गतिशील आवृत्ति स्केलिंग: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 2: Line 2:
{{redirect|सीपीयू थ्रॉटलिंग|अन्य उपयोग|थ्रॉटल (बहुविकल्पी) कंप्यूटिंग}}
{{redirect|सीपीयू थ्रॉटलिंग|अन्य उपयोग|थ्रॉटल (बहुविकल्पी) कंप्यूटिंग}}


'''डायनेमिक फ्रीक्वेंसी स्केलिंग''' (सीपीयू थ्रॉटलिंग के रूप में भी जाना जाता है) [[कंप्यूटर आर्किटेक्चर]] में [[ऊर्जा प्रबंधन]] विधि है जिससे माइक्रोप्रोसेसर की [[घड़ी की दर|आवृत्ति]] को वास्तविक जरूरतों के आधार पर "फ्लाई पर" स्वचालित रूप से समायोजित किया जा सकता है, जिससे [[पावर प्रबंधन एकीकृत सर्किट|पावर प्रबंधन एकीकृत परिपथ]] और उत्पन्न ऊष्मा की मात्रा को कम करता है। जो टुकड़े द्वारा डायनेमिक फ्रीक्वेंसी स्केलिंग मोबाइल उपकरणों पर बैटरी को संरक्षित करने और [[शांत पीसी]] पर शीतलन लागत और शोर को कम करने में मदद करती है, या ओवरहीट सिस्टम (जैसे खराब [[ overclocking |overclocking]] के बाद) के लिए सुरक्षा उपाय के रूप में उपयोगी हो सकती है।
'''डायनेमिक फ्रीक्वेंसी स्केलिंग''' (सीपीयू थ्रॉटलिंग के रूप में भी जाना जाता है) [[कंप्यूटर आर्किटेक्चर]] में [[ऊर्जा प्रबंधन]] विधि है जिससे माइक्रोप्रोसेसर की [[घड़ी की दर|आवृत्ति]] को वास्तविक जरूरतों के आधार पर "फ्लाई पर" स्वचालित रूप से समायोजित किया जा सकता है, जिससे [[पावर प्रबंधन एकीकृत सर्किट|पावर प्रबंधन एकीकृत परिपथ]] और उत्पन्न ऊष्मा की मात्रा को कम करता है। जो टुकड़े द्वारा डायनेमिक फ्रीक्वेंसी स्केलिंग मोबाइल उपकरणों पर बैटरी को संरक्षित करने और [[शांत पीसी]] पर शीतलन लागत और ध्वनि को कम करने में सहायता करती है, या ओवरहीट प्रणाली (जैसे खराब [[ overclocking |overclocking]] के बाद) के लिए सुरक्षा उपाय के रूप में उपयोगी हो सकती है।


डायनेमिक फ़्रीक्वेंसी स्केलिंग लगभग हमेशा [[गतिशील वोल्टेज स्केलिंग]] के संयोजन में दिखाई देती है, जिससे कि उच्च फ़्रीक्वेंसी के लिए डिजिटल सर्किट के लिए सही परिणाम प्राप्त करने के लिए उच्च आपूर्ति वोल्टेज की आवश्यकता होती है। संयुक्त विषय को डायनेमिक वोल्टेज और फ़्रीक्वेंसी स्केलिंग (DVFS) के रूप में जाना जाता है।
डायनेमिक आवृत्ति स्केलिंग लगभग हमेशा [[गतिशील वोल्टेज स्केलिंग]] के संयोजन में दिखाई देती है, जिससे कि उच्च आवृत्ति के लिए डिजिटल सर्किट के लिए सही परिणाम प्राप्त करने के लिए उच्च आपूर्ति वोल्टेज की आवश्यकता होती है। संयुक्त विषय को डायनेमिक वोल्टेज और आवृत्ति स्केलिंग (DVFS) के रूप में जाना जाता है।


