लेजेंड्रे परिवर्तन: Difference between revisions
No edit summary |
|||
Line 30: | Line 30: | ||
इसे देखने के लिए पहले ध्यान दें कि अगर <math> f</math> वास्तविक रेखा पर एक उत्तल कार्य के रूप में अवकलनीय है और <math> \overline{x} </math> के कार्य का एक [[महत्वपूर्ण बिंदु (गणित)]] है <math> x \mapsto p \cdot x -f(x) </math>, तब सर्वोच्चता प्राप्त की जाती है <math> \overline{x}</math> (उत्तलता से, इस विकिपीडिया पृष्ठ में पहला चित्र देखें)। इसलिए, लीजेंड्रे का परिवर्तन <math> f</math> है <math> f^*(p)= p \cdot \overline{x} - f(\overline{x})</math>. | इसे देखने के लिए पहले ध्यान दें कि अगर <math> f</math> वास्तविक रेखा पर एक उत्तल कार्य के रूप में अवकलनीय है और <math> \overline{x} </math> के कार्य का एक [[महत्वपूर्ण बिंदु (गणित)]] है <math> x \mapsto p \cdot x -f(x) </math>, तब सर्वोच्चता प्राप्त की जाती है <math> \overline{x}</math> (उत्तलता से, इस विकिपीडिया पृष्ठ में पहला चित्र देखें)। इसलिए, लीजेंड्रे का परिवर्तन <math> f</math> है <math> f^*(p)= p \cdot \overline{x} - f(\overline{x})</math>. | ||
फिर, मान लीजिए कि पहला | फिर, मान लीजिए कि पहला अवकलज <math>f'</math>व्युत्क्रमणीय है और मान लें कि इसका व्युत्क्रम <math> g = (f')^{-1} </math> है। फिर प्रत्येक <math> p</math> के लिए, बिंदु <math> g(p)</math> फलन <math> x \mapsto px -f(x) </math>(अर्थात् <math> \overline{x} = g(p)</math> का अद्वितीय महत्वपूर्ण बिंदु <math> \overline{x}</math> है क्योंकि <math> f'(g(p))=p </math> और <math> g(p)</math> पर <math>x</math> के संबंध में फलन का पहला अवकलज <math> p-f'(g(p))=0 </math> है। इसलिए हमारे पास <math> f^*(p) = p \cdot g(p) - f(g(p))</math> है ) प्रत्येक <math> p</math> के लिए <math> p</math> के संबंध में अवकलन करने पर, हम पाते हैं<math display="block">(f^*)'(p) = g(p)+ p \cdot g'(p) - f'(g(p)) \cdot g'(p).</math> | ||
<math display="block">(f^*)'(p) = g(p)+ p \cdot g'(p) - f'(g(p)) \cdot g'(p).</math> | |||
तब से <math> f'(g(p))=p</math> यह सरल करता है <math>(f^*)'(p) = g(p) = (f')^{-1}(p)</math>. दूसरे शब्दों में,<math>(f^*)'</math> और <math>f'</math> एक दूसरे के विपरीत हैं। | तब से <math> f'(g(p))=p</math> यह सरल करता है <math>(f^*)'(p) = g(p) = (f')^{-1}(p)</math>. दूसरे शब्दों में,<math>(f^*)'</math> और <math>f'</math> एक दूसरे के विपरीत हैं। | ||
सामान्यतः, यदि <math> h' = (f')^{-1} </math> <math> f' </math> के व्युत्क्रम के रूप में, तो <math> h' = (f^*)' </math> तो समाकलन से <math> f^* = h +c </math> प्राप्त होता है। एक स्थिर <math> c </math> के साथ। | |||
व्यावहारिक | व्यावहारिक रूप में, <math>f(x)</math> दिया हुआ है, <math>xf'(x)-f(x)</math>बनाम <math>f'(x)</math>का पैरामीट्रिक प्लॉट <math>g(p)</math> बनाम <math>p</math> के ग्राफ के बराबर है। | ||
