अनुरूप ज्यामिति: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 25: Line 25:


==== मिन्कोवस्की विमान ====
==== मिन्कोवस्की विमान ====
मिन्कोव्स्की द्विघात रूप के लिए [[अनुरूप समूह]] {{nowrap|1=''q''(''x'', ''y'') = 2''xy''}} प्लेन में [[एबेलियन समूह]] [[झूठ समूह]] है
मिन्कोव्स्की द्विघात रूप के लिए [[अनुरूप समूह]] {{nowrap|1=''q''(''x'', ''y'') = 2''xy''}} प्लेन में [[एबेलियन समूह]] [[झूठ समूह|लाइ समूह]] है


:<math> \operatorname{CSO}(1,1) = \left\{ \left. \begin{pmatrix}
:<math> \operatorname{CSO}(1,1) = \left\{ \left. \begin{pmatrix}
Line 31: Line 31:
0&e^b
0&e^b
\end{pmatrix} \right| a , b \in \mathbb{R} \right\} ,</math>
\end{pmatrix} \right| a , b \in \mathbb{R} \right\} ,</math>
[[झूठ बीजगणित]] के साथ {{nowrap|'''cso'''(1, 1)}} सभी वास्तविक विकर्ण से मिलकर {{nowrap|2 × 2}} मैट्रिक्स।
[[झूठ बीजगणित|लाइ बीजगणित]] के साथ {{nowrap|'''cso'''(1, 1)}} सभी वास्तविक विकर्ण से मिलकर {{nowrap|2 × 2}} मैट्रिक्स।


अब मिंकोस्की विमान पर विचार करें, ℝ<sup>2</sup> मेट्रिक से लैस है
अब मिंकोस्की विमान पर विचार करें, ℝ<sup>2</sup> मेट्रिक से लैस है
Line 38: Line 38:
:{{math|1='''L'''<sub>''X''</sub> ''g'' = ''λg''}} कुछ λ के लिए।
:{{math|1='''L'''<sub>''X''</sub> ''g'' = ''λg''}} कुछ λ के लिए।


विशेष रूप से, झूठ बीजगणित के उपरोक्त विवरण का उपयोग करना {{nowrap|'''cso'''(1, 1)}}, यह बताता है कि
विशेष रूप से, लाइ बीजगणित के उपरोक्त विवरण का उपयोग करना {{nowrap|'''cso'''(1, 1)}}, यह बताता है कि
# एल<sub>''X''</sub> {{nowrap|1=''dx'' = ''a''(''x'') ''dx''}}
# एल<sub>''X''</sub> {{nowrap|1=''dx'' = ''a''(''x'') ''dx''}}
# एल<sub>''X''</sub> {{nowrap|1=''dy'' = ''b''(''y'') ''dy''}} कुछ वास्तविक-मूल्यवान कार्यों के लिए a और b क्रमशः x और y पर निर्भर करता है।
# एल<sub>''X''</sub> {{nowrap|1=''dy'' = ''b''(''y'') ''dy''}} कुछ वास्तविक-मूल्यवान कार्यों के लिए a और b क्रमशः x और y पर निर्भर करता है।
Line 44: Line 44:
इसके विपरीत, वास्तविक-मूल्यवान कार्यों की ऐसी किसी भी जोड़ी को देखते हुए, सदिश क्षेत्र X मौजूद होता है जो 1. और 2 को संतुष्ट करता है। इसलिए अनुरूप संरचना, [[विट बीजगणित]] की अपरिमेय समरूपता का झूठा बीजगणित, अनुरूप_क्षेत्र_सिद्धांत#दो_आयाम|अनंत-आयामी है।
इसके विपरीत, वास्तविक-मूल्यवान कार्यों की ऐसी किसी भी जोड़ी को देखते हुए, सदिश क्षेत्र X मौजूद होता है जो 1. और 2 को संतुष्ट करता है। इसलिए अनुरूप संरचना, [[विट बीजगणित]] की अपरिमेय समरूपता का झूठा बीजगणित, अनुरूप_क्षेत्र_सिद्धांत#दो_आयाम|अनंत-आयामी है।


