप में अवकलन ===
=== रेखीय मानचित्र के रूप में विभेदक ===
भिन्नताओं की सटीक समझ बनाने का एक सरल तरीका है, पहले वास्तविक रेखा पर उन्हें रैखिक मानचित्रों के रूप में उपयोग करके उपयोग किया जाता है। इसका उपयोग किया जा सकता है <math>\mathbb{R}</math>, <math>\mathbb{R}^n</math>, एक [[ हिल्बर्ट अंतरिक्ष | हिल्बर्ट विभेदकिक्ष]] , एक [[बनच स्थान]], या अधिक सामान्यतः, एक [[टोपोलॉजिकल वेक्टर स्पेस]]वास्तविक रेखा के मामले की व्याख्या करना सबसे आसान है। संदर्भ के आधार पर इस प्रकार के अवकलन को सहपरिवर्ती सदिश या कोटिस्पर्श सदिश के रूप में भी जाना जाता है।
भिन्नताओं की सटीक समझ बनाने का एक सरल प्रकार है, पहले वास्तविक रेखा पर उन्हें रैखिक मानचित्रों के रूप में उपयोग किया जाता है। इसका उपयोग <math>\mathbb{R}</math>, <math>\mathbb{R}^n</math>, एक [[ हिल्बर्ट अंतरिक्ष | हिल्बर्ट समष्टि]], एक [[बनच स्थान|बनच]] [[ हिल्बर्ट अंतरिक्ष |समष्टि]], या अधिक सामान्यतः, एक [[टोपोलॉजिकल वेक्टर स्पेस|सांस्थितिक सदिश समष्टि]] पर किया जा सकता है। वास्तविक रेखा के प्रकरण की व्याख्या करना सबसे आसान है। संदर्भ के आधार पर इस प्रकार के विभेदक को सहपरिवर्ती सदिश या कोटिस्पर्श सदिश के रूप में भी जाना जाता है।


==== आर ==== पर रैखिक नक्शे के रूप में विभेदक
==== R पर रैखिक मानचित्र के रूप में विभेदक ====
कल्पना करना <math>f(x)</math> <math>\mathbb{R}</math> पर एक वास्तविक मूल्यवान फलन है। हम चर <math>x</math> को <math>f(x)</math> में  एक संख्या के बदले एक फलन के रूप में पुनर्व्याख्या कर सकते हैं, अर्थात् वास्तविक रेखा पर [[पहचान मानचित्र|तत्समक मानचित्र]], जो वास्तविक संख्या <math>p</math> को अपने पास ले जाता है: <math>x(p)=p</math>। तब <math>f(x)</math> <math>x</math> के साथ <math>f</math> का सम्मिश्र है, जिसका  <math>p</math> पर मूल्य <math>f(x(p))=f(p)</math> है। विभेदक <math>\operatorname{d}f</math> (जो निश्चित रूप से <math>f</math> पर निर्भर करता है) तब एक फलन है जिसका <math>p</math> पर मान (प्रायः पर <math>df_p</math>) एक संख्या नहीं है, लेकिन <math>\mathbb{R}</math> से <math>\mathbb{R}</math> तक एक रेखीय मानचित्र है। क्योंकि <math>\mathbb{R}</math> से <math>\mathbb{R}</math> तक एक रेखीय मानचित्र <math>1\times 1</math> आव्यूह द्वारा दिया जाता है, यह अनिवार्य रूप से एक संख्या के समान है, लेकिन दृष्टिकोण में परिवर्तन हमें <math>df_p</math> को एक अतिसूक्ष्म के रूप में सोचने और मानक अत्यल्प <math>dx_p</math> के साथ तुलना करने की अनुमति देता है, जो पुनः <math>\mathbb{R}</math> से <math>\mathbb{R}</math> तक केवल सर्वसमिका मानचित्र (प्रविष्टि <math>1</math> के साथ <math>1\times 1</math> आव्यूह) है। सर्वसमिका यह गुण है कि यदि <math>\varepsilon</math> बहुत छोटा है, तो <math>dx_p(\varepsilon)</math> बहुत छोटा है, जो हमें इसे अतिसूक्ष्म मानने में सक्षम बनाता है। विभेदक <math>df_p</math>में समान गुण होते हैं, क्योंकि यह <math>dx_p</math> का एक गुणक है, और यह गुणक परिभाषा के अनुसार <math>f'(p)</math> है। इसलिए हम इसे प्राप्त करते हैं कि <math>df_p=f'(p)\,dx_p</math>, और इसलिए <math>df=f'\,dx</math> है। इस प्रकार हम इस विचार को पुनः प्राप्त करते हैं कि <math>f'</math>विभेदकों  <math>df</math> और <math>dx</math> का अनुपात है।


कल्पना करना <math>f(x)</math> पर एक वास्तविक मूल्यवान फलन है <math>\mathbb{R}</math>. हम चर की पुनर्व्याख्या कर सकते हैं <math>x</math> में <math>f(x)</math> एक संख्या के बजाय एक फलन होने के नाते, अर्थात् वास्तविक रेखा पर [[पहचान मानचित्र]], जो वास्तविक संख्या लेता है <math>p</math> खुद को: <math>x(p)=p</math>. तब <math>f(x)</math> का सम्मिश्रण है <math>f</math> साथ <math>x</math>, जिसका मूल्य पर <math>p</math> है <math>f(x(p))=f(p)</math>. विभेदक <math>\operatorname{d}f</math> (जो निश्चित रूप से निर्भर करता है <math>f</math>) तब एक फलन है जिसका मान at <math>p</math> (आमतौर पर निरूपित <math>df_p</math>) एक संख्या नहीं है, बल्कि एक रेखीय मानचित्र है <math>\mathbb{R}</math> को <math>\mathbb{R}</math>. चूंकि एक रेखीय मानचित्र से <math>\mathbb{R}</math> को <math>\mathbb{R}</math> ए द्वारा दिया जाता है <math>1\times 1</math> आव्यूह (गणित), यह अनिवार्य रूप से एक संख्या के समान है, लेकिन दृष्टिकोण में परिवर्तन हमें सोचने की अनुमति देता है <math>df_p</math> एक अतिसूक्ष्म के रूप में और इसकी तुलना मानक अतिसूक्ष्म के साथ करें <math>dx_p</math>, जो फिर से केवल पहचान मानचित्र है <math>\mathbb{R}</math> को <math>\mathbb{R}</math> (ए <math>1\times 1</math> आव्यूह (गणित) प्रविष्टि के साथ <math>1</math>). पहचान मानचित्र में संपत्ति है कि यदि <math>\varepsilon</math> तो बहुत छोटा है <math>dx_p(\varepsilon)</math> बहुत छोटा है, जो हमें इसे अतिसूक्ष्म मानने में सक्षम बनाता है। विभेदक <math>df_p</math> समान गुण है, क्योंकि यह केवल का गुणज है <math>dx_p</math>, और यह गुणक व्युत्पन्न है <math>f'(p)</math> परिभाषा से। इसलिए हम इसे प्राप्त करते हैं <math>df_p=f'(p)\,dx_p</math>, और इसलिए <math>df=f'\,dx</math>. इस प्रकार हम इस विचार को पुनः प्राप्त करते हैं कि <math>f'</math> विभेदकों का अनुपात है <math>df</math> और <math>dx</math>.
यह सिर्फ एक ट्रिक होगी यदि यह इस तथ्य के लिए नहीं है कि:
# यह <math>p</math> पर <math>f</math> के व्युत्पन्न के विचार को <math>p</math> पर <math>f</math> के लिए सबसे अच्छा रैखिक सन्निकटन के रूप में पकड़ता है;
# इसके कई सामान्यीकरण हैं।


यह सिर्फ एक चाल होगी यदि यह इस तथ्य के लिए नहीं है कि:
==== R<sup>n</sup> पर रेखीय मानचित्र के रूप में विभेदक ====
# यह व्युत्पन्न के विचार को पकड़ लेता है <math>f</math> पर <math>p</math> के लिए सबसे अच्छा रैखिक सन्निकटन के रूप में <math>f</math> पर <math>p</math>;
 