प्रोसेसर थ्रॉटलिंग को स्वचालित [[अंडरक्लॉकिंग]] के रूप में भी जाना जाता है। स्वचालित ओवरक्लॉकिंग (बूस्टिंग) भी विधिक रूप से गतिशील आवृत्ति स्केलिंग का रूप है, किन्तु यह अपेक्षाकृत नया है और सामान्यतः थ्रॉटलिंग के साथ इसकी चर्चा नहीं की जाती है।
प्रोसेसर थ्रॉटलिंग को स्वचालित [[अंडरक्लॉकिंग]] के रूप में भी जाना जाता है। स्वचालित ओवरक्लॉकिंग (बूस्टिंग) भी विधिक रूप से गतिशील आवृत्ति स्केलिंग का रूप है, किन्तु यह अपेक्षाकृत नया है और सामान्यतः थ्रॉटलिंग के साथ इसकी चर्चा नहीं की जाती है।
Line 14: Line 14:
[[सबथ्रेशोल्ड रिसाव]] अधिक से अधिक महत्वपूर्ण हो गया है जिससे कि ट्रांजिस्टर का आकार छोटा हो गया है और थ्रेशोल्ड वोल्टेज का स्तर कम हो गया है। दशक पहले, गतिशील शक्ति कुल चिप शक्ति का लगभग दो-तिहाई थी। समकालीन सीपीयू और एसओसी में रिसाव धाराओं के कारण विद्युत की कमी कुल विद्युत खपत पर हावी होती है। रिसाव की शक्ति को नियंत्रित करने के प्रयास में, हाई-κ डाइइलेक्ट्रिक | हाई-के मेटल-गेट और पावर गेटिंग सामान्य विधि रहे हैं।
[[सबथ्रेशोल्ड रिसाव]] अधिक से अधिक महत्वपूर्ण हो गया है जिससे कि ट्रांजिस्टर का आकार छोटा हो गया है और थ्रेशोल्ड वोल्टेज का स्तर कम हो गया है। दशक पहले, गतिशील शक्ति कुल चिप शक्ति का लगभग दो-तिहाई थी। समकालीन सीपीयू और एसओसी में रिसाव धाराओं के कारण विद्युत की कमी कुल विद्युत खपत पर हावी होती है। रिसाव की शक्ति को नियंत्रित करने के प्रयास में, हाई-κ डाइइलेक्ट्रिक | हाई-के मेटल-गेट और पावर गेटिंग सामान्य विधि रहे हैं।


डायनेमिक वोल्टेज स्केलिंग अन्य संबंधित ऊर्जा संरक्षण विधि है जिसे अधिकांशतः फ़्रीक्वेंसी स्केलिंग के संयोजन में उपयोग किया जाता है, जिससे कि जिस आवृत्ति पर चिप चल सकती है वह ऑपरेटिंग वोल्टेज से संबंधित होती है।
डायनेमिक वोल्टेज स्केलिंग अन्य संबंधित ऊर्जा संरक्षण विधि है जिसे अधिकांशतः आवृत्ति स्केलिंग के संयोजन में उपयोग किया जाता है, जिससे कि जिस आवृत्ति पर चिप चल सकती है वह ऑपरेटिंग वोल्टेज से संबंधित होती है।