मिन्कोव्स्की विमान का अनुरूप संघनन दो हलकों का कार्टेशियन उत्पाद है {{nowrap|''S''<sup>1</sup> × ''S''<sup>1</sup>}}. [[सार्वभौमिक आवरण]] पर, अतिसूक्ष्म समरूपताओं को एकीकृत करने में कोई बाधा नहीं है, और इसलिए अनुरूप परिवर्तनों का समूह अनंत-आयामी झूठ समूह है
मिन्कोव्स्की विमान का अनुरूप संघनन दो हलकों का कार्टेशियन उत्पाद है {{nowrap|''S''<sup>1</sup> × ''S''<sup>1</sup>}}. [[सार्वभौमिक आवरण]] पर, अतिसूक्ष्म समरूपताओं को एकीकृत करने में कोई बाधा नहीं है, और इसलिए अनुरूप परिवर्तनों का समूह अनंत-आयामी लाइ समूह है
:<math>(\mathbb{Z}\rtimes\mathrm{Diff}(S^1))\times(\mathbb{Z}\rtimes\mathrm{Diff}(S^1)) ,</math>
:<math>(\mathbb{Z}\rtimes\mathrm{Diff}(S^1))\times(\mathbb{Z}\rtimes\mathrm{Diff}(S^1)) ,</math>
जहां डिफ (एस<sup>1</sup>) वृत्त का [[डिफोमोर्फिज्म समूह]] है।<ref>[[Paul Ginsparg]] (1989), ''Applied Conformal Field Theory''. {{arxiv|hep-th/9108028}}. Published in ''Ecole d'Eté de Physique Théorique: Champs, cordes et phénomènes critiques/Fields, strings and critical phenomena'' (Les Houches), ed. by E. Brézin and J. Zinn-Justin,  Elsevier Science Publishers B.V.</ref>
जहां डिफ (एस<sup>1</sup>) वृत्त का [[डिफोमोर्फिज्म समूह]] है।<ref>[[Paul Ginsparg]] (1989), ''Applied Conformal Field Theory''. {{arxiv|hep-th/9108028}}. Published in ''Ecole d'Eté de Physique Théorique: Champs, cordes et phénomènes critiques/Fields, strings and critical phenomena'' (Les Houches), ed. by E. Brézin and J. Zinn-Justin,  Elsevier Science Publishers B.V.</ref>
अनुरूप समूह {{nowrap|CSO(1, 1)}} और इसका झूठ बीजगणित [[द्वि-आयामी अनुरूप क्षेत्र सिद्धांत]] में वर्तमान रुचि के हैं।
अनुरूप समूह {{nowrap|CSO(1, 1)}} और इसका लाइ बीजगणित [[द्वि-आयामी अनुरूप क्षेत्र सिद्धांत]] में वर्तमान रुचि के हैं।


{{see also |विरासोरो बीजगणित}}
{{see also |विरासोरो बीजगणित}}
Line 74: Line 74:
दो आयामों में, स्थान के अनुरूप ऑटोमोर्फिज़्म का समूह काफी बड़ा हो सकता है (जैसा कि लोरेंत्ज़ियन हस्ताक्षर के मामले में) या चर (यूक्लिडियन हस्ताक्षर के मामले में)। उच्च आयामों के साथ द्वि-आयामी मामले की कठोरता की तुलनात्मक कमी विश्लेषणात्मक तथ्य के कारण है कि संरचना के अत्यल्प ऑटोमोर्फिज्म के स्पर्शोन्मुख विकास अपेक्षाकृत अप्रतिबंधित हैं। लोरेंट्ज़ियन हस्ताक्षर में, स्वतंत्रता वास्तविक मूल्यवान कार्यों की जोड़ी में है। यूक्लिडियन में, स्वतंत्रता एकल होलोमोर्फिक फ़ंक्शन में है।
दो आयामों में, स्थान के अनुरूप ऑटोमोर्फिज़्म का समूह काफी बड़ा हो सकता है (जैसा कि लोरेंत्ज़ियन हस्ताक्षर के मामले में) या चर (यूक्लिडियन हस्ताक्षर के मामले में)। उच्च आयामों के साथ द्वि-आयामी मामले की कठोरता की तुलनात्मक कमी विश्लेषणात्मक तथ्य के कारण है कि संरचना के अत्यल्प ऑटोमोर्फिज्म के स्पर्शोन्मुख विकास अपेक्षाकृत अप्रतिबंधित हैं। लोरेंट्ज़ियन हस्ताक्षर में, स्वतंत्रता वास्तविक मूल्यवान कार्यों की जोड़ी में है। यूक्लिडियन में, स्वतंत्रता एकल होलोमोर्फिक फ़ंक्शन में है।