# इसके कई सामान्यीकरण हैं।
अगर <math>f</math> <math>\mathbb{R}^n</math>से <math>\mathbb{R}</math> तक एक फलन है, तो हम कहते हैं कि <math>p\in\mathbb{R}^n</math>पर <math>f</math> अवकलनीय है<ref>See, for instance, {{Harvnb|Apostol|1967}}.</ref> यदि <math>\mathbb{R}^n</math>से <math>\mathbb{R}</math> तक एक रेखीय मानचित्र <math>df_p</math> है जैसे कि किसी भी <math>\varepsilon>0</math> के लिए, <math>p</math> का एक प्रतिवेश <math>N</math> है जैसे कि <math>x\in N</math>,
<math display="block">\left|f(x) - f(p) - df_p(x-p)\right| < \varepsilon \left|x-p\right| .</math>
अब हम एक आयामी प्रकरण में उसी तरकीब का उपयोग कर सकते हैं और अभिव्यक्ति <math>f(x_1, x_2, \ldots, x_n)</math> को <math>\mathbb{R}^n</math> मानक निर्देशांक <math>x_1, x_2, \ldots, x_n</math> के साथ <math>f</math>  के सम्मिश्र के रूप में सोच सकते हैं (ताकि <math>x_j(p)</math> <math>p\in\mathbb{R}^n</math>का <math>j</math>-वाँ घटक है )। फिर भेद <math>\left(dx_1\right)_p, \left(dx_2\right)_p, \ldots, \left(dx_n\right)_p</math> एक बिंदु  <math>p</math> पर <math>\mathbb{R}^n</math> से <math>\mathbb{R}</math> तक रैखिक मानचित्रों के [[सदिश स्थल|सदिश समष्टि]] के लिए एक [[आधार (रैखिक बीजगणित)|आधार]] बनाते हैं और इसलिए, यदि <math>f</math> <math>p</math> पर अवकलनीय है, तो हम <math>\operatorname{d}f_p</math> लिख सकते हैं इन आधार तत्वों के [[रैखिक संयोजन]] के रूप में:<math display="block">df_p = \sum_{j=1}^n D_j f(p) \,(dx_j)_p.</math>


==== आर पर रेखीय नक्शे के रूप में विभेदक<sup>एन</sup> ====


अगर <math>f</math> से एक समारोह है <math>\mathbb{R}^n</math> को <math>\mathbb{R}</math>, तो हम कहते हैं <math>f</math> अवकलनीय है<ref>See, for instance, {{Harvnb|Apostol|1967}}.</ref> पर <math>p\in\mathbb{R}^n</math> अगर वहाँ एक रेखीय नक्शा है <math>df_p</math> से <math>\mathbb{R}^n</math> को <math>\mathbb{R}</math> ऐसा कि किसी के लिए <math>\varepsilon>0</math>, एक पड़ोस है (गणित) <math>N</math> का <math>p</math> ऐसा कि के लिए <math>x\in N</math>,
गुणांक <math>D_j f(p)</math> <math>x_1, x_2, \ldots, x_n</math> के संबंध में <math>p</math> पर <math>f</math> के आंशिक व्युत्पन्न (परिभाषा के अनुसार) है। इसलिए, यदि <math>f</math> सभी <math>\mathbb{R}^n</math> पर अवकलनीय है, तो हम अधिक संक्षेप में लिख सकते हैं:
<math display=block>\left|f(x) - f(p) - df_p(x-p)\right| < \varepsilon \left|x-p\right| .</math>
<math display="block">\operatorname{d}f = \frac{\partial f}{\partial x_1} \,dx_1 + \frac{\partial f}{\partial x_2} \,dx_2 + \cdots +\frac{\partial f}{\partial x_n} \,dx_n.</math>
अब हम उसी तरकीब का उपयोग कर सकते हैं जैसा कि एक आयामी मामले में और अभिव्यक्ति के बारे में सोचते हैं <math>f(x_1, x_2, \ldots, x_n)</math> के सम्मिश्रण के रूप में <math>f</math> मानक निर्देशांक के साथ <math>x_1, x_2, \ldots, x_n</math> पर <math>\mathbb{R}^n</math> (ताकि <math>x_j(p)</math> है <math>j</math>-वाँ घटक <math>p\in\mathbb{R}^n</math>). फिर भेद <math>\left(dx_1\right)_p, \left(dx_2\right)_p, \ldots, \left(dx_n\right)_p</math> एक बिंदु पर <math>p</math> रैखिक मानचित्रों के [[सदिश स्थल]] के लिए एक [[आधार (रैखिक बीजगणित)]] बनाएं <math>\mathbb{R}^n</math> को <math>\mathbb{R}</math> और इसलिए, यदि <math>f</math> पर अवकलनीय है <math>p</math>, हम लिख सकते हैं<math>\operatorname{d}f_p</math>इन आधार तत्वों के [[रैखिक संयोजन]] के रूप में:
एक आयामी प्रकरण में  
<math display=block>df_p = \sum_{j=1}^n D_j f(p) \,(dx_j)_p.</math>
<math display="block">df = \frac{df}{dx}dx</math>
गुणांक <math>D_j f(p)</math> (परिभाषा के अनुसार) के आंशिक व्युत्पन्न हैं <math>f</math> पर <math>p</math> इसके संबंध में <math>x_1, x_2, \ldots, x_n</math>. इसलिए, अगर <math>f</math> सभी पर अवकलनीय है <math>\mathbb{R}^n</math>, हम और अधिक संक्षेप में लिख सकते हैं:
यह पहले जैसा हो जाता है।
<math display=block>\operatorname{d}f = \frac{\partial f}{\partial x_1} \,dx_1 + \frac{\partial f}{\partial x_2} \,dx_2 + \cdots +\frac{\partial f}{\partial x_n} \,dx_n.</math>
एक आयामी मामले में यह बन जाता है
<math display=block>df = \frac{df}{dx}dx</math>
पहले जैसा।


यह विचार सीधे तौर पर फलानो से सामान्यीकरण करता है <math>\mathbb{R}^n</math> को <math>\mathbb{R}^m</math>. इसके अलावा, व्युत्पन्न की अन्य परिभाषाओं पर इसका निर्णायक लाभ है कि यह निर्देशांक के परिवर्तन के अंतर्गत [[अपरिवर्तनीय (गणित)]] है। इसका मतलब यह है कि एक ही विचार का उपयोग चिकने मैनिफोल्ड्स के मध्य चिकने नक्शों के पुशफॉरवर्ड (विभेदक) को परिभाषित करने के लिए किया जा सकता है।
यह विचार सीधी तरह से <math>\mathbb{R}^n</math> से <math>\mathbb{R}^m</math> तक के फलानो के लिए सामान्यीकरण करता है। इसके अलावा, व्युत्पन्न की अन्य परिभाषाओं पर इसका निर्णायक लाभ है कि यह निर्देशांक के परिवर्तन के अंतर्गत [[अपरिवर्तनीय (गणित)]] है। इसका अर्थ यह है कि एक ही विचार का उपयोग सुचारू बहुरूपता के मध्य सुचारू मानचित्र के अंतर को परिभाषित करने के लिए किया जा सकता है।


एक तरफ: ध्यान दें कि के सभी आंशिक व्युत्पन्न का अस्तित्व <math>f(x)</math> पर <math>x</math> एक विभेदक के अस्तित्व के लिए एक [[आवश्यक शर्त]] है <math>x</math>. हालांकि यह पर्याप्त शर्त नहीं है। प्रतिउदाहरणों के लिए, [[ व्युत्पन्न केक ]] देखें।
एक तरफ: ध्यान दें कि <math>x</math> पर <math>f(x)</math> के सभी आंशिक व्युत्पन्न का अस्तित्व <math>x</math> पर विभेदक के अस्तित्व के लिए एक [[आवश्यक शर्त|आवश्यक प्रतिबंध]] है। हालांकि यह पर्याप्त प्रतिबंध नहीं है। प्रतिउदाहरणों के लिए, [[ व्युत्पन्न केक |गेटॉक्स व्युत्पन्न]] देखें।


==== सदिश स्थान पर रेखीय मानचित्र के रूप में अवकलन ====
==== सदिश समष्टि पर रेखीय मानचित्र के रूप में विभेदक ====


निरंतरता के बारे में उचित रूप से बात करने के लिए एक ही प्रक्रिया एक पर्याप्त अतिरिक्त संरचना के साथ वेक्टर स्पेस पर काम करती है। सबसे ठोस मामला एक हिल्बर्ट स्पेस है, जिसे [[पूर्ण मीट्रिक स्थान]] इनर प्रोडक्ट स्पेस के रूप में भी जाना जाता है, जहां इनर प्रोडक्ट और इससे जुड़े नॉर्म (गणित) दूरी की एक उपयुक्त अवधारणा को परिभाषित करते हैं। यही प्रक्रिया एक बनच स्थान के लिए काम करती है, जिसे पूर्ण [[ नॉर्मड वेक्टर स्पेस ]] के रूप में भी जाना जाता है। हालांकि, अधिक सामान्य टोपोलॉजिकल वेक्टर स्पेस के लिए, कुछ विवरण अधिक अमूर्त हैं क्योंकि दूरी की कोई अवधारणा नहीं है।
निरंतरता के बारे में उचित रूप से बात करने के लिए एक ही प्रक्रिया एक पर्याप्त अतिरिक्त संरचना के साथ सदिश समष्टि पर काम करती है। सबसे स्थूल प्रकरण एक हिल्बर्ट समष्टि है, जिसे [[पूर्ण मीट्रिक स्थान|पूर्ण आंतरिक समष्टि]] के रूप में भी जाना जाता है, जहां आंतरिक उत्पाद और उससे जुड़े मानदंड दूरी की उपयुक्त अवधारणा को परिभाषित करते हैं। यही प्रक्रिया एक बनच समष्टि के लिए काम करती है, जिसे पूर्ण[[ नॉर्मड वेक्टर स्पेस | नॉर्मड सदिश समष्टि]] के रूप में भी जाना जाता है। हालांकि, अधिक सामान्य सांस्थितिक सदिश समष्टि के लिए, कुछ विवरण अधिक अमूर्त हैं क्योंकि दूरी की कोई अवधारणा नहीं है।