कुछ विद्युत घटकों की दक्षता, जैसे वोल्टेज नियामक, बढ़ते तापमान के साथ घट जाती है, इसलिए विद्युत का उपयोग तापमान के साथ बढ़ सकता है। चूंकि विद्युत के बढ़ते उपयोग से तापमान में वृद्धि हो सकती है, वोल्टेज या आवृत्ति में वृद्धि से सिस्टम की विद्युत की मांग सीएमओएस सूत्र के संकेत से भी अधिक बढ़ सकती है, और इसके विपरीत।<ref>{{cite web | url = http://www.silentpcreview.com/article821-page5.html | title = Asus EN9600GT Silent Edition Graphics Card | author = Mike Chin | page = 5 | work = Silent PC Review | access-date = 21 April 2008}}</ref><ref name="SPCRNewLevels">{{cite web | url = http://www.silentpcreview.com/article814-page1.html | title = 80 Plus expands podium for Bronze, Silver & Gold | author = Mike Chin | work = Silent PC Review | access-date = 21 April 2008 }}</ref>
कुछ विद्युत घटकों की दक्षता, जैसे वोल्टेज नियामक, बढ़ते तापमान के साथ घट जाती है, इसलिए विद्युत का उपयोग तापमान के साथ बढ़ सकता है। चूंकि विद्युत के बढ़ते उपयोग से तापमान में वृद्धि हो सकती है, वोल्टेज या आवृत्ति में वृद्धि से प्रणाली की विद्युत की मांग सीएमओएस सूत्र के संकेत से भी अधिक बढ़ सकती है, और इसके विपरीत।<ref>{{cite web | url = http://www.silentpcreview.com/article821-page5.html | title = Asus EN9600GT Silent Edition Graphics Card | author = Mike Chin | page = 5 | work = Silent PC Review | access-date = 21 April 2008}}</ref><ref name="SPCRNewLevels">{{cite web | url = http://www.silentpcreview.com/article814-page1.html | title = 80 Plus expands podium for Bronze, Silver & Gold | author = Mike Chin | work = Silent PC Review | access-date = 21 April 2008 }}</ref>




== प्रदर्शन प्रभाव ==
== प्रदर्शन प्रभाव ==
डायनेमिक फ़्रीक्वेंसी स्केलिंग निश्चित समय में प्रोसेसर द्वारा जारी किए जा सकने वाले निर्देशों की संख्या को कम कर देता है, जिससे प्रदर्शन कम हो जाता है। इसलिए, यह सामान्यतः तब उपयोग किया जाता है जब वर्कलोड सीपीयू-बाउंड नहीं होता है।
डायनेमिक आवृत्ति स्केलिंग निश्चित समय में प्रोसेसर द्वारा जारी किए जा सकने वाले निर्देशों की संख्या को कम कर देता है, जिससे प्रदर्शन कम हो जाता है। इसलिए, यह सामान्यतः तब उपयोग किया जाता है जब वर्कलोड सीपीयू-बाउंड नहीं होता है।


स्विचिंग पावर को बचाने के विधि के रूप में गतिशील आवृत्ति स्केलिंग संभवतः ही कभी सार्थक है। विद्युत की उच्चतम संभावित मात्रा को बचाने के लिए डायनेमिक वोल्टेज स्केलिंग की भी आवश्यकता होती है, जिससे कि वी<sup>2</sup> घटक और तथ्य यह है कि आधुनिक सीपीयू कम पावर निष्क्रिय अवस्थाओं के लिए दृढ़ता से अनुकूलित हैं। अधिकांश स्थिर-वोल्टेज स्थितियों में, लंबे समय तक कम क्लॉक रेट पर चलने की तुलना में, चरम गति पर संक्षिप्त रूप से दौड़ना और अधिक समय तक गहरी निष्क्रिय अवस्था में रहना (जिसे [[सोने की दौड़]] या कम्प्यूटेशनल स्प्रिंटिंग कहा जाता है) अधिक कुशल होता है। समय और केवल थोड़ी देर के लिए हल्की निष्क्रिय अवस्था में रहें। चूंकि, क्लॉक रेट के साथ-साथ वोल्टेज कम करना उन ट्रेड-ऑफ को परिवर्तित सकता है।
स्विचिंग पावर को बचाने के विधि के रूप में गतिशील आवृत्ति स्केलिंग संभवतः ही कभी सार्थक है। विद्युत की उच्चतम संभावित मात्रा को बचाने के लिए डायनेमिक वोल्टेज स्केलिंग की भी आवश्यकता होती है, जिससे कि वी<sup>2</sup> घटक और तथ्य यह है कि आधुनिक सीपीयू कम पावर निष्क्रिय अवस्थाओं के लिए दृढ़ता से अनुकूलित हैं। अधिकांश स्थिर-वोल्टेज स्थितियों में, लंबे समय तक कम क्लॉक रेट पर चलने की तुलना में, चरम गति पर संक्षिप्त रूप से दौड़ना और अधिक समय तक गहरी निष्क्रिय अवस्था में रहना (जिसे [[सोने की दौड़]] या कम्प्यूटेशनल स्प्रिंटिंग कहा जाता है) अधिक कुशल होता है। समय और केवल थोड़ी देर के लिए हल्की निष्क्रिय अवस्था में रहें। चूंकि, क्लॉक रेट के साथ-साथ वोल्टेज कम करना उन ट्रेड-ऑफ को परिवर्तित सकता है।
Line 26: Line 26:
संबंधित-किन्तु-विपरीत विधि ओवरक्लॉकिंग है, जिससे प्रोसेसर के प्रदर्शन को निर्माता के डिजाइन विनिर्देशों से परे प्रोसेसर की (गतिशील) आवृत्ति को बढ़ाकर बढ़ाया जाता है।
संबंधित-किन्तु-विपरीत विधि ओवरक्लॉकिंग है, जिससे प्रोसेसर के प्रदर्शन को निर्माता के डिजाइन विनिर्देशों से परे प्रोसेसर की (गतिशील) आवृत्ति को बढ़ाकर बढ़ाया जाता है।


