लेजेंड्रे परिवर्तन: Difference between revisions

From Vigyanwiki
No edit summary
Line 30: Line 30:
इसे देखने के लिए पहले ध्यान दें कि अगर <math> f</math> वास्तविक रेखा पर एक उत्तल कार्य के रूप में अवकलनीय है और <math> \overline{x} </math> के कार्य का एक [[महत्वपूर्ण बिंदु (गणित)]] है <math> x \mapsto p \cdot x -f(x) </math>, तब सर्वोच्चता प्राप्त की जाती है <math> \overline{x}</math> (उत्तलता से, इस विकिपीडिया पृष्ठ में पहला चित्र देखें)। इसलिए, लीजेंड्रे का परिवर्तन <math> f</math> है <math> f^*(p)= p \cdot \overline{x} - f(\overline{x})</math>.
इसे देखने के लिए पहले ध्यान दें कि अगर <math> f</math> वास्तविक रेखा पर एक उत्तल कार्य के रूप में अवकलनीय है और <math> \overline{x} </math> के कार्य का एक [[महत्वपूर्ण बिंदु (गणित)]] है <math> x \mapsto p \cdot x -f(x) </math>, तब सर्वोच्चता प्राप्त की जाती है <math> \overline{x}</math> (उत्तलता से, इस विकिपीडिया पृष्ठ में पहला चित्र देखें)। इसलिए, लीजेंड्रे का परिवर्तन <math> f</math> है <math> f^*(p)= p \cdot \overline{x} - f(\overline{x})</math>.


फिर, मान लीजिए कि पहला व्युत्पन्न <math>f'</math> व्युत्क्रमणीय है और प्रतिलोम होने दें <math> g = (f')^{-1} </math>. फिर प्रत्येक के लिए <math> p</math>, बिंदु <math> g(p)</math> अद्वितीय महत्वपूर्ण बिंदु है <math> \overline{x}</math> फलन का <math> x \mapsto px -f(x) </math> (अर्थात।, <math> \overline{x} = g(p)</math>) क्योंकि <math> f'(g(p))=p </math> और फ़ंक्शन का पहला डेरिवेटिव के संबंध में <math>x</math> पर <math> g(p)</math> है <math> p-f'(g(p))=0 </math>. इसलिए हमारे पास है <math> f^*(p) = p \cdot g(p) - f(g(p))</math> प्रत्येक के लिए <math> p</math>. के संबंध में विभेद करके <math> p</math>, हम देखतें है
फिर, मान लीजिए कि पहला अवकलज <math>f'</math>व्युत्क्रमणीय है और मान लें कि इसका व्युत्क्रम <math> g = (f')^{-1} </math> है। फिर प्रत्येक <math> p</math> के लिए, बिंदु <math> g(p)</math> फलन <math> x \mapsto px -f(x) </math>(अर्थात् <math> \overline{x} = g(p)</math> का अद्वितीय महत्वपूर्ण बिंदु <math> \overline{x}</math> है क्योंकि <math> f'(g(p))=p </math> और <math> g(p)</math> पर <math>x</math> के संबंध में फलन का पहला अवकलज <math> p-f'(g(p))=0 </math> है। इसलिए हमारे पास <math> f^*(p) = p \cdot g(p) - f(g(p))</math> है ) प्रत्येक <math> p</math> के लिए <math> p</math> के संबंध में अवकलन करने पर, हम पाते हैं<math display="block">(f^*)'(p) = g(p)+ p \cdot g'(p) - f'(g(p)) \cdot g'(p).</math>
<math display="block">(f^*)'(p) = g(p)+ p \cdot g'(p) - f'(g(p)) \cdot g'(p).</math>
 
 
तब से <math> f'(g(p))=p</math> यह सरल करता है <math>(f^*)'(p) = g(p) = (f')^{-1}(p)</math>. दूसरे शब्दों में,<math>(f^*)'</math> और <math>f'</math> एक दूसरे के विपरीत हैं।
तब से <math> f'(g(p))=p</math> यह सरल करता है <math>(f^*)'(p) = g(p) = (f')^{-1}(p)</math>. दूसरे शब्दों में,<math>(f^*)'</math> और <math>f'</math> एक दूसरे के विपरीत हैं।


सामान्य तौर पर, अगर <math> h' = (f')^{-1} </math> के विपरीत के रूप में <math> f' </math>, तब <math> h' = (f^*)' </math> तो एकीकरण देता है <math> f^* = h +c </math>. एक स्थिरांक के साथ <math> c </math>.
सामान्यतः, यदि <math> h' = (f')^{-1} </math> <math> f' </math> के व्युत्क्रम के रूप में, तो <math> h' = (f^*)' </math> तो समाकलन से <math> f^* = h +c </math> प्राप्त होता है। एक स्थिर <math> c </math> के साथ।