उच्च आयामों के मामले में, अतिसूक्ष्म समरूपता के स्पर्शोन्मुख विकास अधिकांश द्विघात बहुपदों में होते हैं।<ref>Kobayashi (1972).</ref> विशेष रूप से, वे परिमित-आयामी झूठ बीजगणित बनाते हैं। मैनिफोल्ड के पॉइंटवाइज इनफिनिटिमल कॉन्फर्मल समरूपता को ठीक से एकीकृत किया जा सकता है जब मैनिफोल्ड निश्चित प्रारूप अनुरूप रूप से सपाट स्थान होता है (सार्वभौमिक कवर और असतत समूह उद्धरण लेने [[तक]])।<ref>Due to a general theorem of Sternberg (1962).</ref>
उच्च आयामों के मामले में, अतिसूक्ष्म समरूपता के स्पर्शोन्मुख विकास अधिकांश द्विघात बहुपदों में होते हैं।<ref>Kobayashi (1972).</ref> विशेष रूप से, वे परिमित-आयामी लाइ बीजगणित बनाते हैं। मैनिफोल्ड के पॉइंटवाइज इनफिनिटिमल कॉन्फर्मल समरूपता को ठीक से एकीकृत किया जा सकता है जब मैनिफोल्ड निश्चित प्रारूप अनुरूप रूप से सपाट स्थान होता है (सार्वभौमिक कवर और असतत समूह उद्धरण लेने [[तक]])।<ref>Due to a general theorem of Sternberg (1962).</ref>
यूक्लिडियन और छद्म-यूक्लिडियन हस्ताक्षर के मामलों में, अनुरूप ज्यामिति का सामान्य सिद्धांत समान है, हालांकि कुछ अंतरों के साथ।<ref>Slovak (1993).</ref> किसी भी मामले में, अनुरूप रूप से समतलज्यामिति के प्रारूप स्थान को पेश करने के कई तरीके हैं। जब तक संदर्भ से अन्यथा स्पष्ट न हो, यह लेख यूक्लिडियन अनुरूप ज्यामिति के मामले को इस समझ के साथ मानता है कि यह छद्म-यूक्लिडियन स्थिति पर, [[यथोचित परिवर्तनों सहित]], भी लागू होता है।
यूक्लिडियन और छद्म-यूक्लिडियन हस्ताक्षर के मामलों में, अनुरूप ज्यामिति का सामान्य सिद्धांत समान है, हालांकि कुछ अंतरों के साथ।<ref>Slovak (1993).</ref> किसी भी मामले में, अनुरूप रूप से समतलज्यामिति के प्रारूप स्थान को पेश करने के कई तरीके हैं। जब तक संदर्भ से अन्यथा स्पष्ट न हो, यह लेख यूक्लिडियन अनुरूप ज्यामिति के मामले को इस समझ के साथ मानता है कि यह छद्म-यूक्लिडियन स्थिति पर, [[यथोचित परिवर्तनों सहित]], भी लागू होता है।


Line 141: Line 141:


:<math> t ( y ) ^2 g _{ij} \, d y ^i \, d y ^j .</math>
:<math> t ( y ) ^2 g _{ij} \, d y ^i \, d y ^j .</math>
==== क्लेयनियन प्रारूप ====
==== क्लेनियन प्रारूप ====
पहले यूक्लिडियन सिग्नेचर में समतलकंफर्मल ज्यामिति के मामले पर विचार करें। एन-डायमेंशनल प्रारूप का आकाशीय क्षेत्र है {{nowrap|(''n'' + 2)}}-डायमेंशनल लोरेंट्ज़ियन स्पेस आर<sup>एन+1,1</sup>. यहाँ प्रारूप क्लेन ज्यामिति है: [[सजातीय स्थान]] G/H जहाँ {{nowrap|1=''G'' = SO(''n'' + 1, 1)}} पर अभिनय कर रहा है {{nowrap|(''n'' + 2)}}-डायमेंशनल लोरेंट्ज़ियन स्पेस आर<sup>n+1,1</sup> और H [[प्रकाश शंकु]] में निश्चित शून्य किरण का [[आइसोट्रॉपी समूह]] है। इस प्रकार अनुरूप रूप से सपाट प्रारूप प्रतिलोम ज्यामिति के स्थान हैं। [[मीट्रिक हस्ताक्षर|मापीय हस्ताक्षर]] के छद्म-यूक्लिडियन के लिए {{nowrap|(''p'', ''q'')}}, प्रारूप समतलज्यामिति को समान रूप से सजातीय स्थान के रूप में परिभाषित किया गया है {{nowrap|O(''p'' + 1, ''q'' + 1)/''H''}}, जहां H को फिर से अशक्त रेखा के स्टेबलाइजर के रूप में लिया जाता है। ध्यान दें कि यूक्लिडियन और छद्म-यूक्लिडियन प्रारूप स्पेस दोनों [[कॉम्पैक्ट जगह]] हैं।
प्रथम यूक्लिडियन सिग्नेचर में समतल कंफर्मल ज्यामिति की स्थिति पर विचार करता है। एन-आयामी प्रारूप का आकाशीय क्षेत्र है {{nowrap|(''n'' + 2)}}-आयामी लोरेंट्ज़ियन स्पेस आर<sup>एन+1,1</sup>. यहाँ प्रारूप क्लेन ज्यामिति है: [[सजातीय स्थान]] G/H जहाँ {{nowrap|1=''G'' = SO(''n'' + 1, 1)}} पर अभिनय कर रहा है {{nowrap|(''n'' + 2)}}-डायमेंशनल लोरेंट्ज़ियन स्पेस आर<sup>n+1,1</sup> और H [[प्रकाश शंकु]] में निश्चित शून्य किरण का [[आइसोट्रॉपी समूह]] है। इस प्रकार अनुरूप रूप से सपाट प्रारूप प्रतिलोम ज्यामिति के स्थान हैं। [[मीट्रिक हस्ताक्षर|मापीय हस्ताक्षर]] के छद्म-यूक्लिडियन के लिए {{nowrap|(''p'', ''q'')}}, प्रारूप समतल ज्यामिति को समान रूप से सजातीय स्थान के रूप में परिभाषित किया गया है {{nowrap|O(''p'' + 1, ''q'' + 1)/''H''}}, जहां H को फिर से अशक्त रेखा के स्टेबलाइजर के रूप में लिया जाता है। ध्यान दें कि यूक्लिडियन और छद्म-यूक्लिडियन प्रारूप स्पेस दोनों [[कॉम्पैक्ट जगह]] हैं।


==== अनुरूप झूठ बीजगणित ====
==== अनुरूप लाइ बीजगणित ====
समतल प्रारूप स्थान में सम्मिलित समूहों और बीजगणितों का वर्णन करने के लिए, {{nowrap|'''R'''<sup>''p''+1,''q''+1</sup>}} पर निम्न रूप को ठीक करें :
समतल प्रारूप स्थान में सम्मिलित समूहों और बीजगणितों का वर्णन करने के लिए, {{nowrap|'''R'''<sup>''p''+1,''q''+1</sup>}} पर निम्न रूप को ठीक करें :