दोनों के बीच बड़ा अंतर यह है कि आधुनिक पीसी सिस्टम में ओवरक्लॉकिंग ज्यादातर [[ सामने की ओर बस |सामने की ओर बस]] पर किया जाता है (मुख्यतः जिससे कि गुणक सामान्य रूप से लॉक होता है), किन्तु गतिशील आवृत्ति स्केलिंग [[सीपीयू गुणक]] के साथ की जाती है। इसके अतिरिक्त, ओवरक्लॉकिंग अधिकांशतः स्थिर होती है, जबकि गतिशील आवृत्ति स्केलिंग हमेशा गतिशील होती है। यदि चिप गिरावट जोखिम स्वीकार्य हैं, तो सॉफ्टवेयर अधिकांशतः आवृत्ति स्केलिंग एल्गोरिदम में ओवरक्लॉक आवृत्तियों को सम्मिलित कर सकता है।
दोनों के बीच बड़ा अंतर यह है कि आधुनिक पीसी प्रणाली में ओवरक्लॉकिंग ज्यादातर [[ सामने की ओर बस |सामने की ओर बस]] पर किया जाता है (मुख्यतः जिससे कि गुणक सामान्य रूप से लॉक होता है), किन्तु गतिशील आवृत्ति स्केलिंग [[सीपीयू गुणक]] के साथ की जाती है। इसके अतिरिक्त, ओवरक्लॉकिंग अधिकांशतः स्थिर होती है, जबकि गतिशील आवृत्ति स्केलिंग हमेशा गतिशील होती है। यदि चिप गिरावट जोखिम स्वीकार्य हैं, तो सॉफ्टवेयर अधिकांशतः आवृत्ति स्केलिंग एल्गोरिदम में ओवरक्लॉक आवृत्तियों को सम्मिलित कर सकता है।


== विक्रेताओं भर में समर्थन ==
== विक्रेताओं भर में समर्थन ==
Line 34: Line 34:


=== [[एएमडी]] ===
=== [[एएमडी]] ===
एएमडी दो अलग-अलग सीपीयू थ्रॉटलिंग विधियों को नियोजित करता है। AMD की Cool'n'Quiet विधि का उपयोग उसके डेस्कटॉप और सर्वर प्रोसेसर लाइनों पर किया जाता है। Cool'n'Quiet का उद्देश्य बैटरी जीवन को बचाना नहीं है, जिससे कि इसका उपयोग AMD के मोबाइल प्रोसेसर लाइन में नहीं किया जाता है, बल्कि इसके अतिरिक्त कम ऊष्मा उत्पन्न करने के उद्देश्य से किया जाता है, जो परिवर्तिते में सिस्टम पंखे को धीमी गति से स्पिन करने की अनुमति देता है, परिणामस्वरूप कूलर और शांत संचालन होता है, इसलिए प्रौद्योगिकी का नाम। एएमडी का पावरनाउ! सीपीयू थ्रॉटलिंग विधि का उपयोग इसके मोबाइल प्रोसेसर लाइन में किया जाता है, चूंकि [[एएमडी K6-2]] जैसे कुछ सहायक सीपीयू डेस्कटॉप में भी पाए जा सकते हैं।
एएमडी दो अलग-अलग सीपीयू थ्रॉटलिंग विधियों को नियोजित करता है। AMD की Cool'n'Quiet विधि का उपयोग उसके डेस्कटॉप और सर्वर प्रोसेसर लाइनों पर किया जाता है। Cool'n'Quiet का उद्देश्य बैटरी जीवन को बचाना नहीं है, जिससे कि इसका उपयोग AMD के मोबाइल प्रोसेसर लाइन में नहीं किया जाता है, बल्कि इसके अतिरिक्त कम ऊष्मा उत्पन्न करने के उद्देश्य से किया जाता है, जो परिवर्तिते में प्रणाली पंखे को धीमी गति से स्पिन करने की अनुमति देता है, परिणामस्वरूप कूलर और शांत संचालन होता है, इसलिए प्रौद्योगिकी का नाम। एएमडी का पावरनाउ! सीपीयू थ्रॉटलिंग विधि का उपयोग इसके मोबाइल प्रोसेसर लाइन में किया जाता है, चूंकि [[एएमडी K6-2]] जैसे कुछ सहायक सीपीयू डेस्कटॉप में भी पाए जा सकते हैं।


[[AMD PowerTune]] और [[AMD ZeroCore Power]] [[ ग्राफ़िक्स प्रोसेसिंग युनिट |ग्राफ़िक्स प्रोसेसिंग युनिट]] के लिए डायनेमिक फ्रीक्वेंसी स्केलिंग विधि हैं।
[[AMD PowerTune]] और [[AMD ZeroCore Power]] [[ ग्राफ़िक्स प्रोसेसिंग युनिट |ग्राफ़िक्स प्रोसेसिंग युनिट]] के लिए डायनेमिक फ्रीक्वेंसी स्केलिंग विधि हैं।
Line 46: Line 46:


=== एआरएम ===
=== एआरएम ===
चिप पर विभिन्न एआरएम-आधारित सिस्टम सीपीयू और जीपीयू थ्रॉटलिंग प्रदान करते हैं।
चिप पर विभिन्न एआरएम-आधारित प्रणाली सीपीयू और जीपीयू थ्रॉटलिंग प्रदान करते हैं।


== यह भी देखें ==
== यह भी देखें ==

Revision as of 22:53, 27 April 2023

डायनेमिक फ्रीक्वेंसी स्केलिंग (सीपीयू थ्रॉटलिंग के रूप में भी जाना जाता है) कंप्यूटर आर्किटेक्चर में ऊर्जा प्रबंधन विधि है जिससे माइक्रोप्रोसेसर की आवृत्ति को वास्तविक जरूरतों के आधार पर "फ्लाई पर" स्वचालित रूप से समायोजित किया जा सकता है, जिससे पावर प्रबंधन एकीकृत परिपथ और उत्पन्न ऊष्मा की मात्रा को कम करता है। जो टुकड़े द्वारा डायनेमिक फ्रीक्वेंसी स्केलिंग मोबाइल उपकरणों पर बैटरी को संरक्षित करने और शांत पीसी पर शीतलन लागत और ध्वनि को कम करने में सहायता करती है, या ओवरहीट प्रणाली (जैसे खराब overclocking के बाद) के लिए सुरक्षा उपाय के रूप में उपयोगी हो सकती है।

डायनेमिक आवृत्ति स्केलिंग लगभग हमेशा गतिशील वोल्टेज स्केलिंग के संयोजन में दिखाई देती है, जिससे कि उच्च आवृत्ति के लिए डिजिटल सर्किट के लिए सही परिणाम प्राप्त करने के लिए उच्च आपूर्ति वोल्टेज की आवश्यकता होती है। संयुक्त विषय को डायनेमिक वोल्टेज और आवृत्ति स्केलिंग (DVFS) के रूप में जाना जाता है।