व्यावहारिक दृष्टि से दिया गया है <math>f(x)</math>, का पैरामीट्रिक प्लॉट <math>xf'(x)-f(x)</math> बनाम <math>f'(x)</math> के ग्राफ के बराबर है <math>g(p)</math> बनाम <math>p</math>.
व्यावहारिक रूप में, <math>f(x)</math> दिया हुआ है, <math>xf'(x)-f(x)</math>बनाम <math>f'(x)</math>का पैरामीट्रिक प्लॉट <math>g(p)</math> बनाम <math>p</math> के ग्राफ के बराबर है।


कुछ मामलों में (उदाहरण के लिए थर्मोडायनामिक क्षमता, नीचे), एक गैर-मानक आवश्यकता का उपयोग किया जाता है, जिसकी वैकल्पिक परिभाषा होती है {{math|''f'' *}} ऋण चिह्न के साथ,
कुछ मामलों में (उदाहरण के लिए थर्मोडायनामिक क्षमता, नीचे), एक गैर-मानक आवश्यकता का उपयोग किया जाता है, जो {{math|''f'' *}} की एक वैकल्पिक परिभाषा के बराबर होता है, जिसमें ऋण चिह्न होता है,<math display="block">f(x) - f^*(p) = xp.</math>
<math display="block">f(x) - f^*(p) = xp.</math>





Revision as of 12:00, 27 April 2023

गणित में, एड्रियन मैरी लीजेंड् के नाम पर लेजेंड्रे ट्रांसफॉर्मेशन (या लेजेंड्रे ट्रांसफॉर्मेशन) एक वास्तविक चर के वास्तविक-मूल्यवान उत्तल कार्यों पर एक समावेशी परिवर्तन है। भौतिक समस्याओं में, इसका उपयोग एक मात्रा (जैसे वेग, दबाव, या तापमान) के कार्यों को संयुग्मित मात्रा (संवेग, मात्रा और एन्ट्रापी, क्रमशः) के कार्यों में परिवर्तित करने के लिए किया जाता है। इस तरह, यह आमतौर पर चिरसम्मत यांत्रिकी में प्रयोग किया जाता है ताकि लैग्रेंगियन औपचारिकता (या इसके विपरीत) से हेमिल्टनियन औपचारिकता को प्राप्त किया जा सके और ऊष्मप्रवैगिकी में थर्मोडायनामिक क्षमता प्राप्त करने के साथ-साथ कई चर के अंतर समीकरणों के समाधान में भी किया जा सके।

वास्तविक रेखा पर पर्याप्त रूप से सुचारू कार्यों के लिए, लेजेंड्रे ट्रांसफॉर्म एक फ़ंक्शन को निर्दिष्ट किया जा सकता है, एक योगात्मक स्थिरांक तक, इस शर्त के अनुसार कि फ़ंक्शंस के पहले डेरिवेटिव एक दूसरे के व्युत्क्रम कार्य हैं। इसे यूलर के व्युत्पन्न संकेतन के रूप में व्यक्त किया जा सकता हैthumb|right|कार्यक्रम अंतराल पर परिभाषित किया गया है . किसी प्रदत्त के लिए , के अंतर पर अधिकतम लेता है . इस प्रकार, लीजेंड्रे का परिवर्तन है .|link=|alt={\displaystyle f(x)}

जहाँ अवकलन का संचालिका है, संबद्ध फलन के लिए एक तर्क या इनपुट का प्रतिनिधित्व करता है, एक व्युत्क्रम फलन है जैसे


या समकक्ष रूप से और लग्रेंज के अंकन में है।

एफ़िन रिक्त स्थान और गैर-उत्तल कार्यों के लिए लीजेंड्रे परिवर्तन का सामान्यीकरण उत्तल संयुग्म (जिसे लीजेंड्रे-फेनशेल परिवर्तन भी कहा जाता है) के रूप में जाना जाता है, जिसका उपयोग फ़ंक्शन के उत्तल पतवार के निर्माण के लिए किया जा सकता है।

परिभाषा

मान लीजिये अंतराल होने दें, और एक उत्तल फलन; तब का लेजेंड्रे रूपांतरण फलन द्वारा परिभाषित किया गया है।

जहाँ (सप), के ऊपर सर्वोच्चता को दर्शाता है (अर्थात, को इस प्रकार चुना गया है कि अधिकतम हो जाता है), और डोमेन है।
परिवर्तन हमेशा अच्छी तरह से परिभाषित होता है जब उत्तल कार्य है।