कुछ मामलों में (उदाहरण के लिए थर्मोडायनामिक क्षमता, नीचे), एक गैर-मानक आवश्यकता का उपयोग किया जाता है, | कुछ मामलों में (उदाहरण के लिए थर्मोडायनामिक क्षमता, नीचे), एक गैर-मानक आवश्यकता का उपयोग किया जाता है, जो {{math|''f'' *}} की एक वैकल्पिक परिभाषा के बराबर होता है, जिसमें ऋण चिह्न होता है,<math display="block">f(x) - f^*(p) = xp.</math> | ||
<math display="block">f(x) - f^*(p) = xp.</math> | |||
Revision as of 12:00, 27 April 2023
गणित में, एड्रियन मैरी लीजेंड् के नाम पर लेजेंड्रे ट्रांसफॉर्मेशन (या लेजेंड्रे ट्रांसफॉर्मेशन) एक वास्तविक चर के वास्तविक-मूल्यवान उत्तल कार्यों पर एक समावेशी परिवर्तन है। भौतिक समस्याओं में, इसका उपयोग एक मात्रा (जैसे वेग, दबाव, या तापमान) के कार्यों को संयुग्मित मात्रा (संवेग, मात्रा और एन्ट्रापी, क्रमशः) के कार्यों में परिवर्तित करने के लिए किया जाता है। इस तरह, यह आमतौर पर चिरसम्मत यांत्रिकी में प्रयोग किया जाता है ताकि लैग्रेंगियन औपचारिकता (या इसके विपरीत) से हेमिल्टनियन औपचारिकता को प्राप्त किया जा सके और ऊष्मप्रवैगिकी में थर्मोडायनामिक क्षमता प्राप्त करने के साथ-साथ कई चर के अंतर समीकरणों के समाधान में भी किया जा सके।
वास्तविक रेखा पर पर्याप्त रूप से सुचारू कार्यों के लिए, लेजेंड्रे ट्रांसफॉर्म एक फ़ंक्शन को निर्दिष्ट किया जा सकता है, एक योगात्मक स्थिरांक तक, इस शर्त के अनुसार कि फ़ंक्शंस के पहले डेरिवेटिव एक दूसरे के व्युत्क्रम कार्य हैं। इसे यूलर के व्युत्पन्न संकेतन के रूप में व्यक्त किया जा सकता हैthumb|right|कार्यक्रम अंतराल पर परिभाषित किया गया है . किसी प्रदत्त के लिए , के अंतर पर अधिकतम लेता है . इस प्रकार, लीजेंड्रे का परिवर्तन है .|link=|alt={\displaystyle f(x)}
या समकक्ष रूप से और लग्रेंज के अंकन में है।
एफ़िन रिक्त स्थान और गैर-उत्तल कार्यों के लिए लीजेंड्रे परिवर्तन का सामान्यीकरण उत्तल संयुग्म (जिसे लीजेंड्रे-फेनशेल परिवर्तन भी कहा जाता है) के रूप में जाना जाता है, जिसका उपयोग फ़ंक्शन के उत्तल पतवार के निर्माण के लिए किया जा सकता है।
परिभाषा
मान लीजिये अंतराल होने दें, और एक उत्तल फलन; तब का लेजेंड्रे रूपांतरण फलन द्वारा परिभाषित किया गया है।
उत्तल कार्यों के लिए सामान्यीकरण एक उत्तल सेट पर सीधा है: में डोमेन है
फलन को का उत्तल संयुग्मी फलन कहते हैं। ऐतिहासिक कारणों (विश्लेषणात्मक यांत्रिकी में निहित) के लिए, संयुग्म चर को अक्सर के बजाय के रूप में दर्शाया जाता है। यदि उत्तल फलन पूरी रेखा पर परिभाषित हो और हर जगह अवकलनीय हो, तब
लीजेंड्रे ट्रांसफॉर्मेशन बिंदुओं और रेखाओं के बीच के द्वैत संबंध का एक अनुप्रयोग है। द्वारा निर्दिष्ट कार्यात्मक संबंध को समान रूप से बिंदुओं के सेट के रूप में या उनके ढलान और अवरोधन मानों द्वारा निर्दिष्ट स्पर्शरेखा रेखाओं के सेट के रूप में प्रदर्शित किया जा सकता है।
डेरिवेटिव के संदर्भ में लेजेंड्रे ट्रांसफॉर्म को समझना
अवकलनीय उत्तल फलन के लिए पहले व्युत्पन्न के साथ वास्तविक रेखा पर और इसका उलटा , लीजेंड्रे का रूपांतरण , , निर्दिष्ट किया जा सकता है, एक योज्य स्थिरांक तक, इस शर्त के द्वारा कि कार्यों के पहले डेरिवेटिव एक दूसरे के व्युत्क्रम कार्य हैं, अर्थात, और .