Line 154: Line 154:
\end{pmatrix}
\end{pmatrix}
</math>
</math>
जहाँ J हस्ताक्षर का द्विघात रूप {{nowrap|(''p'', ''q'')}} है। तब {{nowrap|1=''G'' = O(''p'' + 1, ''q'' + 1)}} में {{nowrap|(''n'' + 2) × (''n'' + 2)}} आव्यूह होते हैं जो {{nowrap|1=''Q'' : <sup>t</sup>''MQM'' = ''Q''}} को स्थिर करते हैं। झूठ बीजगणित [[कार्टन अपघटन]] स्वीकार करता है:
जहाँ J हस्ताक्षर का द्विघात रूप {{nowrap|(''p'', ''q'')}} है। तब {{nowrap|1=''G'' = O(''p'' + 1, ''q'' + 1)}} में {{nowrap|(''n'' + 2) × (''n'' + 2)}} आव्यूह होते हैं जो {{nowrap|1=''Q'' : <sup>t</sup>''MQM'' = ''Q''}} को स्थिर करते हैं। लाइ बीजगणित [[कार्टन अपघटन]] स्वीकार करता है:


:<math>\mathbf{g}=\mathbf{g}_{-1}\oplus\mathbf{g}_0\oplus\mathbf{g}_1</math>
:<math>\mathbf{g}=\mathbf{g}_{-1}\oplus\mathbf{g}_0\oplus\mathbf{g}_1</math>
Line 180: Line 180:
0 & 0 & a
0 & 0 & a
\end{pmatrix} \right| A \in \mathfrak{so} ( p , q ) , a \in \mathbb{R} \right\} .</math>
\end{pmatrix} \right| A \in \mathfrak{so} ( p , q ) , a \in \mathbb{R} \right\} .</math>
वैकल्पिक रूप से, यह अपघटन {{nowrap|'''R'''<sup>''n''</sup> ⊕ '''cso'''(''p'', ''q'') ⊕ ('''R'''<sup>''n''</sup>)<sup>∗</sup>}} पर परिभाषित प्राकृतिक झूठ बीजगणित संरचना से सहमत है।
वैकल्पिक रूप से, यह अपघटन {{nowrap|'''R'''<sup>''n''</sup> ⊕ '''cso'''(''p'', ''q'') ⊕ ('''R'''<sup>''n''</sup>)<sup>∗</sup>}} पर परिभाषित प्राकृतिक लाइ बीजगणित संरचना से सहमत है।


अंतिम निर्देशांक सदिश को प्रदर्शित करने वाली अशक्त किरण का स्थिरीकरण [[बोरेल सबलजेब्रा|बोरेल उपबीजगणित]] द्वारा दिया जाता है:
अंतिम निर्देशांक सदिश को प्रदर्शित करने वाली अशक्त किरण का स्थिरीकरण [[बोरेल सबलजेब्रा|बोरेल उपबीजगणित]] द्वारा दिया जाता है:

Revision as of 21:09, 5 May 2023

गणित में, अनुरूप ज्यामिति अंतरिक्ष पर कोण-संरक्षण (अनुरूप) परिवर्तनों के समुच्चय का अध्ययन है।

वास्तविक दो आयामी अंतरिक्ष में, अनुरूप ज्यामिति उचित रीमैन सतहों की ज्यामिति है। अंतरिक्ष में दो से अधिक आयामों में, अनुरूप ज्यामिति या तो समतल रिक्त स्थान (जैसे यूक्लिडियन अंतरिक्ष स्थान या वृत्ताकार) कहलाते हैं, या अनुरूप मैनिफोल्ड के अध्ययन के लिए जो कि रीमैनियन या छद्म-रीमैनियन मैनिफोल्ड्स हैं, जो आव्यूह के वर्ग के साथ हैं और स्तर तक परिभाषित हैं। समतल संरचनाओं के अध्ययन को कभी-कभी मोबियस ज्यामिति कहा जाता है, और यह क्लेन ज्यामिति का प्रकार है।