उत्तल कार्यों के लिए सामान्यीकरण एक उत्तल सेट पर सीधा है: में डोमेन है

द्वारा परिभाषित किया गया है
जहाँ के डॉट उत्पाद को और दर्शाता है


फलन को का उत्तल संयुग्मी फलन कहते हैं। ऐतिहासिक कारणों (विश्लेषणात्मक यांत्रिकी में निहित) के लिए, संयुग्म चर को अक्सर के बजाय के रूप में दर्शाया जाता है। यदि उत्तल फलन पूरी रेखा पर परिभाषित हो और हर जगह अवकलनीय हो, तब

प्रवणता वाले के ग्राफ़ की स्पर्शरेखा रेखा के -प्रतिच्छेद के ऋणात्मक के रूप में व्याख्या की जा सकती है।


लीजेंड्रे ट्रांसफॉर्मेशन बिंदुओं और रेखाओं के बीच के द्वैत संबंध का एक अनुप्रयोग है। द्वारा निर्दिष्ट कार्यात्मक संबंध को समान रूप से बिंदुओं के सेट के रूप में या उनके ढलान और अवरोधन मानों द्वारा निर्दिष्ट स्पर्शरेखा रेखाओं के सेट के रूप में प्रदर्शित किया जा सकता है।

डेरिवेटिव के संदर्भ में लेजेंड्रे ट्रांसफॉर्म को समझना

अवकलनीय उत्तल फलन के लिए पहले व्युत्पन्न के साथ वास्तविक रेखा पर और इसका उलटा , लीजेंड्रे का रूपांतरण , , निर्दिष्ट किया जा सकता है, एक योज्य स्थिरांक तक, इस शर्त के द्वारा कि कार्यों के पहले डेरिवेटिव एक दूसरे के व्युत्क्रम कार्य हैं, अर्थात, और .

इसे देखने के लिए पहले ध्यान दें कि अगर वास्तविक रेखा पर एक उत्तल कार्य के रूप में अवकलनीय है और के कार्य का एक महत्वपूर्ण बिंदु (गणित) है , तब सर्वोच्चता प्राप्त की जाती है (उत्तलता से, इस विकिपीडिया पृष्ठ में पहला चित्र देखें)। इसलिए, लीजेंड्रे का परिवर्तन है .

फिर, मान लीजिए कि पहला अवकलज व्युत्क्रमणीय है और मान लें कि इसका व्युत्क्रम है। फिर प्रत्येक के लिए, बिंदु फलन (अर्थात् का अद्वितीय महत्वपूर्ण बिंदु है क्योंकि और पर के संबंध में फलन का पहला अवकलज है। इसलिए हमारे पास है ) प्रत्येक के लिए के संबंध में अवकलन करने पर, हम पाते हैं


तब से यह सरल करता है . दूसरे शब्दों में, और एक दूसरे के विपरीत हैं।

सामान्यतः, यदि के व्युत्क्रम के रूप में, तो तो समाकलन से प्राप्त होता है। एक स्थिर के साथ।

व्यावहारिक रूप में, दिया हुआ है, बनाम का पैरामीट्रिक प्लॉट बनाम के ग्राफ के बराबर है।

कुछ मामलों में (उदाहरण के लिए थर्मोडायनामिक क्षमता, नीचे), एक गैर-मानक आवश्यकता का उपयोग किया जाता है, जो f * की एक वैकल्पिक परिभाषा के बराबर होता है, जिसमें ऋण चिह्न होता है,


गुण

  • लीजेंड्रे एक उत्तल फलन का रूपांतरण करता है, जिसके दोहरे अवकलज सभी धनात्मक के रूप में उत्तल होते हैं।
    आइए इसे एक दोहरे अवकलनीय फलन द्वारा प्रदर्शित करें एक सकारात्मक दोहरे व्युत्पन्न के साथ (यानी, सकारात्मक मूल्यों के रूप में सभी दोहरे व्युत्पन्न मान) और एक विशेषण (उलटा) व्युत्पन्न के साथ।
    निश्चित के लिए , होने देना फलन को अधिकतम करें ऊपर . फिर लीजेंड्रे का ट्रांसफॉर्मेशन है , नोट किया कि पर निर्भर करता है (जो ऊपर इस पृष्ठ के पहले चित्र में दिखाया जा सकता है)। इस प्रकार,
    अधिकतम करने की स्थिति से .
    इस प्रकार कहाँ , मतलब है कि का विलोम है जिसका व्युत्पन्न है (इसलिए ).
    ध्यान दें कि उलटा कार्यों और भेदभाव के साथ भी अलग-अलग है | व्युत्पन्न (उलटा कार्य नियम) के बाद,
    इस प्रकार लीजेंड्रे परिवर्तन अवकलनीय कार्यों की संरचना है, इसलिए यह अवकलनीय है।
    उत्पाद नियम और श्रृंखला नियम लागू करने से प्राप्त होता है
    दे रही है
    इसलिए उत्तल है।
  • इससे पता चलता है कि लिजेंड्रे रूपांतरण एक अंतर्वलन (गणित) है, अर्थात, :
    के लिए उपरोक्त समानता का उपयोग करके , और इसका व्युत्पन्न,


उदाहरण

उदाहरण 1

ex को लाल रंग में प्लॉट किया गया है और इसका लीजेंड्रे धराशायी नीले रंग में बदल गया है। ध्यान दें कि लीजेंड्रे परिवर्तन उत्तल दिखाई देता है।

घातीय कार्य पर विचार करें जिसके पास डोमेन है .