इसे देखने के लिए पहले ध्यान दें कि अगर वास्तविक रेखा पर एक उत्तल कार्य के रूप में अवकलनीय है और के कार्य का एक महत्वपूर्ण बिंदु (गणित) है , तब सर्वोच्चता प्राप्त की जाती है (उत्तलता से, इस विकिपीडिया पृष्ठ में पहला चित्र देखें)। इसलिए, लीजेंड्रे का परिवर्तन है .
फिर, मान लीजिए कि पहला अवकलज व्युत्क्रमणीय है और मान लें कि इसका व्युत्क्रम है। फिर प्रत्येक के लिए, बिंदु फलन (अर्थात् का अद्वितीय महत्वपूर्ण बिंदु है क्योंकि और पर के संबंध में फलन का पहला अवकलज है। इसलिए हमारे पास है ) प्रत्येक के लिए के संबंध में अवकलन करने पर, हम पाते हैं
तब से यह सरल करता है . दूसरे शब्दों में, और एक दूसरे के विपरीत हैं।
सामान्यतः, यदि के व्युत्क्रम के रूप में, तो तो समाकलन से प्राप्त होता है। एक स्थिर के साथ।
व्यावहारिक रूप में, दिया हुआ है, बनाम का पैरामीट्रिक प्लॉट बनाम के ग्राफ के बराबर है।
कुछ मामलों में (उदाहरण के लिए थर्मोडायनामिक क्षमता, नीचे), एक गैर-मानक आवश्यकता का उपयोग किया जाता है, जो f * की एक वैकल्पिक परिभाषा के बराबर होता है, जिसमें ऋण चिह्न होता है,
गुण
- लीजेंड्रे एक उत्तल फलन का रूपांतरण करता है, जिसके दोहरे अवकलज सभी धनात्मक के रूप में उत्तल होते हैं।आइए इसे एक दोहरे अवकलनीय फलन द्वारा प्रदर्शित करें एक सकारात्मक दोहरे व्युत्पन्न के साथ (यानी, सकारात्मक मूल्यों के रूप में सभी दोहरे व्युत्पन्न मान) और एक विशेषण (उलटा) व्युत्पन्न के साथ। निश्चित के लिए , होने देना फलन को अधिकतम करें ऊपर . फिर लीजेंड्रे का ट्रांसफॉर्मेशन है , नोट किया कि पर निर्भर करता है (जो ऊपर इस पृष्ठ के पहले चित्र में दिखाया जा सकता है)। इस प्रकार,अधिकतम करने की स्थिति से . इस प्रकार कहाँ , मतलब है कि का विलोम है जिसका व्युत्पन्न है (इसलिए ). ध्यान दें कि उलटा कार्यों और भेदभाव के साथ भी अलग-अलग है | व्युत्पन्न (उलटा कार्य नियम) के बाद,इस प्रकार लीजेंड्रे परिवर्तन अवकलनीय कार्यों की संरचना है, इसलिए यह अवकलनीय है। उत्पाद नियम और श्रृंखला नियम लागू करने से प्राप्त होता हैदे रही हैइसलिए उत्तल है।
- इससे पता चलता है कि लिजेंड्रे रूपांतरण एक अंतर्वलन (गणित) है, अर्थात, : के लिए उपरोक्त समानता का उपयोग करके , और इसका व्युत्पन्न,
उदाहरण
उदाहरण 1
घातीय कार्य पर विचार करें जिसके पास डोमेन है .
