द्विसम्मिश्र संख्या: Difference between revisions

From Vigyanwiki
No edit summary
Line 143: Line 143:
[[श्रेणी: आव्यूह]]
[[श्रेणी: आव्यूह]]


 
[[Category:CS1 maint]]
[[Category: Machine Translated Page]]
[[Category:Collapse templates]]
[[Category:Created On 28/12/2022]]
[[Category:Created On 28/12/2022]]
[[Category:Vigyan Ready]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Missing redirects]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages with math errors]]
[[Category:Pages with math render errors]]
[[Category:Pages with script errors]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Translated in Hindi]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates generating microformats]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:Wikipedia metatemplates]]

Revision as of 13:22, 3 May 2023

सार बीजगणित में, एक द्विजटिल संख्या केली-डिक्सन प्रक्रिया द्वारा निर्मित जटिल संख्याओं की एक जोड़ी (w, z) है जो द्विजटिल संयुग्म को परिभाषित करती है, और दो द्विजटिल संख्याओं का गुणनफल इस प्रकार है

फिर द्विजटिल मानदंड द्वारा निम्न दिया गया है

पहले घटक में एक द्विघात रूप है।

द्विजटिल संख्याएँ आयाम दो के एक क्षेत्र पर एक क्रमविनिमेय बीजगणित C बनाती हैं, जो बीजगणित के प्रत्यक्ष योग CC के लिए समरूप है।

दो द्विजटिल संख्याओं का गुणनफल एक द्विघात रूप मान उत्पन्न करता है जो संख्याओं के अलग-अलग द्विघात रूपों का गुणनफल होता है: किसी उत्पाद के द्विघात रूप की इस विशेषता का सत्यापन ब्रह्मगुप्त-फाइबोनैचि अस्मिता को संदर्भित करता है। एक द्विजटिल संख्या के द्विघात रूप की यह विशेषता इंगित करती है कि ये संख्याएं एक संघटक बीजगणित बनाती हैं। वस्तुतः, मानक z2 के साथ पर आधारित केली-डिक्सन निर्माण के द्विभाजित स्तर पर द्विजटिल संख्याएँ उत्पन्न होती हैं।

सामान्य द्विजटिल संख्या को आव्यूह द्वारा दर्शाया जा सकता है, जिसमें निर्धारक है। इस प्रकार, द्विघात रूप की रचना विशेषता निर्धारक की रचना विशेषता के साथ मिलती है।

वास्तविक बीजगणित के रूप में

टेसारीन multiplication
× 1 i j k
1 1 i j k
i i −1 k j
j j k 1 i
k k j i −1

द्विजटिल संख्याएँ आयाम दो के C पर एक बीजगणित बनाती हैं, और चूंकि C, R के ऊपर आयाम दो का है, द्विजटिल संख्याएँ आयाम चार के R पर एक बीजगणित हैं। वास्तव में वास्तविक बीजगणित जटिल बीजगणित से पुराना है; इसे 1848 में 'टेसरीन' का नाम दिया गया था, जबकि जटिल बीजगणित को 1892 तक प्रस्तुत नहीं किया गया था।

टेसारिन 4-बीजगणित के R के ऊपर एक आधार (रैखिक बीजगणित) z = 1 और z = -i को निर्दिष्ट करता है, जो आव्यूह देता है

, जो दी गई तालिका के अनुसार गुणा करते हैं। जब अस्मिता आव्यूह की अस्मिता 1 से की जाती है, तो टेसारीन t = w + z j ।

इतिहास

1840 के दशक में कई काल्पनिक इकाइयों के विषय की जांच की गई। चतुष्कोणों पर एक लंबी श्रृंखला में, या दार्शनिक पत्रिका में 1844 में प्रारम्भ हुई बीजगणित में कल्पनाओं की एक नई प्रणाली पर,विलियम रोवन हैमिल्टन ने चतुष्कोणीय समूह के अनुसार गुणा करने वाली प्रणाली का संचार किया। 1848 में थॉमस किर्कमैन ने अतिमिश्र संख्याओं की एक प्रणाली का निर्धारण करने वाली इकाइयों पर समीकरणों के बारे में आर्थर केली के साथ अपने पत्राचार की सूचना दी।[1]

टेसारीन

1848 में जेम्स कॉकल (वकील) ने दार्शनिक पत्रिका में लेखों की एक श्रृंखला में टेसरीन प्रस्तुत की थी।[2]

एक टेसारीन निम्न प्रारूप की एक अतिमिश्र संख्या है

जहाँ । घातीय श्रृंखला में अतिशयोक्तिपूर्ण कोटिज्या श्रृंखला और अतिशयोक्तिपूर्ण द्विज्या श्रृंखला को अलग करने के लिए कॉकल ने टेसरीन का उपयोग किया। उन्होंने यह भी दिखाया कि टेसरीन में शून्य विभाजक कैसे उत्पन्न होते हैं, जिससे उन्हें असंभव शब्द का उपयोग करने की प्रेरणा मिली। टेसरीन अब असली टेसरीन के अपने उप बीजगणित के लिए जानी जाती हैं, इनको विभाजित-जटिल संख्या भी कहा जाता है, जो इकाई अतिपरवलय के प्राचलीकरण को व्यक्त करता है।