परिभाषा से, लीजेंड्रे रूपांतरण है

कहाँ तय होना बाकी है। सर्वोच्चता का मूल्यांकन करने के लिए, के व्युत्पन्न की गणना करें इसके संबंध में और शून्य के बराबर सेट करें:

व्युत्पन्न_परीक्षण#दूसरा-व्युत्पन्न_परीक्षण_(एकल_चर) हर जगह ऋणात्मक होता है, इसलिए पर अधिकतम मान प्राप्त होता है . इस प्रकार, लीजेंड्रे परिवर्तन है
और डोमेन है यह दर्शाता है कि किसी फलन के फलन का क्षेत्र और उसका लेजेंड्रे रूपांतरण भिन्न हो सकता है।

ढूँढ़ने के लिए

हम गणना करते हैं

इस प्रकार, अधिकतम होता है और

जिससे इसकी पुष्टि हो रही है आशा के अनुसार।

उदाहरण 2

होने देना f(x) = cx2 पर परिभाषित R, कहाँ c > 0 एक निश्चित नियतांक है।

के लिए x* निश्चित, का कार्य x, x*xf(x) = x*xcx2 का पहला व्युत्पन्न है x* − 2cx और दूसरा व्युत्पन्न −2c; पर एक स्थिर बिंदु है x = x*/2c, जो हमेशा अधिकतम होता है।

इस प्रकार, I* = R और

का पहला डेरिवेटिव f, 2cx, और का f *, x*/(2c), एक दूसरे के व्युत्क्रम कार्य हैं। स्पष्ट रूप से, इसके अलावा,
अर्थात् f ** = f.

उदाहरण 3

होने देना f(x) = x2 के लिए xI = [2, 3].

के लिए x* हल किया गया, x*xf(x) लगातार चालू है I कॉम्पैक्ट जगह , इसलिए यह हमेशा उस पर एक सीमित अधिकतम लेता है; यह इस प्रकार है कि I* = R.

पर स्थिर बिंदु x = x*/2 डोमेन में है [2, 3] अगर और केवल अगर 4 ≤ x* ≤ 6, अन्यथा अधिकतम या तो पर लिया जाता है x = 2, या x = 3. यह इस प्रकार है कि


उदाहरण 4

कार्यक्रम f(x) = cx उत्तल है, प्रत्येक के लिए x (लीजेंड्रे परिवर्तन को अच्छी तरह से परिभाषित करने के लिए सख्त उत्तलता की आवश्यकता नहीं है)। स्पष्ट रूप से x*xf(x) = (x* − c)x के कार्य के रूप में ऊपर से कभी भी बाध्य नहीं होता है x, जब तक x* − c = 0. इस तरह f* पर परिभाषित किया गया है I* = {c} और f*(c) = 0.

कोई अनैच्छिकता की जांच कर सकता है: बेशक x*xf*(x*) हमेशा एक फ़ंक्शन के रूप में घिरा होता है x* ∈ {c}, इस तरह I ** = R. फिर, सभी के लिए x किसी के पास

और इसलिए f **(x) = cx = f(x).

उदाहरण 5: कई चर

होने देना

पर परिभाषित किया जाए X = Rn, कहाँ A एक वास्तविक, सकारात्मक निश्चित मैट्रिक्स है।

तब f उत्तल है, और

ढाल है p − 2Ax और हेसियन मैट्रिक्स −2A, जो ऋणात्मक है; इसलिए स्थिर बिंदु x = A−1p/2 अधिकतम है।

अपने पास X* = Rn, और


लीजेंड्रे ट्रांसफॉर्म के तहत अंतर का व्यवहार

लेजेंड्रे रूपांतरण को भागों द्वारा एकीकरण से जोड़ा गया है, p dx = d(px) − x dp.

होने देना f दो स्वतंत्र चरों का एक फलन हो x और y, अंतर के साथ

मान लीजिए कि यह अंदर उत्तल है x सभी के लिए y, ताकि कोई लेजेंड्रे ट्रांसफॉर्म इन कर सके x, साथ p चर संयुग्मी x. चूंकि नया स्वतंत्र चर है p, अंतर dx और dy को सौंपना dp और dy, यानी, हम नए आधार के संदर्भ में इसके अंतर के साथ एक और फ़ंक्शन बनाते हैं dp और dy.