प्रोसेसर थ्रॉटलिंग को स्वचालित अंडरक्लॉकिंग के रूप में भी जाना जाता है। स्वचालित ओवरक्लॉकिंग (बूस्टिंग) भी विधिक रूप से गतिशील आवृत्ति स्केलिंग का रूप है, किन्तु यह अपेक्षाकृत नया है और सामान्यतः थ्रॉटलिंग के साथ इसकी चर्चा नहीं की जाती है।

ऑपरेशन

चिप द्वारा छितरी हुई गतिशील शक्ति (स्विचिंग पावर) C·V है2·A·f, जहां C प्रति घड़ी चक्र में स्विच की जा रही धारिता है, V वोल्टेज है, A गतिविधि कारक है[1] चिप में ट्रांजिस्टर द्वारा प्रति घड़ी चक्र स्विचिंग घटनाओं की औसत संख्या का संकेत (इकाई रहित मात्रा के रूप में) और f घड़ी की आवृत्ति है।[2] वोल्टेज इसलिए विद्युत के उपयोग और हीटिंग का मुख्य निर्धारक है।[3] स्थिर संचालन के लिए आवश्यक वोल्टेज उस आवृत्ति द्वारा निर्धारित किया जाता है जिस पर सर्किट क्लॉक किया जाता है, और यदि आवृत्ति भी कम हो जाती है तो इसे कम किया जा सकता है।[4] चिप की कुल शक्ति के लिए अकेले गतिशील शक्ति का हिसाब नहीं है, चूँकि, स्थिर शक्ति भी है, जो मुख्य रूप से विभिन्न रिसाव धाराओं के कारण है। स्थैतिक विद्युत की खपत और स्पर्शोन्मुख निष्पादन समय के कारण यह दिखाया गया है कि सॉफ्टवेयर की ऊर्जा खपत उत्तल ऊर्जा व्यवहार दिखाती है, अर्थात, इष्टतम सीपीयू आवृत्ति उपस्तिथ होती है जिस पर ऊर्जा की खपत कम से कम होती है।[5] सबथ्रेशोल्ड रिसाव अधिक से अधिक महत्वपूर्ण हो गया है जिससे कि ट्रांजिस्टर का आकार छोटा हो गया है और थ्रेशोल्ड वोल्टेज का स्तर कम हो गया है। दशक पहले, गतिशील शक्ति कुल चिप शक्ति का लगभग दो-तिहाई थी। समकालीन सीपीयू और एसओसी में रिसाव धाराओं के कारण विद्युत की कमी कुल विद्युत खपत पर हावी होती है। रिसाव की शक्ति को नियंत्रित करने के प्रयास में, हाई-κ डाइइलेक्ट्रिक | हाई-के मेटल-गेट और पावर गेटिंग सामान्य विधि रहे हैं।

डायनेमिक वोल्टेज स्केलिंग अन्य संबंधित ऊर्जा संरक्षण विधि है जिसे अधिकांशतः आवृत्ति स्केलिंग के संयोजन में उपयोग किया जाता है, जिससे कि जिस आवृत्ति पर चिप चल सकती है वह ऑपरेटिंग वोल्टेज से संबंधित होती है।

कुछ विद्युत घटकों की दक्षता, जैसे वोल्टेज नियामक, बढ़ते तापमान के साथ घट जाती है, इसलिए विद्युत का उपयोग तापमान के साथ बढ़ सकता है। चूंकि विद्युत के बढ़ते उपयोग से तापमान में वृद्धि हो सकती है, वोल्टेज या आवृत्ति में वृद्धि से प्रणाली की विद्युत की मांग सीएमओएस सूत्र के संकेत से भी अधिक बढ़ सकती है, और इसके विपरीत।[6][7]