परिभाषा से, लीजेंड्रे रूपांतरण है
कहाँ तय होना बाकी है। सर्वोच्चता का मूल्यांकन करने के लिए, के व्युत्पन्न की गणना करें इसके संबंध में और शून्य के बराबर सेट करें:
ढूँढ़ने के लिए
हम गणना करते हैं
जिससे इसकी पुष्टि हो रही है आशा के अनुसार।
उदाहरण 2
होने देना f(x) = cx2 पर परिभाषित R, कहाँ c > 0 एक निश्चित नियतांक है।
के लिए x* निश्चित, का कार्य x, x*x − f(x) = x*x − cx2 का पहला व्युत्पन्न है x* − 2cx और दूसरा व्युत्पन्न −2c; पर एक स्थिर बिंदु है x = x*/2c, जो हमेशा अधिकतम होता है।
इस प्रकार, I* = R और
उदाहरण 3
होने देना f(x) = x2 के लिए x ∈ I = [2, 3].
के लिए x* हल किया गया, x*x − f(x) लगातार चालू है I कॉम्पैक्ट जगह , इसलिए यह हमेशा उस पर एक सीमित अधिकतम लेता है; यह इस प्रकार है कि I* = R.
पर स्थिर बिंदु x = x*/2 डोमेन में है [2, 3] अगर और केवल अगर 4 ≤ x* ≤ 6, अन्यथा अधिकतम या तो पर लिया जाता है x = 2, या x = 3. यह इस प्रकार है कि
उदाहरण 4
कार्यक्रम f(x) = cx उत्तल है, प्रत्येक के लिए x (लीजेंड्रे परिवर्तन को अच्छी तरह से परिभाषित करने के लिए सख्त उत्तलता की आवश्यकता नहीं है)। स्पष्ट रूप से x*x − f(x) = (x* − c)x के कार्य के रूप में ऊपर से कभी भी बाध्य नहीं होता है x, जब तक x* − c = 0. इस तरह f* पर परिभाषित किया गया है I* = {c} और f*(c) = 0.
कोई अनैच्छिकता की जांच कर सकता है: बेशक x*x − f*(x*) हमेशा एक फ़ंक्शन के रूप में घिरा होता है x* ∈ {c}, इस तरह I ** = R. फिर, सभी के लिए x किसी के पास
उदाहरण 5: कई चर
होने देना
तब f उत्तल है, और
अपने पास X* = Rn, और
लीजेंड्रे ट्रांसफॉर्म के तहत अंतर का व्यवहार
लेजेंड्रे रूपांतरण को भागों द्वारा एकीकरण से जोड़ा गया है, p dx = d(px) − x dp.