इस प्रकार हम कार्य पर विचार करते हैं g(p, y) = fpx ताकि

कार्यक्रम g(p, y) का लेजेंड्रे रूपांतरण है f(x, y), जहां केवल स्वतंत्र चर x द्वारा प्रतिस्थापित किया गया है p. यह थर्मोडायनामिक्स में व्यापक रूप से उपयोग किया जाता है, जैसा कि नीचे दिखाया गया है।

अनुप्रयोग

विश्लेषणात्मक यांत्रिकी

लैग्रेंजियन यांत्रिकी से हैमिल्टनियन यांत्रिकी को प्राप्त करने के लिए और इसके विपरीत चिरसम्मत यांत्रिकी में एक लीजेंड्रे परिवर्तन का उपयोग किया जाता है। एक विशिष्ट Lagrangian का रूप है

कहाँ पर निर्देशांक हैं Rn × Rn, M एक सकारात्मक वास्तविक मैट्रिक्स है, और
हरएक के लिए q हल किया गया, का उत्तल कार्य है , जबकि स्थिरांक की भूमिका निभाता है।

इसलिए लीजेंड्रे का रूपांतरण के एक फलन के रूप में हैमिल्टनियन फ़ंक्शन है,

अधिक सामान्य सेटिंग में, स्पर्शरेखा बंडल पर स्थानीय निर्देशांक हैं कई गुना . प्रत्येक के लिए q, स्पर्शरेखा स्थान का उत्तल कार्य है Vq. लीजेंड्रे रूपांतरण हैमिल्टनियन देता है निर्देशांक के एक फलन के रूप में (p, q) cotangent बंडल की ; लेजेंड्रे रूपांतरण को परिभाषित करने के लिए उपयोग किया जाने वाला आंतरिक उत्पाद प्रासंगिक कैनोनिकल सहानुभूतिपूर्ण वेक्टर स्थान से विरासत में मिला है। इस अमूर्त सेटिंग में, लीजेंड्रे ट्रांसफॉर्मेशन टॉटोलॉजिकल वन-फॉर्म से मेल खाता है।[further explanation needed]

ऊष्मप्रवैगिकी

थर्मोडायनामिक्स में लीजेंड्रे के उपयोग के पीछे की रणनीति एक ऐसे फ़ंक्शन से स्थानांतरित करना है जो एक चर पर निर्भर करता है जो एक नए (संयुग्मित) फ़ंक्शन पर निर्भर करता है जो एक नए चर पर निर्भर करता है, मूल के संयुग्म। नया चर मूल चर के संबंध में मूल कार्य का आंशिक व्युत्पन्न है। नया कार्य मूल कार्य और पुराने और नए चर के उत्पाद के बीच का अंतर है। आमतौर पर, यह परिवर्तन उपयोगी होता है क्योंकि यह निर्भरता को स्थानांतरित करता है, उदाहरण के लिए, एक गहन और व्यापक गुणों से ऊर्जा को इसके संयुग्मित गहन चर में बदल देता है, जिसे अक्सर भौतिक प्रयोग में अधिक आसानी से नियंत्रित किया जा सकता है।

उदाहरण के लिए, आंतरिक ऊर्जा व्यापक मात्रा एन्ट्रापी, आयतन और रासायनिक संरचना का एक स्पष्ट कार्य है

जिसमें कुल अंतर है
आंतरिक ऊर्जा के (गैर-मानक) लीजेंड्रे परिवर्तन का उपयोग करके, कुछ सामान्य संदर्भ स्थिति को निर्धारित करना, U, मात्रा के संबंध में, V, तापीय धारिता को लिखकर परिभाषित किया जा सकता है
जो अब स्पष्ट रूप से दबाव का कार्य है P, तब से
एन्थैल्पी उन प्रक्रियाओं के वर्णन के लिए उपयुक्त है जिनमें दबाव को परिवेश से नियंत्रित किया जाता है।

एंट्रॉपी के व्यापक चर से ऊर्जा की निर्भरता को स्थानांतरित करना भी संभव है, S, (अक्सर अधिक सुविधाजनक) गहन चर के लिए T, जिसके परिणामस्वरूप हेल्महोल्ट्ज़ ऊर्जा और गिब्स ऊर्जा उष्मागतिक मुक्त ऊर्जा प्राप्त होती है। हेल्महोल्ट्ज़ मुक्त ऊर्जा, A, और गिब्स ऊर्जा, G, क्रमशः आंतरिक ऊर्जा और एन्थैल्पी के लीजेंड्रे रूपांतरणों को करके प्राप्त किया जाता है,

हेल्महोल्ट्ज़ मुक्त ऊर्जा अक्सर सबसे उपयोगी थर्मोडायनामिक क्षमता होती है जब तापमान और आयतन को परिवेश से नियंत्रित किया जाता है, जबकि गिब्स ऊर्जा अक्सर सबसे उपयोगी होती है जब तापमान और दबाव को परिवेश से नियंत्रित किया जाता है।