प्रदर्शन प्रभाव

डायनेमिक आवृत्ति स्केलिंग निश्चित समय में प्रोसेसर द्वारा जारी किए जा सकने वाले निर्देशों की संख्या को कम कर देता है, जिससे प्रदर्शन कम हो जाता है। इसलिए, यह सामान्यतः तब उपयोग किया जाता है जब वर्कलोड सीपीयू-बाउंड नहीं होता है।

स्विचिंग पावर को बचाने के विधि के रूप में गतिशील आवृत्ति स्केलिंग संभवतः ही कभी सार्थक है। विद्युत की उच्चतम संभावित मात्रा को बचाने के लिए डायनेमिक वोल्टेज स्केलिंग की भी आवश्यकता होती है, जिससे कि वी2 घटक और तथ्य यह है कि आधुनिक सीपीयू कम पावर निष्क्रिय अवस्थाओं के लिए दृढ़ता से अनुकूलित हैं। अधिकांश स्थिर-वोल्टेज स्थितियों में, लंबे समय तक कम क्लॉक रेट पर चलने की तुलना में, चरम गति पर संक्षिप्त रूप से दौड़ना और अधिक समय तक गहरी निष्क्रिय अवस्था में रहना (जिसे सोने की दौड़ या कम्प्यूटेशनल स्प्रिंटिंग कहा जाता है) अधिक कुशल होता है। समय और केवल थोड़ी देर के लिए हल्की निष्क्रिय अवस्था में रहें। चूंकि, क्लॉक रेट के साथ-साथ वोल्टेज कम करना उन ट्रेड-ऑफ को परिवर्तित सकता है।

संबंधित-किन्तु-विपरीत विधि ओवरक्लॉकिंग है, जिससे प्रोसेसर के प्रदर्शन को निर्माता के डिजाइन विनिर्देशों से परे प्रोसेसर की (गतिशील) आवृत्ति को बढ़ाकर बढ़ाया जाता है।

दोनों के बीच बड़ा अंतर यह है कि आधुनिक पीसी प्रणाली में ओवरक्लॉकिंग ज्यादातर सामने की ओर बस पर किया जाता है (मुख्यतः जिससे कि गुणक सामान्य रूप से लॉक होता है), किन्तु गतिशील आवृत्ति स्केलिंग सीपीयू गुणक के साथ की जाती है। इसके अतिरिक्त, ओवरक्लॉकिंग अधिकांशतः स्थिर होती है, जबकि गतिशील आवृत्ति स्केलिंग हमेशा गतिशील होती है। यदि चिप गिरावट जोखिम स्वीकार्य हैं, तो सॉफ्टवेयर अधिकांशतः आवृत्ति स्केलिंग एल्गोरिदम में ओवरक्लॉक आवृत्तियों को सम्मिलित कर सकता है।

विक्रेताओं भर में समर्थन

इंटेल

इंटेल की सीपीयू थ्रॉटलिंग विधि, स्पीडस्टेप का उपयोग इसके मोबाइल और डेस्कटॉप सीपीयू लाइनों में किया जाता है।

एएमडी

एएमडी दो अलग-अलग सीपीयू थ्रॉटलिंग विधियों को नियोजित करता है। AMD की Cool'n'Quiet विधि का उपयोग उसके डेस्कटॉप और सर्वर प्रोसेसर लाइनों पर किया जाता है। Cool'n'Quiet का उद्देश्य बैटरी जीवन को बचाना नहीं है, जिससे कि इसका उपयोग AMD के मोबाइल प्रोसेसर लाइन में नहीं किया जाता है, बल्कि इसके अतिरिक्त कम ऊष्मा उत्पन्न करने के उद्देश्य से किया जाता है, जो परिवर्तिते में प्रणाली पंखे को धीमी गति से स्पिन करने की अनुमति देता है, परिणामस्वरूप कूलर और शांत संचालन होता है, इसलिए प्रौद्योगिकी का नाम। एएमडी का पावरनाउ! सीपीयू थ्रॉटलिंग विधि का उपयोग इसके मोबाइल प्रोसेसर लाइन में किया जाता है, चूंकि एएमडी K6-2 जैसे कुछ सहायक सीपीयू डेस्कटॉप में भी पाए जा सकते हैं।