अनुरूप मैनिफोल्ड

अनुरूप मैनिफोल्ड छद्म-रीमैनियन मैनिफोल्ड है जो मापीय टेंसरों के समतुल्य वर्ग से सुसज्जित है, जिसमें दो आव्यूह g और h समतुल्य हैं यदि केवल

जहां λ वास्तविक मूल्यवान सुचारू कार्य है जिसे कई गुना परिभाषित किया गया है और इसे 'अनुरूप कारक' कहा जाता है। ऐसे आव्यूह के समकक्ष वर्ग को 'अनुरूप मीट्रिक' या 'अनुरूप वर्ग' के रूप में जाना जाता है। इस प्रकार, अनुरूप मापीय को मापीय के रूप में माना जा सकता है जो केवल पैमाने तक परिभाषित होता है। अक्सर अनुरूप आव्यूह को अनुरूप वर्ग में मापीय का चयन करके और चुने हुए मापीय के लिए केवल अनुरूप अपरिवर्तनीय निर्माण लागू करके इलाज किया जाता है।

अनुरूप मापीय 'अनुरूप रूप से समतलमैनिफोल्ड' है यदि कोई मापीय इसका प्रतिनिधित्व करता है जो समतलहै, सामान्य अर्थों में रीमैन वक्रता टेन्सर गायब हो जाता है। केवल अनुरूप वर्ग में मापीय खोजना संभव हो सकता है जो प्रत्येक बिंदु के खुले पड़ोस में समतल हो। जब इन मामलों में अंतर करना आवश्यक होता है, तो बाद वाले को स्थानीय रूप से समतल कहा जाता है, हालांकि अक्सर साहित्य में कोई भेद नहीं रखा जाता है। n-sphere|n-sphere स्थानीय रूप से अनुरूप समतलमैनिफोल्ड है जो इस अर्थ में विश्व स्तर पर अनुरूप रूप से समतलनहीं है, जबकि यूक्लिडियन स्पेस, टोरस, या कोई भी अनुरूप मैनिफोल्ड जो यूक्लिडियन स्पेस के खुले उपसमुच्चय द्वारा कवर किया गया है (वैश्विक रूप से) इस अर्थ में अनुरूप रूप से सपाट। स्थानीय रूप से अनुरूप रूप से समतलमैनिफोल्ड स्थानीय रूप से मोबियस ज्यामिति के अनुरूप है, जिसका अर्थ है कि मोबियस ज्यामिति में कई गुना से स्थानीय भिन्नता को संरक्षित करने वाला कोण मौजूद है। दो आयामों में, प्रत्येक अनुरूप मापीय स्थानीय रूप से समतल है। आयाम में n > 3 अनुरूप मापीय स्थानीय रूप से सपाट है अगर और केवल अगर इसका वेइल टेंसर गायब हो जाता है; आयाम में n = 3, अगर और केवल अगर कपास टेंसर गायब हो जाता है।

अनुरूप ज्यामिति में कई विशेषताएं हैं जो इसे (छद्म-) रीमैनियन ज्यामिति से अलग करती हैं। पहला यह है कि हालांकि (छद्म-) रिमेंनियन ज्यामिति में प्रत्येक बिंदु पर अच्छी तरह से परिभाषित मापीय है, अनुरूप ज्यामिति में केवल आव्यूह का वर्ग होता है। इस प्रकार स्पर्शरेखा सदिश की लंबाई को परिभाषित नहीं किया जा सकता है, लेकिन दो सदिशों के बीच का कोण अभी भी परिभाषित किया जा सकता है। अन्य विशेषता यह है कि कोई लेवी-Civita कनेक्शन नहीं है क्योंकि यदि g और λ2जी अनुरूप संरचना के दो प्रतिनिधि हैं, फिर जी और λ के क्रिस्टोफेल प्रतीक2जी सहमत नहीं होंगे। जो λ से जुड़े हैं2g में फलन λ के अवकलज सम्मिलित होंगे जबकि g से संबद्ध नहीं होंगे।