एक उदाहरण - चर संधारित्र

भौतिकी के एक अन्य उदाहरण के रूप में, समानांतर-प्लेट कैपेसिटर पर विचार करें, जिसमें प्लेटें एक दूसरे के सापेक्ष गति कर सकती हैं। ऐसा संधारित्र विद्युत ऊर्जा को स्थानांतरित करने की अनुमति देता है जो प्लेटों पर कार्य करने वाले बल द्वारा किए गए बाहरी यांत्रिक कार्य में संधारित्र में संग्रहीत होता है। कोई विद्युत आवेश को सिलेंडर (इंजन) में गैस के आवेश के समान मान सकता है, जिसके परिणामस्वरूप पिस्टन पर यांत्रिक बल लगाया जाता है।

के कार्य के रूप में प्लेटों पर बल की गणना करें x, वह दूरी जो उन्हें अलग करती है। बल खोजने के लिए, संभावित ऊर्जा की गणना करें, और फिर बल की परिभाषा को संभावित ऊर्जा फ़ंक्शन के ढाल के रूप में लागू करें।

समाई के संधारित्र में संग्रहीत ऊर्जा C(x) और चार्ज करें Q है

जहां प्लेटों के क्षेत्र पर निर्भरता, प्लेटों के बीच सामग्री का ढांकता हुआ स्थिरांक और पृथक्करण x को समाई के रूप में दूर कर दिया जाता है C(x). (एक समानांतर प्लेट संधारित्र के लिए, यह प्लेटों के क्षेत्रफल के समानुपाती और पृथक्करण के व्युत्क्रमानुपाती होता है।)

बल F तब विद्युत क्षेत्र के कारण प्लेटों के बीच होता है

यदि संधारित्र किसी परिपथ से जुड़ा नहीं है, तो प्लेटों पर विद्युत आवेश चलते समय स्थिर रहता है, और बल इलेक्ट्रोस्टाटिक्स ऊर्जा का ऋणात्मक ढाल है
हालाँकि, मान लीजिए, इसके बजाय, प्लेटों के बीच वाल्ट ेज V को बैटरी (बिजली) से जोड़कर निरंतर बनाए रखा जाता है, जो निरंतर संभावित अंतर पर चार्ज के लिए जलाशय है; अब चार्ज वोल्टेज के बजाय परिवर्तनशील है, इसका लीजेंड्रे संयुग्म। बल खोजने के लिए, पहले गैर-मानक लीजेंड्रे रूपांतरण की गणना करें,

बल अब इस लीजेंड्रे परिवर्तन का नकारात्मक ढाल बन गया है, अभी भी उसी दिशा में इशारा कर रहा है,
दो संयुग्मित ऊर्जाएं एक दूसरे के विपरीत खड़ी होती हैं, केवल समाई की रैखिकता के कारण - अब को छोड़कर Q अब स्थिर नहीं है। वे संधारित्र में ऊर्जा भंडारण के दो अलग-अलग मार्गों को दर्शाते हैं, जिसके परिणामस्वरूप, उदाहरण के लिए, संधारित्र की प्लेटों के बीच समान खिंचाव होता है।

संभाव्यता सिद्धांत

बड़े विचलन सिद्धांत में, दर फ़ंक्शन को एक यादृच्छिक चर के क्षण उत्पन्न करने वाले फ़ंक्शन के लघुगणक के लीजेंड्रे परिवर्तन के रूप में परिभाषित किया गया है। दर फलन का एक महत्वपूर्ण अनुप्रयोग आई.आई.डी. के योगों की पुच्छ संभावनाओं की गणना में है। यादृच्छिक चर।

सूक्ष्मअर्थशास्त्र

आपूर्ति (अर्थशास्त्र) खोजने की प्रक्रिया में सूक्ष्मअर्थशास्त्र में लेजेंड्रे परिवर्तन स्वाभाविक रूप से उत्पन्न होता है S(P) किसी उत्पाद का एक निश्चित मूल्य दिया जाता है P लागत वक्र जानने के लिए बाजार पर C(Q), यानी निर्माता को बनाने/खनन/आदि की लागत। Q दिए गए उत्पाद की इकाइयां।

एक साधारण सिद्धांत केवल लागत फलन पर आधारित आपूर्ति वक्र के आकार की व्याख्या करता है। मान लीजिए कि हमारे उत्पाद की एक इकाई का बाजार मूल्य है P. इस उत्पाद को बेचने वाली कंपनी के लिए, सबसे अच्छी रणनीति उत्पादन को समायोजित करना है Q ताकि इसका लाभ अधिकतम हो। हम लाभ को अधिकतम कर सकते हैं

के संबंध में अंतर करके Q और हल करना

Qopt इष्टतम मात्रा का प्रतिनिधित्व करता है Q माल की जो निर्माता आपूर्ति करने को तैयार है, जो वास्तव में आपूर्ति ही है:

यदि हम अधिकतम लाभ को कीमत के फलन के रूप में मानते हैं, , हम देखते हैं कि यह लागत फलन का लीजेंड्रे रूपांतरण है .