परिमित आयाम के महत्वपूर्ण मामले के लिए, कोई भी [[आंतरिक उत्पाद स्थान]] एक हिल्बर्ट स्थान है, कोई भी मानक सदिश स्थान एक बैनाच स्थान है और कोई भी सामयिक सदिश स्थान पूर्ण है। नतीजतन, आप एक समन्वय प्रणाली को मनमाने ढंग से परिभाषित कर सकते हैं और उसी तकनीक का उपयोग कर सकते हैं <math>\mathbb{R}^n</math>.
परिमित आयाम के महत्वपूर्ण प्रकरण के लिए, कोई भी [[आंतरिक उत्पाद स्थान|आंतरिक उत्पाद समष्टि]] एक हिल्बर्ट समष्टि है, कोई भी मानक सदिश समष्टि एक बैनाच समष्टि है और कोई भी सामयिक सदिश समष्टि पूर्ण है। नतीजतन, आप स्वेच्छाचारी आधार से एक समन्वय प्रणाली को परिभाषित कर सकते हैं और उसी तकनीक का उपयोग कर सकते हैं जो <math>\mathbb{R}^n</math>के लिए है।


=== फलानो के कीटाणुओं के रूप में विभेदक ===
=== फलानो के कीटाणुओं के रूप में विभेदक ===


यह दृष्टिकोण किसी भी अलग-अलग बहुरूपता पर काम करता है। अगर
यह दृष्टिकोण किसी भी विभेदक बहुरूपता पर काम करता है। अगर
# {{var|U}} और {{var|V}} युक्त खुले सेट हैं {{var|p}}
# {{var|U}} और {{var|V}} विवृत समुच्चय हैं जिनमें {{var|p}} सम्मलित है
# <math>f\colon U\to \mathbb{R}</math> निरंतर है
# <math>f\colon U\to \mathbb{R}</math> निरंतर है
# <math>g\colon V\to \mathbb{R}</math> निरंतर है
# <math>g\colon V\to \mathbb{R}</math> निरंतर है
तब {{var|f}} के बराबर है {{var|g}} पर {{var|p}}, निरूपित <math>f \sim_p g</math>, अगर और केवल अगर
तब {{var|f}} {{var|p}} पर {{var|g}} के समतुल्य है, जिसे <math>f \sim_p g</math> के रूप में दर्शाया गया है, यदि और केवल यदि कोई विवृत <math>W \subseteq U \cap V</math> है जिसमें {{var|p}} ऐसा है कि {{var|W}} में प्रत्येक {{var|x}} के लिए <math>f(x) = g(x)</math> है। {{var|p}} पर {{var|f}} का रोगाणु, जिसे <math>[f]_p</math> निरूपित किया जाता है, {{var|p}} पर {{var|f}} के समतुल्य सभी वास्तविक सतत फलनों का समुच्चय है; {{var|f}} {{var|p}} पर सुचारू है तब <math>[f]_p</math> एक सुचारू रोगाणु है। अगर
एक खुला है <math>W \subseteq U \cap V</math> युक्त {{var|p}} ऐसा है कि <math>f(x) = g(x)</math> हरएक के लिए {{var|x}} में {{var|W}}.
#<math>U_1</math>, <math>U_2</math> <math>V_1</math> और <math>V_2</math> {{var|p}} विवृत समुच्चय हैं
का कीटाणु {{var|f}} पर {{var|p}}, निरूपित <math>[f]_p</math>, के समतुल्य सभी वास्तविक सतत फलनों का समुच्चय है {{var|f}} पर {{var|p}}; अगर {{var|f}} पर सुचारू है {{var|p}} तब <math>[f]_p</math> सुचारू रोगाणु है।
#<math>f_1\colon U_1\to \mathbb{R}</math>, <math>f_2\colon U_2\to \mathbb{R}</math>, <math>g_1\colon V_1\to \mathbb{R}</math> और <math>g_2\colon V_2\to \mathbb{R}</math> सुचारू फलन हैं
अगर
#<math>U_1</math>, <math>U_2</math> <math>V_1</math> और <math>V_2</math> युक्त खुले सेट हैं {{var|p}}
#<math>f_1\colon U_1\to \mathbb{R}</math>, <math>f_2\colon U_2\to \mathbb{R}</math>, <math>g_1\colon V_1\to \mathbb{R}</math> और <math>g_2\colon V_2\to \mathbb{R}</math> चिकने फलन हैं
#<math>f_1 \sim_p g_1</math>
#<math>f_1 \sim_p g_1</math>
#<math>f_2 \sim_p g_2</math>
#<math>f_2 \sim_p g_2</math>
Line 107: Line 104:
#<math>f_1+f_2\colon U_1 \cap U_2\to \mathbb{R} \sim_p g_1+g_2\colon V_1 \cap V_2\to \mathbb{R}</math>
#<math>f_1+f_2\colon U_1 \cap U_2\to \mathbb{R} \sim_p g_1+g_2\colon V_1 \cap V_2\to \mathbb{R}</math>
#<math>f_1*f_2\colon U_1 \cap U_2\to \mathbb{R} \sim_p g_1*g_2\colon V_1 \cap V_2\to \mathbb{R}</math>
#<math>f_1*f_2\colon U_1 \cap U_2\to \mathbb{R} \sim_p g_1*g_2\colon V_1 \cap V_2\to \mathbb{R}</math>
इससे पता चलता है कि पी पर रोगाणु एक क्षेत्र के ऊपर एक बीजगणित बनाते हैं।
इससे पता चलता है कि p पर रोगाणु एक बीजगणित बनाते हैं।


परिभाषित करना <math>\mathcal{I}_p</math> गायब होने वाले सभी चिकने कीटाणुओं का सेट होना {{var|p}} और
[[ आदर्श (अंगूठी सिद्धांत) |आदर्श]] <math>\mathcal{I}_p \mathcal{I}_p</math> के उत्पाद होने के लिए {{var|p}} और <math>\mathcal{I}_p^2</math> पर लुप्त होने वाले सभी सुचारू कीटाणुओं का समुच्चय के रूप में <math>\mathcal{I}_p</math> को परिभाषित करें। तब {{var|p}} पर एक विभेदक ({{var|p}} पर स्पर्शज्या सदिश) <math>\mathcal{I}_p/\mathcal{I}_p^2</math> का एक अवयव होता है। {{var|p}} पर एक सुचारू फलन {{var|f}} का विभेदक, जिसे <math>\mathrm d f_p</math> के रूप में दर्शाया गया है, <math>[f-f(p)]_p/\mathcal{I}_p^2</math> है।
<math>\mathcal{I}_p^2</math> आइडियल बनना (रिंग थ्योरी)# आइडियल संचालन ऑफ [[ आदर्श (अंगूठी सिद्धांत) ]] <math>\mathcal{I}_p \mathcal{I}_p</math>. फिर एक विभेदक पर {{var|p}} (पर स्पर्शज्या सदिश {{var|p}}) का एक तत्व है <math>\mathcal{I}_p/\mathcal{I}_p^2</math>. एक चिकनी समारोह का विभेदक {{var|f}} पर {{var|p}}, निरूपित <math>\mathrm d f_p</math>, है <math>[f-f(p)]_p/\mathcal{I}_p^2</math>.


एक समान दृष्टिकोण एक मनमाना समन्वय पैच में व्युत्पन्न के संदर्भ में पहले क्रम के विभेदक तुल्यता को परिभाषित करना है।
एक समान दृष्टिकोण एक स्वेच्छाचारी समन्वय पैच में व्युत्पन्न के संदर्भ में पहले क्रम के विभेदक तुल्यता को परिभाषित करना है। तब {{var|p}} पर {{var|f}} का विभेदक सभी फलानो का समुच्चय है जो {{var|p}} पर  <math>f-f(p)</math> के समतुल्य है।
फिर का विभेदक {{var|f}} पर {{var|p}} विभेदक के बराबर सभी फलानो का सेट है <math>f-f(p)</math> पर {{var|p}}.