द्विजटिल संख्या

1892 के मैथमेटिसे एनालेन लेख में, कॉनराड सेग्रे ने 'द्विजटिल संख्या' को प्रारम्भ किया,[3] जो टेसारीन के लिए एक बीजगणित समरूपी बनाते हैं।[4]

सेग्रे ने क्वाटरनियंस पर डब्ल्यूआर हैमिल्टन के व्याख्यान (1853) और डब्ल्यू. के. क्लिफर्ड के कार्यों को पढ़ा। सेग्रे ने 'द्विजटिल संख्या' की अपनी प्रणाली विकसित करने के लिए हैमिल्टन के कुछ संकेतन का उपयोग किया: मान लीजिए h और i ऐसे तत्व हैं जो -1 का वर्ग करते हैं और जो आवागमन करते हैं। फिर, गुणन की साहचर्यता को मानते हुए, गुणनफल hi का वर्ग +1 होना चाहिए। { 1, h, i, hi } आधार पर बीजगणित की रचना की जो कि जेम्स कॉकल की टेसरीन के समान है, जिसे एक अलग आधार का उपयोग करके दर्शाया गया है। सेग्रे ने ध्यान दिया कि तत्व

निर्बल हैं।

जब द्विजटिल संख्या को { 1, h, i, −hi } आधार के रूप में व्यक्त किया जाता है, टेसारीन के साथ उनकी समानता स्पष्ट है। इन वलय समरूपता बीजगणितों के रेखीय निरूपण को देखते हुए ऋणात्मक चिह्न का उपयोग किए जाने पर चौथे आयाम में सहमति दिखाई देती है; रैखिक प्रतिनिधित्व के अंतर्गत ऊपर दिए गए प्रतिरूप उत्पाद पर विचार करें।

बिबिनारियंस

रचना बीजगणित का आधुनिक सिद्धांत बीजगणित को एक अन्य द्विभाजक निर्माण के आधार पर एक द्वैमासिक निर्माण के रूप में रखता है।[5] केली-डिक्सन प्रक्रिया में अनारियन स्तर एक क्षेत्र होना चाहिए, और वास्तविक क्षेत्र से प्रारम्भ होकर, सामान्य जटिल संख्याएं विभाजन बायनेरियंस एक अन्य क्षेत्र के रूप में उत्पन्न होती हैं। इस प्रकार यह प्रक्रिया फिर से प्रारम्भ हो सकती है जिससे द्विबीजकों का निर्माण हो सके। केविन मैकक्रिमोन ने अपने टेक्स्ट ए टेस्ट ऑफ़ जॉर्डन अलजेब्रस (2004) में बाइनारियन शब्द द्वारा प्रदान किए गए नामपद्धति के सरलीकरण पर ध्यान दिया।

बहुपद वर्गमूल

2C = CC लिखें और जटिल संख्याओं के क्रमित जोड़े (u,v) द्वारा इसके तत्वों का प्रतिनिधित्व करें। चूँकि टेसारीन 'T' का बीजगणित 2C से तुल्याकारी है, बहुपदों का वलय T[X] और 2C[X] भी समरूपी हैं, हालांकि बाद वाले बीजगणित विभाजन में निम्न बहुपद हैं:

परिणामस्वरूप, जब एक बहुपद समीकरण इस बीजगणित में सम्मुच्चय किया गया है, यह C पर दो बहुपद समीकरणों को कम कर देता है। यदि घात 'n' है, तो प्रत्येक समीकरण के लिए एक फलन का n वर्गमूल होता है:

कोई भी आदेशित जोड़ी वर्गमूल के इस सम्मुच्चय से मूल समीकरण 2C[X] को संतुष्ट करेगा, इसलिए इसमें n2 वर्गमूल हैं।[6]

T[X] के साथ समरूपता के कारण, बहुपदों का एक पत्राचार और उनकी वर्गमूल का एक पत्राचार होता है। इसलिए घात n के टेसारीन बहुपदों में भी n2 वर्गमूल होता है।

अनुप्रयोग

द्विजटिल संख्या CAPS (भौतिक स्थान का जटिल बीजगणित) के केंद्र के रूप में प्रकट होती है, जो क्लिफर्ड बीजगणित है। [7] चूँकि CAPS के रैखिक स्थान को चार आयामी स्थल विस्तार {} के ऊपर {} के रूप में देखा जा सकता है।

टेसरीन को अंकीय संकेत प्रक्रिया में लागू किया गया है।[8][9][10] द्रव यांत्रिकी में द्विजटिल अंक कार्यरत हैं। द्विजटिल बीजगणित का उपयोग जटिल संख्याओं के दो अलग-अलग अनुप्रयोगों का मिलान करता है: सम्मिश्र समतल और सम्मिश्र घातीय कार्य में द्वि-आयामी संभावित प्रवाह का प्रतिनिधित्व करता है।[11]