ज्यामितीय व्याख्या

कड़ाई से उत्तल फ़ंक्शन के लिए, लीजेंड्रे परिवर्तन को फ़ंक्शन के फ़ंक्शन के ग्राफ़ और ग्राफ़ के स्पर्शरेखा के परिवार के बीच मैपिंग के रूप में व्याख्या किया जा सकता है। (एक चर के एक फलन के लिए, स्पर्शरेखा सभी पर अच्छी तरह से परिभाषित होती है, लेकिन अधिकांश गणनीय सेट बिंदुओं पर, क्योंकि एक उत्तल कार्य व्युत्पन्न होता है, लेकिन अधिकांश बिंदुओं पर।)

ढलान के साथ एक रेखा का समीकरण और वाई-अवरोधन |संवाद द्वारा दिया गया है ( ) इस रेखा के लिए किसी फ़ंक्शन के ग्राफ़ को स्पर्श करने के लिए बिंदु पर आवश्यक है

और
कड़ाई से उत्तल फ़ंक्शन के व्युत्पन्न होने के नाते, फ़ंक्शन सख्ती से मोनोटोन है और इस प्रकार इंजेक्शन फलन है। के लिए दूसरा समीकरण हल किया जा सकता है के उन्मूलन की अनुमति देता है पहले से, और के लिए हल करना संवाद इसकी ढलान के एक फलन के रूप में स्पर्शरेखा का
कहाँ के लीजेंड्रे परिवर्तन को दर्शाता है के ग्राफ की स्पर्शरेखा रेखाओं का अनुक्रमित परिवार ढलान द्वारा पैरामीटरकृत इसलिए द्वारा दिया गया है
या, परोक्ष रूप से, समीकरण के समाधान द्वारा लिखा गया है
मूल फलन के ग्राफ को इस परिवार के लिफाफा (गणित) के रूप में लाइनों के इस परिवार से मांग कर पुनर्निर्माण किया जा सकता है
खत्म करना इन दो समीकरणों से देता है
पहचान करना साथ और लेजेंड्रे के परिवर्तन के रूप में पूर्ववर्ती समीकरण के दाहिने पक्ष को पहचानना पैदावार


एक से अधिक आयामों में किंवदंती परिवर्तन

एक खुले सेट उत्तल उपसमुच्चय पर एक भिन्न वास्तविक-मूल्यवान फ़ंक्शन के लिए U का Rn जोड़ी के लीजेंड्रे संयुग्म (U, f) को जोड़ी के रूप में परिभाषित किया गया है (V, g), कहाँ V की छवि है U ग्रेडिएंट मैपिंग के तहत Df, और g कार्य चालू है V सूत्र द्वारा दिया गया

कहाँ
स्केलर उत्पाद चालू है Rn. बहुआयामी परिवर्तन को इसके सहायक हाइपरप्लेन के संदर्भ में फ़ंक्शन के एपिग्राफ (गणित) के उत्तल हल के एन्कोडिंग के रूप में व्याख्या किया जा सकता है।[1] वैकल्पिक रूप से, अगर X एक सदिश स्थान है और Y इसकी दोहरी जगह है, फिर प्रत्येक बिंदु के लिए x का X और y का Y, कॉटैंजेंट रिक्त स्थान की प्राकृतिक पहचान है T*Xx साथ Y और T*Yy साथ X. अगर f एक वास्तविक अवकलनीय फलन है X, तो इसका बाहरी व्युत्पन्न, df, कोटिस्पर्शी बंडल का एक भाग है T*X और इस तरह, हम एक नक्शा बना सकते हैं X को Y. इसी प्रकार यदि g एक वास्तविक अवकलनीय फलन है Y, तब dg मानचित्र को परिभाषित करता है Y को X. यदि दोनों नक्शे एक-दूसरे के व्युत्क्रम होते हैं, तो हम कहते हैं कि हमारे पास एक लेजेंड्रे रूपांतरण है। इस सेटिंग में आमतौर पर टॉटोलॉजिकल वन-फॉर्म की धारणा का उपयोग किया जाता है।