=== बीजगणितीय ज्यामिति ===
=== बीजगणितीय ज्यामिति ===
Line 119: Line 114:
बीजगणितीय ज्यामिति में, विभेदक और अन्य अतिसूक्ष्म धारणाओं को एक बहुत ही स्पष्ट प्रकार से नियंत्रित किया जाता है, यह स्वीकार करते हुए कि एक विभेदकिक्ष के समन्वय अंगूठी या [[संरचना शीफ]] ​​में [[शून्य तत्व]] शामिल हो सकते हैं। सबसे सरल उदाहरण [[दोहरी संख्या]] R[''ε''] का वलय है, जहां ''ε''<sup>2</सुप> = 0।
बीजगणितीय ज्यामिति में, विभेदक और अन्य अतिसूक्ष्म धारणाओं को एक बहुत ही स्पष्ट प्रकार से नियंत्रित किया जाता है, यह स्वीकार करते हुए कि एक विभेदकिक्ष के समन्वय अंगूठी या [[संरचना शीफ]] ​​में [[शून्य तत्व]] शामिल हो सकते हैं। सबसे सरल उदाहरण [[दोहरी संख्या]] R[''ε''] का वलय है, जहां ''ε''<sup>2</सुप> = 0।


यह एक बिंदु पी पर 'आर' से 'आर' तक फलन एफ के व्युत्पन्न पर बीजगणित-ज्यामितीय दृष्टिकोण से प्रेरित हो सकता है। इसके लिए, पहले ध्यान दें कि f − f(p) आदर्श (रिंग थ्योरी) I से संबंधित है<sub>''p''</sub> आर पर फलानो की संख्या जो 'पी' पर गायब हो जाती है। यदि व्युत्पन्न ''f'' ''p'' पर गायब हो जाता है, तो ''f'' − ''f''(''p'') वर्ग ''I'' से संबंधित है<sub>''p''</sub><sup>2 इस आदर्श का। अतः p पर f का व्युत्पन्न समतुल्य वर्ग [f − f(p)] द्वारा [[भागफल स्थान (रैखिक बीजगणित)]] I में ग्रहण किया जा सकता है<sub>''p''</sub>/मैं<sub>''p''</sub><sup>2</sup>, और [[जेट (गणित)]] | f का 1-जेट (जो इसके मूल्य और इसके पहले व्युत्पन्न को कूटबद्ध करता है) सभी फलानो के स्थान में f का समतुल्य वर्ग है।<sub>''p''</sub><sup>2</उप>। बीजगणितीय जियोमीटर इस तुल्यता वर्ग को बिंदु p के गाढ़े संस्करण के लिए f के प्रतिबंध के रूप में मानते हैं, जिसका समन्वय वलय 'R' नहीं है (जो 'R' मॉड्यूलो I पर फलानो का भागफल स्थान है।<sub>''p''</sub>) लेकिन R[''ε''] जो R modulo ''I'' पर फलानो का भागफल स्थान है<sub>''p''</sub><sup>2</उप>। ऐसा मोटा बिंदु एक [[योजना (गणित)]] का एक सरल उदाहरण है।<ref name="Harris1998" />
यह एक बिंदु पी पर 'आर' से 'आर' तक फलन एफ के व्युत्पन्न पर बीजगणित-ज्यामितीय दृष्टिकोण से प्रेरित हो सकता है। इसके लिए, पहले ध्यान दें कि f − f(p) आदर्श (रिंग थ्योरी) I से संबंधित है<sub>''p''</sub> आर पर फलानो की संख्या जो 'पी' पर गायब हो जाती है। यदि व्युत्पन्न ''f'' ''p'' पर गायब हो जाता है, तो ''f'' − ''f''(''p'') वर्ग ''I'' से संबंधित है<sub>''p''</sub><sup>2 इस आदर्श का। अतः p पर f का व्युत्पन्न समतुल्य वर्ग [f − f(p)] द्वारा [[भागफल स्थान (रैखिक बीजगणित)|भागफल समष्टि (रैखिक बीजगणित)]] I में ग्रहण किया जा सकता है<sub>''p''</sub>/मैं<sub>''p''</sub><sup>2</sup>, और [[जेट (गणित)]] | f का 1-जेट (जो इसके मूल्य और इसके पहले व्युत्पन्न को कूटबद्ध करता है) सभी फलानो के समष्टि में f का समतुल्य वर्ग है।<sub>''p''</sub><sup>2</उप>। बीजगणितीय जियोमीटर इस तुल्यता वर्ग को बिंदु p के गाढ़े संस्करण के लिए f के प्रतिबंध के रूप में मानते हैं, जिसका समन्वय वलय 'R' नहीं है (जो 'R' मॉड्यूलो I पर फलानो का भागफल समष्टि है।<sub>''p''</sub>) लेकिन R[''ε''] जो R modulo ''I'' पर फलानो का भागफल समष्टि है<sub>''p''</sub><sup>2</उप>। ऐसा मोटा बिंदु एक [[योजना (गणित)]] का एक सरल उदाहरण है।<ref name="Harris1998" />
==== बीजगणितीय ज्यामिति धारणाएं ====
==== बीजगणितीय ज्यामिति धारणाएं ====
<!-- Integrate text. -->
<!-- Integrate text. -->
बीजगणितीय ज्यामिति में अवकलन भी महत्वपूर्ण हैं, और कई महत्वपूर्ण अवधारणाएँ हैं।
बीजगणितीय ज्यामिति में अवकलन भी महत्वपूर्ण हैं, और कई महत्वपूर्ण अवधारणाएँ हैं।
* एबेलियन विभेदक का मतलब आमतौर पर एक [[बीजगणितीय वक्र]] या [[रीमैन सतह]] पर विभेदक वन-फॉर्म होता है।
* एबेलियन विभेदक का अर्थ सामान्यतौर पर एक [[बीजगणितीय वक्र]] या [[रीमैन सतह]] पर विभेदक वन-फॉर्म होता है।
* रीमैन सतहों के सिद्धांत में [[द्विघात अंतर|द्विघात विभेदक]] (जो [[एबेलियन अंतर|एबेलियन विभेदक]] के वर्गों की तरह व्यवहार करते हैं) भी महत्वपूर्ण हैं।
* रीमैन सतहों के सिद्धांत में [[द्विघात अंतर|द्विघात विभेदक]] (जो [[एबेलियन अंतर|एबेलियन विभेदक]] के वर्गों की तरह व्यवहार करते हैं) भी महत्वपूर्ण हैं।
* काहलर अवकलन बीजगणितीय ज्यामिति में अवकलन की एक सामान्य धारणा प्रदान करते हैं।
* काहलर अवकलन बीजगणितीय ज्यामिति में अवकलन की एक सामान्य धारणा प्रदान करते हैं।


=== सिंथेटिक विभेदक ज्यामिति ===
=== संश्लिष्ट विभेदक ज्यामिति ===


अतिसूक्ष्म के लिए पाँचवाँ दृष्टिकोण सिंथेटिक विभेदक ज्यामिति की विधि है<ref>See {{Harvnb|Kock|2006}} and {{Harvnb|Lawvere|1968}}.</ref> या सहज अतिसूक्ष्म विश्लेषण।<ref>See {{Harvnb|Moerdijk|Reyes|1991}} and {{Harvnb|Bell|1998}}.</ref> यह बीजगणितीय-ज्यामितीय दृष्टिकोण से निकटता से संबंधित है, सिवाय इसके कि अतिसूक्ष्म अधिक निहित और सहज हैं। इस दृष्टिकोण का मुख्य विचार [[सेट की श्रेणी]] को आसानी से अलग-अलग सेटों की दूसरी [[श्रेणी (गणित)]] के साथ बदलना है जो एक टॉपोज़ है। इस श्रेणी में, कोई भी वास्तविक संख्या, सहज फलन आदि को परिभाषित कर सकता है, लेकिन वास्तविक संख्या में स्वचालित रूप से नीलपोटेंट अतिसूक्ष्म होते हैं, इसलिए इन्हें बीजगणितीय ज्यामितीय दृष्टिकोण के रूप में हाथ से प्रस्तावित करने की आवश्यकता नहीं है। हालांकि इस नई श्रेणी में [[तर्क]] सेट की श्रेणी के परिचित तर्क के समान नहीं है: विशेष रूप से, [[बहिष्कृत मध्य का कानून]] पकड़ में नहीं आता है। इसका मतलब यह है कि सेट-सैद्धांतिक गणितीय तर्क केवल [[रचनात्मक गणित]] होने पर ही असीम विश्लेषण तक विस्तारित होते हैं (उदाहरण के लिए, विरोधाभास द्वारा सबूत का उपयोग न करें)। कुछ{{who|date=November 2012}} इस नुकसान को एक धनात्मक चीज के रूप में मानते हैं, क्योंकि यह जहां कहीं भी उपलब्ध हो वहां रचनात्मक तर्क खोजने के लिए मजबूर करता है।
अतिसूक्ष्म के लिए पाँचवाँ दृष्टिकोण संश्लिष्ट विभेदक ज्यामिति की विधि है<ref>See {{Harvnb|Kock|2006}} and {{Harvnb|Lawvere|1968}}.</ref> या सहज अतिसूक्ष्म विश्लेषण।<ref>See {{Harvnb|Moerdijk|Reyes|1991}} and {{Harvnb|Bell|1998}}.</ref> यह बीजगणितीय-ज्यामितीय दृष्टिकोण से निकटता से संबंधित है, अतिरिक्त इसके कि अतिसूक्ष्म अधिक निहित और सहज हैं। इस दृष्टिकोण का मुख्य विचार [[सेट की श्रेणी|समुच्चय की श्रेणी]] को आसानी से अलग-अलग समुच्चयों की दूसरी [[श्रेणी (गणित)]] के साथ बदलना है जो एक टॉपोज़ है। इस श्रेणी में, कोई भी वास्तविक संख्या, सहज फलन आदि को परिभाषित कर सकता है, लेकिन वास्तविक संख्या में स्वचालित रूप से नीलपोटेंट अतिसूक्ष्म होते हैं, इसलिए इन्हें बीजगणितीय ज्यामितीय दृष्टिकोण के रूप में हाथ से प्रस्तावित करने की आवश्यकता नहीं है। हालांकि इस नई श्रेणी में [[तर्क]] समुच्चय की श्रेणी के परिचित तर्क के समान नहीं है: विशेष रूप से, [[बहिष्कृत मध्य का कानून]] पकड़ में नहीं आता है। इसका अर्थ यह है कि समुच्चय-सैद्धांतिक गणितीय तर्क केवल [[रचनात्मक गणित]] होने पर ही असीम विश्लेषण तक विस्तारित होते हैं (उदाहरण के लिए, विरोधाभास द्वारा सबूत का उपयोग न करें)। कुछ{{who|date=November 2012}} इस नुकसान को एक धनात्मक चीज के रूप में मानते हैं, क्योंकि यह जहां कहीं भी उपलब्ध हो वहां रचनात्मक तर्क खोजने के लिए मजबूर करता है।