AMD PowerTune और AMD ZeroCore Power ग्राफ़िक्स प्रोसेसिंग युनिट के लिए डायनेमिक फ्रीक्वेंसी स्केलिंग विधि हैं।

वीआईए टेक्नोलॉजीज

VIA Technologies के प्रोसेसर LongHaul (PowerSaver) नामक विधि का उपयोग करते हैं, जबकि Transmeta के संस्करण को LongRun कहा जाता था।

साधारण प्रोसेसर चिप का 36-प्रोसेसर एसिंक्रोनस ऐरे फ्रीक्वेंसी, स्टार्ट और स्टॉप में मनमाना परिवर्तन सहित पूरी तरह से अप्रतिबंधित क्लॉक ऑपरेशन (केवल उस फ्रीक्वेंसी की आवश्यकता होती है जो अधिकतम अनुमत से कम हो) का समर्थन करने वाले पहले मल्टी-कोर प्रोसेसर चिप्स में से है। सिंपल प्रोसेसर चिप का 167-प्रोसेसर एसिंक्रोनस ऐरे पहला मल्टी-कोर प्रोसेसर चिप है जो अलग-अलग प्रोसेसर को अपनी घड़ी की फ्रीक्वेंसी में पूरी तरह से अप्रतिबंधित परिवर्तिताव करने में सक्षम बनाता है।

उन्नत कॉन्फ़िगरेशन और पावर इंटरफ़ेस स्पेक्स के अनुसार, आधुनिक समय के CPU की C0 कार्यशील स्थिति को तथाकथित P-स्टेट्स (प्रदर्शन स्टेट्स) में विभाजित किया जा सकता है, जो क्लॉक रेट में कमी और T-स्टेट्स (थ्रॉटलिंग स्टेट्स) की अनुमति देता है, जो STPCLK (स्टॉप क्लॉक) सिग्नल डालकर और इस तरह ड्यूटी साइकिल को छोड़ कर CPU (किन्तु वास्तविक क्लॉक रेट नहीं) को और नीचे थ्रॉटल करें।

एआरएम

चिप पर विभिन्न एआरएम-आधारित प्रणाली सीपीयू और जीपीयू थ्रॉटलिंग प्रदान करते हैं।

यह भी देखें

पावर सेविंग टेक्नोलॉजीज:

  • कूल'एन'क्विट|एएमडी कूल'एन'क्विट (डेस्कटॉप सीपीयू)
  • पॉवरनाउ!|एएमडी पॉवरनाउ! (लैपटॉप सीपीयू)
  • एएमडी पावरट्यून/एएमडी पावरप्ले (ग्राफिक्स)
  • स्पीडस्टेप (सीपीयू)

प्रदर्शन बढ़ाने वाली विधि:

संदर्भ

  1. K. Moiseev, A. Kolodny and S. Wimer (September 2008). "संकेतों का समय-जागरूक शक्ति-इष्टतम क्रम". ACM Transactions on Design Automation of Electronic Systems. 13 (4): 1–17. doi:10.1145/1391962.1391973. S2CID 18895687.
  2. Rabaey, J. M. (1996). डिजिटल इंटीग्रेटेड सर्किट. Prentice Hall.
  3. Victoria Zhislina (2014-02-19). "Why has CPU frequency ceased to grow?". Intel.
  4. https://www.usenix.org/legacy/events/hotpower/tech/full_papers/LeSueur.pdf[bare URL PDF]
  5. Karel De Vogeleer; Memmi, Gerard; Jouvelot, Pierre; Coelho, Fabien (2014). "The Energy/Frequency Convexity Rule: Modeling and Experimental Validation on Mobile Devices". arXiv:1401.4655 [cs.OH].
  6. Mike Chin. "Asus EN9600GT Silent Edition Graphics Card". Silent PC Review. p. 5. Retrieved 21 April 2008.
  7. Mike Chin. "80 Plus expands podium for Bronze, Silver & Gold". Silent PC Review. Retrieved 21 April 2008.