जब फ़ंक्शन अलग-अलग नहीं होता है, तब भी लीजेंड्रे ट्रांसफॉर्मेशन को बढ़ाया जा सकता है, और इसे लीजेंड्रे सौंफ परिवर्तन के रूप में जाना जाता है। इस अधिक सामान्य सेटिंग में, कुछ गुण खो जाते हैं: उदाहरण के लिए, लीजेंड्रे ट्रांसफ़ॉर्म अब अपना व्युत्क्रम नहीं है (जब तक कि कोई अतिरिक्त मान्यताएँ न हों, जैसे उत्तल कार्य)।

कई गुना पर किंवदंती परिवर्तन

होने देना एक चिकनी कई गुना हो, चलो और एक सदिश बंडल चालू हो और इसके संबद्ध बंडल प्रक्षेपण, क्रमशः। होने देना एक सुचारू कार्य हो। हम सोचते हैं चिरसम्मत मामले के साथ सादृश्य द्वारा एक Lagrangian यांत्रिकी के रूप में जहां , और कुछ सकारात्मक संख्या के लिए और फलन .

हमेशा की तरह, का दोहरा बंडल द्वारा निरूपित किया जाता है . का रेशा ऊपर निरूपित किया जाता है , और का प्रतिबंध को द्वारा निरूपित किया जाता है . द लीजेंड्रे ट्रांसफॉर्मेशन ऑफ चिकनी morphism है

द्वारा परिभाषित , कहाँ . दूसरे शब्दों में, कोवेक्टर है जो भेजता है दिशात्मक व्युत्पन्न के लिए .

स्थानीय रूप से लीजेंड्रे परिवर्तन का वर्णन करने के लिए, आइए जिस पर एक समन्वय चार्ट हो तुच्छ है। का तुच्छीकरण चुनना ऊपर , हम चार्ट प्राप्त करते हैं और . इन चार्टों के संदर्भ में, हमारे पास है , कहाँ

सभी के लिए .

यदि, जैसा कि चिरसम्मत मामले में, का प्रतिबंध प्रत्येक फाइबर के लिए सख्ती से उत्तल है और एक सकारात्मक निश्चित द्विघात रूप से नीचे एक स्थिर है, फिर लिजेंड्रे रूपांतरित होता है डिफियोमोर्फिज्म है।[2] लगता है कि एक भिन्नता है और चलो द्वारा परिभाषित "हैमिल्टनियन मैकेनिक्स" फ़ंक्शन हो

कहाँ . प्राकृतिक समरूपता का उपयोग करना , हम लीजेंड्रे के परिवर्तन को देख सकते हैं मानचित्र के रूप में . तो हमारे पास हैं[2]


और गुण

स्केलिंग गुण

लीजेंड्रे ट्रांसफॉर्मेशन में निम्नलिखित स्केलिंग गुण हैं: के लिए a > 0,

यह इस प्रकार है कि यदि कोई फ़ंक्शन सजातीय कार्य है | डिग्री का सजातीय r तब इसकी छवि लीजेंड्रे परिवर्तन के तहत डिग्री का एक सजातीय कार्य है s, कहाँ 1/r + 1/s = 1. (तब से f(x) = xr/r, साथ r > 1, तात्पर्य f*(p) = ps/s.) इस प्रकार, एकमात्र एकपदी जिसकी डिग्री लीजेंड्रे रूपांतरण के तहत अपरिवर्तनीय है, द्विघात है।

अनुवाद के तहत व्यवहार


उलटा के तहत व्यवहार


रैखिक परिवर्तनों के तहत व्यवहार

होने देना A : RnRm एक रैखिक परिवर्तन हो। किसी उत्तल फलन के लिए f पर Rn, किसी के पास

कहाँ A* का सहायक संचालिका है A द्वारा परिभाषित
और Af का पुश-फॉरवर्ड है f साथ में A
एक बंद उत्तल फलन f दिए गए सेट के संबंध में सममित है G ऑर्थोगोनल मैट्रिक्स की,
अगर और केवल अगर f* के संबंध में सममित है G.

अनौपचारिक कनवल्शन

दो कार्यों का अनौपचारिक दृढ़ संकल्प f और g परिभाषित किया जाता है

होने देना f1, ..., fm उचित उत्तल कार्य करें Rn. तब


फेनचेल की असमानता

किसी फलन के लिए f और इसका उत्तल संयुग्म f * फेनशेल की असमानता (जिसे फेनशेल-यंग असमानता के रूप में भी जाना जाता है) प्रत्येक के लिए लागू होती है xX और pX*, यानी स्वतंत्र x, p जोड़े,


यह भी देखें

संदर्भ

  1. "Legendre Transform | Nick Alger // Maps, art, etc". Archived from the original on 2015-03-12. Retrieved 2011-01-26.
  2. 2.0 2.1 Ana Cannas da Silva. Lectures on Symplectic Geometry, Corrected 2nd printing. Springer-Verlag, 2008. pp. 147-148. ISBN 978-3-540-42195-5.


अग्रिम पठन


बाहरी संबंध