=== अमानक विश्लेषण ===
=== अमानक विश्लेषण ===


अतिसूक्ष्म के अंतिम दृष्टिकोण में फिर से वास्तविक संख्याओं का विस्तार करना शामिल है, लेकिन कम कठोर प्रकार से। गैर-मानक विश्लेषण दृष्टिकोण में कोई निलपोटेंट अतिसूक्ष्म नहीं होते हैं, केवल इन्वर्टिबल होते हैं, जिन्हें असीम रूप से बड़ी संख्या के गुणात्मक व्युत्क्रम के रूप में देखा जा सकता है।<ref name="nonstd"/>[[वास्तविक संख्या]]ओं के ऐसे विस्तार स्पष्ट रूप से वास्तविक संख्याओं के अनुक्रमों के तुल्यता वर्गों का उपयोग करके बनाए जा सकते हैं, ताकि, उदाहरण के लिए, अनुक्रम (1, 1/2, 1/3, ..., 1/n, ...) एक अपरिमेय का प्रतिनिधित्व करता है। हाइपररियल नंबरों के इस नए सेट का प्रथम-क्रम तर्क सामान्य वास्तविक संख्याओं के तर्क के समान है, लेकिन [[पूर्णता स्वयंसिद्ध]] (जिसमें द्वितीय-क्रम तर्क शामिल है) पकड़ में नहीं आता है। फिर भी, यह अतिसूक्ष्म का उपयोग करके कलन के लिए एक प्रारंभिक और काफी सहज दृष्टिकोण विकसित करने के लिए पर्याप्त है, [[स्थानांतरण सिद्धांत]] देखें।
अतिसूक्ष्म के अंतिम दृष्टिकोण में फिर से वास्तविक संख्याओं का विस्तार करना शामिल है, लेकिन कम कठोर प्रकार से। गैर-मानक विश्लेषण दृष्टिकोण में कोई निलपोटेंट अतिसूक्ष्म नहीं होते हैं, केवल इन्वर्टिबल होते हैं, जिन्हें असीम रूप से बड़ी संख्या के गुणात्मक व्युत्क्रम के रूप में देखा जा सकता है।<ref name="nonstd"/>[[वास्तविक संख्या]]ओं के ऐसे विस्तार स्पष्ट रूप से वास्तविक संख्याओं के अनुक्रमों के तुल्यता वर्गों का उपयोग करके बनाए जा सकते हैं, ताकि, उदाहरण के लिए, अनुक्रम (1, 1/2, 1/3, ..., 1/n, ...) एक अपरिमेय का प्रतिनिधित्व करता है। हाइपररियल नंबरों के इस नए समुच्चय का प्रथम-क्रम तर्क सामान्य वास्तविक संख्याओं के तर्क के समान है, लेकिन [[पूर्णता स्वयंसिद्ध]] (जिसमें द्वितीय-क्रम तर्क शामिल है) पकड़ में नहीं आता है। फिर भी, यह अतिसूक्ष्म का उपयोग करके कलन के लिए एक प्रारंभिक और काफी सहज दृष्टिकोण विकसित करने के लिए पर्याप्त है, [[स्थानांतरण सिद्धांत|समष्टिांतरण सिद्धांत]] देखें।


== विभेदक ज्यामिति ==
== विभेदक ज्यामिति ==
Line 140: Line 135:
*[[ विभेदक रूप ]] एक ऐसा ढांचा प्रदान करते हैं जो विभेदक के गुणन और विभेदन को समायोजित करता है।
*[[ विभेदक रूप ]] एक ऐसा ढांचा प्रदान करते हैं जो विभेदक के गुणन और विभेदन को समायोजित करता है।
*बाह्य अवकलज अवकल रूपों के विभेदन की धारणा है जो किसी फलन के कुल अवकलज का सामान्यीकरण करता है (जो कि अवकलन 1-रूप है)।
*बाह्य अवकलज अवकल रूपों के विभेदन की धारणा है जो किसी फलन के कुल अवकलज का सामान्यीकरण करता है (जो कि अवकलन 1-रूप है)।
* पुलबैक (विभेदक ज्यामिति), विशेष रूप से, लक्ष्य मैनिफोल्ड पर [[अंतर 1-रूप|विभेदक 1-रूप]] के साथ मैनिफोल्ड्स के मध्य मानचित्र बनाने के लिए चेन नियम के लिए एक ज्यामितीय नाम है।
* पुलबैक (विभेदक ज्यामिति), विशेष रूप से, लक्ष्य मैनिफोल्ड पर [[अंतर 1-रूप|विभेदक 1-रूप]] के साथ बहुरूपता के मध्य मानचित्र बनाने के लिए चेन नियम के लिए एक ज्यामितीय नाम है।
*[[सहपरिवर्ती व्युत्पन्न]] [[वेक्टर क्षेत्र]] और [[टेंसर क्षेत्र]] को मैनिफोल्ड पर अलग करने के लिए एक सामान्य धारणा प्रदान करते हैं, या अधिक सामान्यतः, [[वेक्टर बंडल]] के सेक्शन: [[कनेक्शन (वेक्टर बंडल)]] देखें। यह अंततः एक [[कनेक्शन (गणित)]] की सामान्य अवधारणा की ओर जाता है।
*[[सहपरिवर्ती व्युत्पन्न]] [[वेक्टर क्षेत्र]] और [[टेंसर क्षेत्र]] को मैनिफोल्ड पर अलग करने के लिए एक सामान्य धारणा प्रदान करते हैं, या अधिक सामान्यतः, [[वेक्टर बंडल]] के सेक्शन: [[कनेक्शन (वेक्टर बंडल)]] देखें। यह अंततः एक [[कनेक्शन (गणित)]] की सामान्य अवधारणा की ओर जाता है।


Line 151: Line 146:
* [[अंतर समीकरण|विभेदक समीकरण]]
* [[अंतर समीकरण|विभेदक समीकरण]]
* विभेदक रूप
* विभेदक रूप
* एक समारोह का विभेदक
* एक फलन का विभेदक


== टिप्पणियाँ ==
== टिप्पणियाँ ==

Revision as of 15:44, 24 April 2023

गणित में, विभेदक गणना के आरम्भिक दिनों से प्राप्त कई संबंधित धारणाओं को संदर्भित करता है,[1] एक परिशुद्ध आधार पर रखें, जैसे कि अत्यणु विभेदक और फलानो के व्युत्पन्न को संदर्भित करता है।[2]

इस शब्द का प्रयोग गणित की विभिन्न शाखाओं जैसे गणना, विभेदक ज्यामिति, बीजगणितीय ज्यामिति और बीजगणितीय सांस्थिति में किया जाता है।

परिचय

अवकलन शब्द का प्रयोग गणना में गैर-कठोर रूप से कुछ परिवर्ती मात्रा में एक अतिसूक्ष्म (असीम रूप से छोटा) परिवर्तन को संदर्भित करने के लिए किया जाता है। उदाहरण के लिए, यदि x एक चर है, तो x के मान में परिवर्तन को प्रायः Δx (उच्चारण डेल्टा x) कहा जाता है। विभेदक dx चर x में असीम रूप से छोटे परिवर्तन का प्रतिनिधित्व करता है। असीम रूप से छोटे या असीम रूप से धीमे परिवर्तन का विचार सहज रूप से अत्यंत उपयोगी है, और इस धारणा को गणितीय रूप से सटीक बनाने के कई प्रकार हैं।