संदर्भ

  1. Thomas Kirkman (1848) "On Pluquaternions and Homoid Products of n Squares", London and Edinburgh Philosophical Magazine 1848, p 447 Google books link
  2. James Cockle in London-Dublin-Edinburgh Philosophical Magazine, series 3 Links from Biodiversity Heritage Library.
  3. Segre, Corrado (1892), "Le rappresentazioni reali delle forme complesse e gli enti iperalgebrici" [The real representation of complex elements and hyperalgebraic entities], Mathematische Annalen, 40 (3): 413–467, doi:10.1007/bf01443559, S2CID 121807474. (see especially pages 455–67)
  4. Abstract Algebra/Polynomial Rings at Wikibooks
  5. Associative Composition Algebra/Binarions at Wikibooks
  6. Poodiack, Robert D. & Kevin J. LeClair (2009) "Fundamental theorems of algebra for the perplexes", The College Mathematics Journal 40(5):322–35.
  7. Baylis, W.E.; Kiselica, J.D. (2012). भौतिक अंतरिक्ष का जटिल बीजगणित: सापेक्षता के लिए एक रूपरेखा. Adv. Appl. Clifford Algebras. Vol. 22. SpringerLink. pp. 537–561.
  8. Pei, Soo-Chang; Chang, Ja-Han; Ding, Jian-Jiun (21 June 2004). "सिग्नल और इमेज प्रोसेसिंग के लिए कम्यूटेटिव रिड्यूस्ड बाइक्वाटरनियंस और उनके फूरियर ट्रांसफॉर्म" (PDF). IEEE Transactions on Signal Processing. IEEE. 52 (7): 2012–2031. doi:10.1109/TSP.2004.828901. ISSN 1941-0476. S2CID 13907861.
  9. Alfsmann, Daniel (4–8 September 2006). डिजिटल सिग्नल प्रोसेसिंग के लिए उपयुक्त 2N आयामी हाइपरकॉम्प्लेक्स बीजगणित के परिवारों पर (PDF). 14th European Signal Processing Conference, Florence, Italy: EURASIP.{{cite conference}}: CS1 maint: location (link)
  10. Alfsmann, Daniel; Göckler, Heinz G. (2007). हाइपरबोलिक कॉम्प्लेक्स एलटीआई डिजिटल सिस्टम्स पर (PDF). EURASIP.
  11. Kleine, Vitor G.; Hanifi, Ardeshir; Henningson, Dan S. (2022). "द्विजटिल संख्याओं का उपयोग करते हुए द्वि-आयामी संभावित प्रवाह की स्थिरता". Proc. R. Soc. A. 478 (20220165). doi:10.1098/rspa.2022.0165.}


इस पेज में लापता आंतरिक लिंक की सूची

  • बीजगणित का प्रत्यक्ष योग
  • सिद्ध
  • चतुर्धातुक समूह
  • काल्पनिक इकाई
  • शून्य भाजक
  • गणितीय इतिहास
  • संबद्धता
  • बेकार
  • रिंग आइसोमोर्फिज्म
  • बहुपदों की अंगूठी
  • एक समारोह की जड़
  • भौतिक स्थान का बीजगणित

आगे की पढाई

  • जी. बेली प्राइस (1991) एन इंट्रोडक्शन टू मल्टीकॉम्प्लेक्स स्पेसेज एंड फंक्शंस, मार्सेल डेकरISBN 0-8247-8345-X
  • एफ. कैटोनी, डी. बोकालेटी, आर. कनाटा, वी. कैटोनी, ई. निकेलट्टी, पी. ज़म्पेटी। (2008) कम्यूटेटिव हाइपरकॉम्प्लेक्स नंबरों के परिचय के साथ मिन्कोव्स्की स्पेस-टाइम का गणित, बिरखौसर वर्लाग, बेसल ISBN 978-3-7643-8613-9
  • एल्पे डी, लूना-एलिज़रारस एमई, शापिरो एम, स्ट्रूप्पा डीसी। (2014) द्विजटिल स्केलर्स के साथ कार्यात्मक विश्लेषण की मूल बातें, और द्विजटिल शूर विश्लेषण, चाम, स्विट्जरलैंड: स्प्रिंगर साइंस एंड बिजनेसमीडिया
  • लूना-एलिज़रारस एमई, शापिरो एम, स्ट्रूप्पा डीसी, वाजियाक ए। (2015) द्विजटिल होलोमोर्फिक कार्य: बीजगणित, ज्यामिति और द्विजटिल संख्याओं का विश्लेषण, चाम, स्विट्जरलैंड: बिरखौसर



श्रेणी: रचना बीजगणित श्रेणी:हाइपरकॉम्प्लेक्स नंबर श्रेणी: आव्यूह