इन अंतरों के बावजूद, अनुरूप ज्यामिति अभी भी सुगम है। लेवी-सिविता कनेक्शन और वक्रता रूप, हालांकि केवल बार परिभाषित किया जा रहा है जब अनुरूप संरचना के विशेष प्रतिनिधि को एकल कर दिया गया है, अलग प्रतिनिधि चुने जाने पर λ और इसके डेरिवेटिव से जुड़े कुछ परिवर्तन कानूनों को पूरा करते हैं। विशेष रूप से, (3 से अधिक आयाम में) वेइल टेंसर λ पर निर्भर नहीं होता है, और इसलिए यह 'अनुरूप अपरिवर्तनीय' है। इसके अलावा, भले ही अनुरूप कई गुना पर कोई लेवी-सिविता कनेक्शन नहीं है, इसके बजाय अनुरूप कनेक्शन के साथ काम कर सकता है, जिसे संबंधित मोबियस ज्यामिति पर आधारित कार्टन कनेक्शन के प्रकार के रूप में या वील कनेक्शन के रूप में नियंत्रित किया जा सकता है। यह किसी को 'अनुरूप वक्रता' और अनुरूप संरचना के अन्य आविष्कारों को परिभाषित करने की अनुमति देता है।

मोबियस ज्यामिति

मोबियस ज्यामिति यूक्लिडियन अंतरिक्ष का अध्ययन है जिसमें बिंदु अनंत पर जोड़ा जाता है, या मिन्कोव्स्की अंतरिक्ष | मिन्कोवस्की अंतरिक्षया छद्म-यूक्लिडियन) अंतरिक्ष में अशक्त शंकु के साथ अनंत पर जोड़ा जाता है। अर्थात्, सेटिंग परिचित स्थान का संघनन (गणित)गणित) है; ज्यामिति का संबंध कोणों को संरक्षित करने के निहितार्थ से है।

अमूर्त स्तर पर, आयाम दो के मामले को छोड़कर, यूक्लिडियन और छद्म-यूक्लिडियन रिक्त स्थान को उसी तरह से नियंत्रित किया जा सकता है। संकुचित द्वि-आयामी मिन्कोव्स्की विमान व्यापक अनुरूप समरूपता प्रदर्शित करता है। औपचारिक रूप से, इसके अनुरूप परिवर्तनों का समूह अनंत-आयामी है। इसके विपरीत, कॉम्पैक्ट यूक्लिडियन विमान के अनुरूप परिवर्तनों का समूह केवल 6-आयामी है।

दो आयाम

मिन्कोवस्की विमान

मिन्कोव्स्की द्विघात रूप के लिए अनुरूप समूह q(x, y) = 2xy प्लेन में एबेलियन समूह लाइ समूह है

लाइ बीजगणित के साथ cso(1, 1) सभी वास्तविक विकर्ण से मिलकर 2 × 2 मैट्रिक्स।

अब मिंकोस्की विमान पर विचार करें, ℝ2 मेट्रिक से लैस है

अनुरूप रूपांतरणों का 1-पैरामीटर समूह सदिश क्षेत्र X को इस संपत्ति के साथ जन्म देता है कि X के साथ g का लाई डेरिवेटिव g के समानुपाती होता है। प्रतीकात्मक रूप से,

LX g = λg कुछ λ के लिए।

विशेष रूप से, लाइ बीजगणित के उपरोक्त विवरण का उपयोग करना cso(1, 1), यह बताता है कि

  1. एलX dx = a(x) dx
  2. एलX dy = b(y) dy कुछ वास्तविक-मूल्यवान कार्यों के लिए a और b क्रमशः x और y पर निर्भर करता है।