गणना का उपयोग करके, व्युत्पन्न का उपयोग करके गणितीय रूप से विभिन्न चरों के असीम रूप से छोटे परिवर्तनों को एक दूसरे से संबंधित करना संभव है। यदि y, x का एक फलन है, तो y का विभेदक dy सूत्र द्वारा dx से संबंधित है

कहाँ x के संबंध में y के व्युत्पन्न को दर्शाता है। यह सूत्र सहज विचार को सारांशित करता है कि x के संबंध में y का व्युत्पन्न विभेदक Δy/Δx के अनुपात की सीमा है क्योंकि Δx अत्यल्प हो जाता है।

मूलभूत धारणाएं

  • गणना में, विभेदक किसी फलन के रैखिकीकरण में परिवर्तन को दर्शाता है।
  • गणना के पारंपरिक दृष्टिकोण में, विभेदक (जैसे dx, dy, dt, आदि) की व्याख्या अतिसूक्ष्म के रूप में की जाती है। अतिसूक्ष्म को परिशुद्ध से परिभाषित करने के कई प्रकार हैं, लेकिन यह कहना पर्याप्त है कि एक अपरिमेय संख्या किसी भी धनात्मक वास्तविक संख्या की तुलना में निरपेक्ष मान में छोटी होती है, पूर्णतः वैसे ही जैसे एक असीम रूप से बड़ी संख्या किसी भी वास्तविक संख्या से बड़ी होती है।
  • विभेदक Rn से Rm तक एक फलन के आंशिक व्युत्पन्न के जैकबियन आव्यूह का दूसरा नाम है (विशेष रूप से जब इस आव्यूह को एक रैखिक मानचित्र के रूप में देखा जाता है)।
  • अधिक सामान्यतः, विभेदक या पुशफॉरवर्ड, सुचारू बहुरूपता और इसे परिभाषित पुशफॉरवर्ड संचालन के मध्य मानचित्र के व्युत्पन्न को संदर्भित करता है। पुलबैक की दोहरी अवधारणा को परिभाषित करने के लिए विभेदक का भी उपयोग किया जाता है।
  • प्रसंभाव्य गणना प्रसंभाव्य विभेदक की धारणा और प्रसंभाव्य प्रक्रियाओं के लिए संबंधित गणना प्रदान करता है।
  • स्टील्जे समाकल में समाकलक को एक फलन के विभेदक के रूप में दर्शाया गया है। औपचारिक रूप से, समाकल के अंतर्गत दिखाई देने वाला विभेदक यथार्थत: एक विभेदक के रूप में व्यवहार करता है: इस प्रकार, स्टेल्टजेस समाकल के लिए भागों के सूत्रों द्वारा प्रतिस्थापन और एकीकरण द्वारा एकीकरण, क्रमशः श्रृंखला नियम और विभेदक के लिए उत्पाद नियम के अनुरूप होता है।

इतिहास और उपयोग

गणना के विकास में अतिसूक्ष्म मात्रा ने महत्वपूर्ण भूमिका निभाई है। आर्किमिडीज ने उनका उपयोग किया, यद्यपि वह यह नहीं मानता था कि अतिसूक्ष्म से जुड़े तर्क कठोर थे।[3] आइजैक न्यूटन ने उन्हें प्रवाह के रूप में संदर्भित किया। हालाँकि, यह गॉटफ्रीड लीबनिज थे जिन्होंने अतिसूक्ष्म मात्राओं के लिए विभेदक शब्द सृष्ट और उनके लिए संकेतन प्रस्तावित किया जो आज भी उपयोग किया जाता है।

लीबनिज के संकेतन में, यदि x एक चर मात्रा है, तो dx चर x में एक अतिसूक्ष्म परिवर्तन को दर्शाता है। इस प्रकार, यदि y, x का एक फलन है, तो x के संबंध में y के व्युत्पन्न को प्रायः dy/dx के रूप में निरूपित किया जाता है, जिसे अन्यथा (न्यूटन या लाग्रेंज के संकेतन में) ẏ या y के रूप में निरूपित किया जाएगा। इस रूप में विभेदक के उपयोग ने बहुत आलोचना को आकर्षित किया, उदाहरण के लिए बिशप बर्कले द्वारा प्रसिद्ध पैम्फलेट विश्लेषक में है। फिर भी, संकेतन लोकप्रिय बना हुआ है क्योंकि यह दृढ़ता से इस विचार का सुझाव देता है कि x पर y का व्युत्पन्न परिवर्तन की तात्कालिक दर है (लेखाचित्र की स्पर्श रेखा का ढलान), जो अनुपात Δy/Δx की सीमा लेकर प्राप्त किया जा सकता है क्योंकि Δx स्वेच्छतः छोटा हो जाता है। विभेदक भी आयामी विश्लेषण के साथ संगत होते हैं, जहां एक विभेदक जैसे dx के चर x के समान आयाम होते हैं।

17वीं शताब्दी CE के दौरान गणना गणित की एक अलग शाखा के रूप में विकसित हुआ, हालांकि प्राचीन काल में वापस जाने वाले पूर्ववर्ती थे। उदाहरण के लिए, न्यूटन, लीबनिज की प्रस्तुतियों को विभेदक, धाराप्रवाह और ''असीम रूप से छोटे'' जैसे शब्दों की गैर-कठोर परिभाषाओं द्वारा चिह्नित किया गया था। जबकि बिशप बर्कले के 1734 विश्लेषक में कई तर्क प्रकृति में धर्मशास्त्रीय हैं, आधुनिक गणितज्ञ विश्लेषक ''आवांछित प्रतिबिम्ब के दिवंगत मात्रा'' के प्रतिकूल उनके तर्क की वैधता को स्वीकार करते हैं; हालाँकि, आधुनिक दृष्टिकोणों में समान तकनीकी समस्याएँ नहीं हैं। कठोरता की कमी के बावजूद 17वीं और 18वीं शताब्दी में असीम प्रगति हुई।19वीं शताब्दी में, कॉची और अन्य ने धीरे-धीरे एप्सिलॉन, निरंतरता, सीमा और व्युत्पन्न के लिए डेल्टा दृष्टिकोण विकसित किया, जिससे कलन के लिए एक ठोस वैचारिक आधार मिला हैं।

20वीं शताब्दी में, कई नई अवधारणाएँ, जैसे, बहुभिन्नरूपी गणना, विभेदक ज्यामिति, पुराने शब्दों के आशय को समाहित करती प्रतीत हुईं, विशेष रूप से विभेदक; विभेदक और अतिसूक्ष्म दोनों का उपयोग नए, अधिक कठोर, अर्थों के साथ किया जाता है।

विभेदक का उपयोगअभिन्न के लिए संकेतन में भी किया जाता है क्योंकि एक समाकल को अनंत मात्रा के अनंत योग के रूप में माना जा सकता है: एक लेखाचित्र के अंतर्गत क्षेत्र लेखाचित्र को असीम रूप से पतली पट्टियों में उप-विभाजित करके और उनके क्षेत्रों का योग करके प्राप्त किया जाता है। एक अभिव्यक्ति में जैसे

अभिन्न चिह्न (जो एक संशोधित लंबा s है) अनंत योग को दर्शाता है, f(x) एक पतली पट्टी की ''ऊंचाई'' को दर्शाता है, और विभेदक dx इसकी असीम रूप से पतली चौड़ाई को दर्शाता है।

दृष्टिकोण

गणितीय रूप से विभेदक की धारणा को सटीक बनाने के लिए कई दृष्टिकोण हैं।

  1. रेखीय मानचित्र के रूप में विभेदक। यह दृष्टिकोण विभेदक ज्यामिति में कुल व्युत्पन्न और बाहरी व्युत्पन्न की परिभाषा को रेखांकित करता है।[4]
  2. क्रमविनिमेय वलयों के निलपोटेंट तत्वों के रूप में अवकलन है। यह दृष्टिकोण बीजगणितीय ज्यामिति में लोकप्रिय है।[5]
  3. समुच्चय सिद्धांत के सुचारू प्रतिरूप में विभेदक है। इस दृष्टिकोण को संश्लिष्ट विभेदक ज्यामिति या सुचारू अत्यल्प विश्लेषण के रूप में जाना जाता है और यह बीजगणितीय ज्यामितीय दृष्टिकोण से निकटता से संबंधित है, अतिरिक्त इसके किटोपोस सिद्धांत के विचारों का उपयोग उस तंत्र को छिपाने के लिए किया जाता है जिसके द्वारा निलपोटेंट अतिसूक्ष्म प्रस्तावित किए जाते हैं।[6]
  4. अति वास्तविक संख्या पद्धति में अतिसूक्ष्म के रूप में विभेदक, जो वास्तविक संख्याओं के विस्तार होते हैं जिनमें प्रतिलोम अतिसूक्ष्म और असीम रूप से बड़ी संख्याएं होती हैं। यह अब्राहम रॉबिन्सन द्वारा प्रतिपादित अमानक विश्लेषण का दृष्टिकोण है।[7]