होने देना f दो स्वतंत्र चरों का एक फलन हो x और y, अंतर के साथ
इस प्रकार हम कार्य पर विचार करते हैं g(p, y) = f − px ताकि
अनुप्रयोग
विश्लेषणात्मक यांत्रिकी
लैग्रेंजियन यांत्रिकी से हैमिल्टनियन यांत्रिकी को प्राप्त करने के लिए और इसके विपरीत चिरसम्मत यांत्रिकी में एक लीजेंड्रे परिवर्तन का उपयोग किया जाता है। एक विशिष्ट Lagrangian का रूप है
इसलिए लीजेंड्रे का रूपांतरण के एक फलन के रूप में हैमिल्टनियन फ़ंक्शन है,
ऊष्मप्रवैगिकी
थर्मोडायनामिक्स में लीजेंड्रे के उपयोग के पीछे की रणनीति एक ऐसे फ़ंक्शन से स्थानांतरित करना है जो एक चर पर निर्भर करता है जो एक नए (संयुग्मित) फ़ंक्शन पर निर्भर करता है जो एक नए चर पर निर्भर करता है, मूल के संयुग्म। नया चर मूल चर के संबंध में मूल कार्य का आंशिक व्युत्पन्न है। नया कार्य मूल कार्य और पुराने और नए चर के उत्पाद के बीच का अंतर है। आमतौर पर, यह परिवर्तन उपयोगी होता है क्योंकि यह निर्भरता को स्थानांतरित करता है, उदाहरण के लिए, एक गहन और व्यापक गुणों से ऊर्जा को इसके संयुग्मित गहन चर में बदल देता है, जिसे अक्सर भौतिक प्रयोग में अधिक आसानी से नियंत्रित किया जा सकता है।
उदाहरण के लिए, आंतरिक ऊर्जा व्यापक मात्रा एन्ट्रापी, आयतन और रासायनिक संरचना का एक स्पष्ट कार्य है
एंट्रॉपी के व्यापक चर से ऊर्जा की निर्भरता को स्थानांतरित करना भी संभव है, S, (अक्सर अधिक सुविधाजनक) गहन चर के लिए T, जिसके परिणामस्वरूप हेल्महोल्ट्ज़ ऊर्जा और गिब्स ऊर्जा उष्मागतिक मुक्त ऊर्जा प्राप्त होती है। हेल्महोल्ट्ज़ मुक्त ऊर्जा, A, और गिब्स ऊर्जा, G, क्रमशः आंतरिक ऊर्जा और एन्थैल्पी के लीजेंड्रे रूपांतरणों को करके प्राप्त किया जाता है,
एक उदाहरण - चर संधारित्र
भौतिकी के एक अन्य उदाहरण के रूप में, समानांतर-प्लेट कैपेसिटर पर विचार करें, जिसमें प्लेटें एक दूसरे के सापेक्ष गति कर सकती हैं। ऐसा संधारित्र विद्युत ऊर्जा को स्थानांतरित करने की अनुमति देता है जो प्लेटों पर कार्य करने वाले बल द्वारा किए गए बाहरी यांत्रिक कार्य में संधारित्र में संग्रहीत होता है। कोई विद्युत आवेश को सिलेंडर (इंजन) में गैस के आवेश के समान मान सकता है, जिसके परिणामस्वरूप पिस्टन पर यांत्रिक बल लगाया जाता है।
के कार्य के रूप में प्लेटों पर बल की गणना करें x, वह दूरी जो उन्हें अलग करती है। बल खोजने के लिए, संभावित ऊर्जा की गणना करें, और फिर बल की परिभाषा को संभावित ऊर्जा फ़ंक्शन के ढाल के रूप में लागू करें।
समाई के संधारित्र में संग्रहीत ऊर्जा C(x) और चार्ज करें Q है
बल F तब विद्युत क्षेत्र के कारण प्लेटों के बीच होता है
संभाव्यता सिद्धांत