ये दृष्टिकोण एक-दूसरे से बहुत अलग हैं, लेकिन उनके पास मात्रात्मक होने का विचार सामान्य है, अर्थात् यह नहीं कह रहा है कि एक विभेदक असीम रूप से छोटा है, लेकिन यह कितना छोटा है।

रेखीय मानचित्र के रूप में विभेदक

भिन्नताओं की सटीक समझ बनाने का एक सरल प्रकार है, पहले वास्तविक रेखा पर उन्हें रैखिक मानचित्रों के रूप में उपयोग किया जाता है। इसका उपयोग , , एक हिल्बर्ट समष्टि, एक बनच समष्टि, या अधिक सामान्यतः, एक सांस्थितिक सदिश समष्टि पर किया जा सकता है। वास्तविक रेखा के प्रकरण की व्याख्या करना सबसे आसान है। संदर्भ के आधार पर इस प्रकार के विभेदक को सहपरिवर्ती सदिश या कोटिस्पर्श सदिश के रूप में भी जाना जाता है।

R पर रैखिक मानचित्र के रूप में विभेदक

कल्पना करना पर एक वास्तविक मूल्यवान फलन है। हम चर को में एक संख्या के बदले एक फलन के रूप में पुनर्व्याख्या कर सकते हैं, अर्थात् वास्तविक रेखा पर तत्समक मानचित्र, जो वास्तविक संख्या को अपने पास ले जाता है: । तब के साथ का सम्मिश्र है, जिसका पर मूल्य है। विभेदक (जो निश्चित रूप से पर निर्भर करता है) तब एक फलन है जिसका पर मान (प्रायः पर ) एक संख्या नहीं है, लेकिन से तक एक रेखीय मानचित्र है। क्योंकि से तक एक रेखीय मानचित्र आव्यूह द्वारा दिया जाता है, यह अनिवार्य रूप से एक संख्या के समान है, लेकिन दृष्टिकोण में परिवर्तन हमें को एक अतिसूक्ष्म के रूप में सोचने और मानक अत्यल्प के साथ तुलना करने की अनुमति देता है, जो पुनः से तक केवल सर्वसमिका मानचित्र (प्रविष्टि के साथ आव्यूह) है। सर्वसमिका यह गुण है कि यदि बहुत छोटा है, तो बहुत छोटा है, जो हमें इसे अतिसूक्ष्म मानने में सक्षम बनाता है। विभेदक में समान गुण होते हैं, क्योंकि यह का एक गुणक है, और यह गुणक परिभाषा के अनुसार है। इसलिए हम इसे प्राप्त करते हैं कि , और इसलिए है। इस प्रकार हम इस विचार को पुनः प्राप्त करते हैं कि विभेदकों और का अनुपात है।

यह सिर्फ एक ट्रिक होगी यदि यह इस तथ्य के लिए नहीं है कि:

  1. यह पर के व्युत्पन्न के विचार को पर के लिए सबसे अच्छा रैखिक सन्निकटन के रूप में पकड़ता है;
  2. इसके कई सामान्यीकरण हैं।

Rn पर रेखीय मानचित्र के रूप में विभेदक

अगर से तक एक फलन है, तो हम कहते हैं कि पर अवकलनीय है[8] यदि से तक एक रेखीय मानचित्र है जैसे कि किसी भी के लिए, का एक प्रतिवेश है जैसे कि ,

अब हम एक आयामी प्रकरण में उसी तरकीब का उपयोग कर सकते हैं और अभिव्यक्ति को मानक निर्देशांक के साथ के सम्मिश्र के रूप में सोच सकते हैं (ताकि का -वाँ घटक है )। फिर भेद एक बिंदु पर से तक रैखिक मानचित्रों के सदिश समष्टि के लिए एक आधार बनाते हैं और इसलिए, यदि पर अवकलनीय है, तो हम लिख सकते हैं इन आधार तत्वों के रैखिक संयोजन के रूप में:


गुणांक के संबंध में पर के आंशिक व्युत्पन्न (परिभाषा के अनुसार) है। इसलिए, यदि सभी पर अवकलनीय है, तो हम अधिक संक्षेप में लिख सकते हैं:

एक आयामी प्रकरण में
यह पहले जैसा हो जाता है।

यह विचार सीधी तरह से से तक के फलानो के लिए सामान्यीकरण करता है। इसके अलावा, व्युत्पन्न की अन्य परिभाषाओं पर इसका निर्णायक लाभ है कि यह निर्देशांक के परिवर्तन के अंतर्गत अपरिवर्तनीय (गणित) है। इसका अर्थ यह है कि एक ही विचार का उपयोग सुचारू बहुरूपता के मध्य सुचारू मानचित्र के अंतर को परिभाषित करने के लिए किया जा सकता है।

एक तरफ: ध्यान दें कि पर के सभी आंशिक व्युत्पन्न का अस्तित्व पर विभेदक के अस्तित्व के लिए एक आवश्यक प्रतिबंध है। हालांकि यह पर्याप्त प्रतिबंध नहीं है। प्रतिउदाहरणों के लिए, गेटॉक्स व्युत्पन्न देखें।

सदिश समष्टि पर रेखीय मानचित्र के रूप में विभेदक

निरंतरता के बारे में उचित रूप से बात करने के लिए एक ही प्रक्रिया एक पर्याप्त अतिरिक्त संरचना के साथ सदिश समष्टि पर काम करती है। सबसे स्थूल प्रकरण एक हिल्बर्ट समष्टि है, जिसे पूर्ण आंतरिक समष्टि के रूप में भी जाना जाता है, जहां आंतरिक उत्पाद और उससे जुड़े मानदंड दूरी की उपयुक्त अवधारणा को परिभाषित करते हैं। यही प्रक्रिया एक बनच समष्टि के लिए काम करती है, जिसे पूर्ण नॉर्मड सदिश समष्टि के रूप में भी जाना जाता है। हालांकि, अधिक सामान्य सांस्थितिक सदिश समष्टि के लिए, कुछ विवरण अधिक अमूर्त हैं क्योंकि दूरी की कोई अवधारणा नहीं है।

परिमित आयाम के महत्वपूर्ण प्रकरण के लिए, कोई भी आंतरिक उत्पाद समष्टि एक हिल्बर्ट समष्टि है, कोई भी मानक सदिश समष्टि एक बैनाच समष्टि है और कोई भी सामयिक सदिश समष्टि पूर्ण है। नतीजतन, आप स्वेच्छाचारी आधार से एक समन्वय प्रणाली को परिभाषित कर सकते हैं और उसी तकनीक का उपयोग कर सकते हैं जो के लिए है।

फलानो के कीटाणुओं के रूप में विभेदक

यह दृष्टिकोण किसी भी विभेदक बहुरूपता पर काम करता है। अगर

  1. U और V विवृत समुच्चय हैं जिनमें p सम्मलित है
  2. निरंतर है
  3. निरंतर है

तब f p पर g के समतुल्य है, जिसे के रूप में दर्शाया गया है, यदि और केवल यदि कोई विवृत है जिसमें p ऐसा है कि W में प्रत्येक x के लिए है। p पर f का रोगाणु, जिसे निरूपित किया जाता है, p पर f के समतुल्य सभी वास्तविक सतत फलनों का समुच्चय है; य f p पर सुचारू है तब एक सुचारू रोगाणु है। अगर

  1. , और p विवृत समुच्चय हैं
  2. , , और सुचारू फलन हैं
  3. r एक वास्तविक संख्या है

तब

इससे पता चलता है कि p पर रोगाणु एक बीजगणित बनाते हैं।

आदर्श के उत्पाद होने के लिए p और पर लुप्त होने वाले सभी सुचारू कीटाणुओं का समुच्चय के रूप में को परिभाषित करें। तब p पर एक विभेदक (p पर स्पर्शज्या सदिश) का एक अवयव होता है। p पर एक सुचारू फलन f का विभेदक, जिसे के रूप में दर्शाया गया है, है।

एक समान दृष्टिकोण एक स्वेच्छाचारी समन्वय पैच में व्युत्पन्न के संदर्भ में पहले क्रम के विभेदक तुल्यता को परिभाषित करना है। तब p पर f का विभेदक सभी फलानो का समुच्चय है जो p पर के समतुल्य है।

बीजगणितीय ज्यामिति

बीजगणितीय ज्यामिति में, विभेदक और अन्य अतिसूक्ष्म धारणाओं को एक बहुत ही स्पष्ट प्रकार से नियंत्रित किया जाता है, यह स्वीकार करते हुए कि एक विभेदकिक्ष के समन्वय अंगूठी या संरचना शीफ ​​में शून्य तत्व शामिल हो सकते हैं। सबसे सरल उदाहरण दोहरी संख्या R[ε] का वलय है, जहां ε2</सुप> = 0।