बड़े विचलन सिद्धांत में, दर फ़ंक्शन को एक यादृच्छिक चर के क्षण उत्पन्न करने वाले फ़ंक्शन के लघुगणक के लीजेंड्रे परिवर्तन के रूप में परिभाषित किया गया है। दर फलन का एक महत्वपूर्ण अनुप्रयोग आई.आई.डी. के योगों की पुच्छ संभावनाओं की गणना में है। यादृच्छिक चर।
सूक्ष्मअर्थशास्त्र
आपूर्ति (अर्थशास्त्र) खोजने की प्रक्रिया में सूक्ष्मअर्थशास्त्र में लेजेंड्रे परिवर्तन स्वाभाविक रूप से उत्पन्न होता है S(P) किसी उत्पाद का एक निश्चित मूल्य दिया जाता है P लागत वक्र जानने के लिए बाजार पर C(Q), यानी निर्माता को बनाने/खनन/आदि की लागत। Q दिए गए उत्पाद की इकाइयां।
एक साधारण सिद्धांत केवल लागत फलन पर आधारित आपूर्ति वक्र के आकार की व्याख्या करता है। मान लीजिए कि हमारे उत्पाद की एक इकाई का बाजार मूल्य है P. इस उत्पाद को बेचने वाली कंपनी के लिए, सबसे अच्छी रणनीति उत्पादन को समायोजित करना है Q ताकि इसका लाभ अधिकतम हो। हम लाभ को अधिकतम कर सकते हैं
Qopt इष्टतम मात्रा का प्रतिनिधित्व करता है Q माल की जो निर्माता आपूर्ति करने को तैयार है, जो वास्तव में आपूर्ति ही है:
ज्यामितीय व्याख्या
कड़ाई से उत्तल फ़ंक्शन के लिए, लीजेंड्रे परिवर्तन को फ़ंक्शन के फ़ंक्शन के ग्राफ़ और ग्राफ़ के स्पर्शरेखा के परिवार के बीच मैपिंग के रूप में व्याख्या किया जा सकता है। (एक चर के एक फलन के लिए, स्पर्शरेखा सभी पर अच्छी तरह से परिभाषित होती है, लेकिन अधिकांश गणनीय सेट बिंदुओं पर, क्योंकि एक उत्तल कार्य व्युत्पन्न होता है, लेकिन अधिकांश बिंदुओं पर।)
ढलान के साथ एक रेखा का समीकरण और वाई-अवरोधन |संवाद द्वारा दिया गया है ( ) इस रेखा के लिए किसी फ़ंक्शन के ग्राफ़ को स्पर्श करने के लिए बिंदु पर आवश्यक है
एक से अधिक आयामों में किंवदंती परिवर्तन
एक खुले सेट उत्तल उपसमुच्चय पर एक भिन्न वास्तविक-मूल्यवान फ़ंक्शन के लिए U का Rn जोड़ी के लीजेंड्रे संयुग्म (U, f) को जोड़ी के रूप में परिभाषित किया गया है (V, g), कहाँ V की छवि है U ग्रेडिएंट मैपिंग के तहत Df, और g कार्य चालू है V सूत्र द्वारा दिया गया
जब फ़ंक्शन अलग-अलग नहीं होता है, तब भी लीजेंड्रे ट्रांसफॉर्मेशन को बढ़ाया जा सकता है, और इसे लीजेंड्रे सौंफ परिवर्तन के रूप में जाना जाता है। इस अधिक सामान्य सेटिंग में, कुछ गुण खो जाते हैं: उदाहरण के लिए, लीजेंड्रे ट्रांसफ़ॉर्म अब अपना व्युत्क्रम नहीं है (जब तक कि कोई अतिरिक्त मान्यताएँ न हों, जैसे उत्तल कार्य)।
कई गुना पर किंवदंती परिवर्तन
होने देना एक चिकनी कई गुना हो, चलो और एक सदिश बंडल चालू हो और इसके संबद्ध बंडल प्रक्षेपण, क्रमशः। होने देना एक सुचारू कार्य हो। हम सोचते हैं चिरसम्मत मामले के साथ सादृश्य द्वारा एक Lagrangian यांत्रिकी के रूप में जहां , और कुछ सकारात्मक संख्या के लिए और फलन .
हमेशा की तरह, का दोहरा बंडल द्वारा निरूपित किया जाता है . का रेशा ऊपर निरूपित किया जाता है , और का प्रतिबंध को द्वारा निरूपित किया जाता है . द लीजेंड्रे ट्रांसफॉर्मेशन ऑफ चिकनी morphism है
स्थानीय रूप से लीजेंड्रे परिवर्तन का वर्णन करने के लिए, आइए जिस पर एक समन्वय चार्ट हो तुच्छ है। का तुच्छीकरण चुनना ऊपर , हम चार्ट प्राप्त करते हैं और . इन चार्टों के संदर्भ में, हमारे पास है , कहाँ
यदि, जैसा कि चिरसम्मत मामले में, का प्रतिबंध प्रत्येक फाइबर के लिए सख्ती से उत्तल है और एक सकारात्मक निश्चित द्विघात रूप से नीचे एक स्थिर है, फिर लिजेंड्रे रूपांतरित होता है डिफियोमोर्फिज्म है।[2] लगता है कि एक भिन्नता है और चलो द्वारा परिभाषित "हैमिल्टनियन मैकेनिक्स" फ़ंक्शन हो
और गुण
स्केलिंग गुण
लीजेंड्रे ट्रांसफॉर्मेशन में निम्नलिखित स्केलिंग गुण हैं: के लिए a > 0,
अनुवाद के तहत व्यवहार
उलटा के तहत व्यवहार
रैखिक परिवर्तनों के तहत व्यवहार
होने देना A : Rn → Rm एक रैखिक परिवर्तन हो। किसी उत्तल फलन के लिए f पर Rn, किसी के पास
अनौपचारिक कनवल्शन
दो कार्यों का अनौपचारिक दृढ़ संकल्प f और g परिभाषित किया जाता है
फेनचेल की असमानता
किसी फलन के लिए f और इसका उत्तल संयुग्म f * फेनशेल की असमानता (जिसे फेनशेल-यंग असमानता के रूप में भी जाना जाता है) प्रत्येक के लिए लागू होती है x ∈ X और p ∈ X*, यानी स्वतंत्र x, p जोड़े,
यह भी देखें
- दोहरी वक्र
- प्रोजेक्टिव द्वंद्व
- उत्पादों के लिए यंग की असमानता
- उत्तल संयुग्म
- मोरो की प्रमेय
- भागों द्वारा एकीकरण
- फेनचेल का द्वैत प्रमेय
संदर्भ
- ↑ "Legendre Transform | Nick Alger // Maps, art, etc". Archived from the original on 2015-03-12. Retrieved 2011-01-26.
- ↑ 2.0 2.1 Ana Cannas da Silva. Lectures on Symplectic Geometry, Corrected 2nd printing. Springer-Verlag, 2008. pp. 147-148. ISBN 978-3-540-42195-5.
- Courant, Richard; Hilbert, David (2008). Methods of Mathematical Physics. Vol. 2. John Wiley & Sons. ISBN 978-0471504399.
- Arnol'd, Vladimir Igorevich (1989). Mathematical Methods of Classical Mechanics (2nd ed.). Springer. ISBN 0-387-96890-3.
- Fenchel, W. (1949). "On conjugate convex functions", Can. J. Math 1: 73-77.
- Rockafellar, R. Tyrrell (1996) [1970]. Convex Analysis. Princeton University Press. ISBN 0-691-01586-4.
- Zia, R. K. P.; Redish, E. F.; McKay, S. R. (2009). "Making sense of the Legendre transform". American Journal of Physics. 77 (7): 614. arXiv:0806.1147. Bibcode:2009AmJPh..77..614Z. doi:10.1119/1.3119512. S2CID 37549350.
अग्रिम पठन
- Nielsen, Frank (2010-09-01). "Legendre transformation and information geometry" (PDF). Retrieved 2016-01-24.
- Touchette, Hugo (2005-07-27). "Legendre-Fenchel transforms in a nutshell" (PDF). Retrieved 2016-01-24.
- Touchette, Hugo (2006-11-21). "Elements of convex analysis" (PDF). Archived from the original (PDF) on 2016-02-01. Retrieved 2016-01-24.
बाहरी संबंध
- Legendre transform with figures at maze5.net
- Legendre and Legendre-Fenchel transforms in a step-by-step explanation at onmyphd.com