यह एक बिंदु पी पर 'आर' से 'आर' तक फलन एफ के व्युत्पन्न पर बीजगणित-ज्यामितीय दृष्टिकोण से प्रेरित हो सकता है। इसके लिए, पहले ध्यान दें कि f − f(p) आदर्श (रिंग थ्योरी) I से संबंधित हैp आर पर फलानो की संख्या जो 'पी' पर गायब हो जाती है। यदि व्युत्पन्न f p पर गायब हो जाता है, तो f − f(p) वर्ग I से संबंधित हैp2 इस आदर्श का। अतः p पर f का व्युत्पन्न समतुल्य वर्ग [f − f(p)] द्वारा भागफल समष्टि (रैखिक बीजगणित) I में ग्रहण किया जा सकता हैp/मैंp2, और जेट (गणित) | f का 1-जेट (जो इसके मूल्य और इसके पहले व्युत्पन्न को कूटबद्ध करता है) सभी फलानो के समष्टि में f का समतुल्य वर्ग है।p2</उप>। बीजगणितीय जियोमीटर इस तुल्यता वर्ग को बिंदु p के गाढ़े संस्करण के लिए f के प्रतिबंध के रूप में मानते हैं, जिसका समन्वय वलय 'R' नहीं है (जो 'R' मॉड्यूलो I पर फलानो का भागफल समष्टि है।p) लेकिन R[ε] जो R modulo I पर फलानो का भागफल समष्टि हैp2</उप>। ऐसा मोटा बिंदु एक योजना (गणित) का एक सरल उदाहरण है।[5]

बीजगणितीय ज्यामिति धारणाएं

बीजगणितीय ज्यामिति में अवकलन भी महत्वपूर्ण हैं, और कई महत्वपूर्ण अवधारणाएँ हैं।

  • एबेलियन विभेदक का अर्थ सामान्यतौर पर एक बीजगणितीय वक्र या रीमैन सतह पर विभेदक वन-फॉर्म होता है।
  • रीमैन सतहों के सिद्धांत में द्विघात विभेदक (जो एबेलियन विभेदक के वर्गों की तरह व्यवहार करते हैं) भी महत्वपूर्ण हैं।
  • काहलर अवकलन बीजगणितीय ज्यामिति में अवकलन की एक सामान्य धारणा प्रदान करते हैं।

संश्लिष्ट विभेदक ज्यामिति

अतिसूक्ष्म के लिए पाँचवाँ दृष्टिकोण संश्लिष्ट विभेदक ज्यामिति की विधि है[9] या सहज अतिसूक्ष्म विश्लेषण।[10] यह बीजगणितीय-ज्यामितीय दृष्टिकोण से निकटता से संबंधित है, अतिरिक्त इसके कि अतिसूक्ष्म अधिक निहित और सहज हैं। इस दृष्टिकोण का मुख्य विचार समुच्चय की श्रेणी को आसानी से अलग-अलग समुच्चयों की दूसरी श्रेणी (गणित) के साथ बदलना है जो एक टॉपोज़ है। इस श्रेणी में, कोई भी वास्तविक संख्या, सहज फलन आदि को परिभाषित कर सकता है, लेकिन वास्तविक संख्या में स्वचालित रूप से नीलपोटेंट अतिसूक्ष्म होते हैं, इसलिए इन्हें बीजगणितीय ज्यामितीय दृष्टिकोण के रूप में हाथ से प्रस्तावित करने की आवश्यकता नहीं है। हालांकि इस नई श्रेणी में तर्क समुच्चय की श्रेणी के परिचित तर्क के समान नहीं है: विशेष रूप से, बहिष्कृत मध्य का कानून पकड़ में नहीं आता है। इसका अर्थ यह है कि समुच्चय-सैद्धांतिक गणितीय तर्क केवल रचनात्मक गणित होने पर ही असीम विश्लेषण तक विस्तारित होते हैं (उदाहरण के लिए, विरोधाभास द्वारा सबूत का उपयोग न करें)। कुछ[who?] इस नुकसान को एक धनात्मक चीज के रूप में मानते हैं, क्योंकि यह जहां कहीं भी उपलब्ध हो वहां रचनात्मक तर्क खोजने के लिए मजबूर करता है।

अमानक विश्लेषण

अतिसूक्ष्म के अंतिम दृष्टिकोण में फिर से वास्तविक संख्याओं का विस्तार करना शामिल है, लेकिन कम कठोर प्रकार से। गैर-मानक विश्लेषण दृष्टिकोण में कोई निलपोटेंट अतिसूक्ष्म नहीं होते हैं, केवल इन्वर्टिबल होते हैं, जिन्हें असीम रूप से बड़ी संख्या के गुणात्मक व्युत्क्रम के रूप में देखा जा सकता है।[7]वास्तविक संख्याओं के ऐसे विस्तार स्पष्ट रूप से वास्तविक संख्याओं के अनुक्रमों के तुल्यता वर्गों का उपयोग करके बनाए जा सकते हैं, ताकि, उदाहरण के लिए, अनुक्रम (1, 1/2, 1/3, ..., 1/n, ...) एक अपरिमेय का प्रतिनिधित्व करता है। हाइपररियल नंबरों के इस नए समुच्चय का प्रथम-क्रम तर्क सामान्य वास्तविक संख्याओं के तर्क के समान है, लेकिन पूर्णता स्वयंसिद्ध (जिसमें द्वितीय-क्रम तर्क शामिल है) पकड़ में नहीं आता है। फिर भी, यह अतिसूक्ष्म का उपयोग करके कलन के लिए एक प्रारंभिक और काफी सहज दृष्टिकोण विकसित करने के लिए पर्याप्त है, समष्टिांतरण सिद्धांत देखें।

विभेदक ज्यामिति

विभेदक की धारणा विभेदक ज्यामिति (और विभेदक सांस्थिति ) में कई अवधारणाओं को प्रेरित करती है।

  • द पुशफॉरवर्ड (विभेदक)| मैनिफोल्ड के मध्य मानचित्र का विभेदक (पुशफॉरवर्ड)।
  • विभेदक रूप एक ऐसा ढांचा प्रदान करते हैं जो विभेदक के गुणन और विभेदन को समायोजित करता है।
  • बाह्य अवकलज अवकल रूपों के विभेदन की धारणा है जो किसी फलन के कुल अवकलज का सामान्यीकरण करता है (जो कि अवकलन 1-रूप है)।
  • पुलबैक (विभेदक ज्यामिति), विशेष रूप से, लक्ष्य मैनिफोल्ड पर विभेदक 1-रूप के साथ बहुरूपता के मध्य मानचित्र बनाने के लिए चेन नियम के लिए एक ज्यामितीय नाम है।
  • सहपरिवर्ती व्युत्पन्न वेक्टर क्षेत्र और टेंसर क्षेत्र को मैनिफोल्ड पर अलग करने के लिए एक सामान्य धारणा प्रदान करते हैं, या अधिक सामान्यतः, वेक्टर बंडल के सेक्शन: कनेक्शन (वेक्टर बंडल) देखें। यह अंततः एक कनेक्शन (गणित) की सामान्य अवधारणा की ओर जाता है।

अन्य अर्थ

होमोलॉजिकल बीजगणित और बीजगणितीय सांस्थिति में विभेदक शब्द को भी अपनाया गया है, क्योंकि डे रम कोहोलॉजी में बाहरी व्युत्पन्न भूमिका निभाता है: एक कोचेन कॉम्प्लेक्स में मानचित्र्स (या कोबाउंड्री ऑपरेटर्स) diप्रायः विभेदक कहा जाता है। दोहरे रूप से, एक श्रृंखला परिसर में सीमा संचालकों को कभी-कभी सहविभेदक कहा जाता है।

विभेदक के गुण एक व्युत्पत्ति (सार बीजगणित) और एक विभेदक बीजगणित के बीजगणितीय विचारों को भी प्रेरित करते हैं।

यह भी देखें

टिप्पणियाँ


उद्धरण

  1. "Differential". Wolfram MathWorld. Retrieved February 24, 2022. The word differential has several related meaning in mathematics. In the most common context, it means "related to derivatives." So, for example, the portion of calculus dealing with taking derivatives (i.e., differentiation), is known as differential calculus.
    The word "differential" also has a more technical meaning in the theory of differential k-forms as a so-called one-form.
  2. "अंतर - ऑक्सफोर्ड डिक्शनरी द्वारा यूएस अंग्रेजी में अंतर की परिभाषा". Oxford Dictionaries - English. Archived from the original on January 3, 2014. Retrieved 13 April 2018.
  3. Boyer 1991.
  4. Darling 1994.
  5. 5.0 5.1 Eisenbud & Harris 1998.
  6. See Kock 2006 and Moerdijk & Reyes 1991.
  7. 7.0 7.1 See Robinson 1996 and Keisler 1986.
  8. See, for instance, Apostol 1967.
  9. See Kock 2006 and Lawvere 1968.
  10. See Moerdijk & Reyes 1991 and Bell 1998.


संदर्भ