इसके विपरीत, वास्तविक-मूल्यवान कार्यों की ऐसी किसी भी जोड़ी को देखते हुए, सदिश क्षेत्र X मौजूद होता है जो 1. और 2 को संतुष्ट करता है। इसलिए अनुरूप संरचना, विट बीजगणित की अपरिमेय समरूपता का झूठा बीजगणित, अनुरूप_क्षेत्र_सिद्धांत#दो_आयाम|अनंत-आयामी है।

मिन्कोव्स्की विमान का अनुरूप संघनन दो हलकों का कार्टेशियन उत्पाद है S1 × S1. सार्वभौमिक आवरण पर, अतिसूक्ष्म समरूपताओं को एकीकृत करने में कोई बाधा नहीं है, और इसलिए अनुरूप परिवर्तनों का समूह अनंत-आयामी लाइ समूह है

जहां डिफ (एस1) वृत्त का डिफोमोर्फिज्म समूह है।[1] अनुरूप समूह CSO(1, 1) और इसका लाइ बीजगणित द्वि-आयामी अनुरूप क्षेत्र सिद्धांत में वर्तमान रुचि के हैं।

यूक्लिडियन अंतरिक्ष

मोबियस परिवर्तन से पहले समन्वय ग्रिड
मोबियस परिवर्तन के बाद वही ग्रिड

द्विघात रूप के अनुरूप समरूपता का समूह

समूह है GL1(C) = C×, सम्मिश्र संख्याओं का गुणक समूह। इसका लाई बीजगणित है gl1(C) = C.

मापीय से लैस (यूक्लिडियन) जटिल विमान पर विचार करें

इनफिनिटिमल अनुरूप समरूपता संतुष्ट करती है

जहाँ f कॉची-रीमैन समीकरण को संतुष्ट करता है, और इसी तरह इसके डोमेन पर होलोमॉर्फिक फ़ंक्शन है। (विट बीजगणित देखें।)

डोमेन के अनुरूप समरूपता इसलिए होलोमोर्फिक स्व-मानचित्रों से मिलकर बनता है। विशेष रूप से, अनुरूप संघनन पर - रीमैन क्षेत्र - मोबियस परिवर्तनों द्वारा अनुरूप परिवर्तन दिए गए हैं

कहाँ पे adbc अशून्य है।

उच्च आयाम

दो आयामों में, स्थान के अनुरूप ऑटोमोर्फिज़्म का समूह काफी बड़ा हो सकता है (जैसा कि लोरेंत्ज़ियन हस्ताक्षर के मामले में) या चर (यूक्लिडियन हस्ताक्षर के मामले में)। उच्च आयामों के साथ द्वि-आयामी मामले की कठोरता की तुलनात्मक कमी विश्लेषणात्मक तथ्य के कारण है कि संरचना के अत्यल्प ऑटोमोर्फिज्म के स्पर्शोन्मुख विकास अपेक्षाकृत अप्रतिबंधित हैं। लोरेंट्ज़ियन हस्ताक्षर में, स्वतंत्रता वास्तविक मूल्यवान कार्यों की जोड़ी में है। यूक्लिडियन में, स्वतंत्रता एकल होलोमोर्फिक फ़ंक्शन में है।

उच्च आयामों के मामले में, अतिसूक्ष्म समरूपता के स्पर्शोन्मुख विकास अधिकांश द्विघात बहुपदों में होते हैं।[2] विशेष रूप से, वे परिमित-आयामी लाइ बीजगणित बनाते हैं। मैनिफोल्ड के पॉइंटवाइज इनफिनिटिमल कॉन्फर्मल समरूपता को ठीक से एकीकृत किया जा सकता है जब मैनिफोल्ड निश्चित प्रारूप अनुरूप रूप से सपाट स्थान होता है (सार्वभौमिक कवर और असतत समूह उद्धरण लेने तक)।[3] यूक्लिडियन और छद्म-यूक्लिडियन हस्ताक्षर के मामलों में, अनुरूप ज्यामिति का सामान्य सिद्धांत समान है, हालांकि कुछ अंतरों के साथ।[4] किसी भी मामले में, अनुरूप रूप से समतलज्यामिति के प्रारूप स्थान को पेश करने के कई तरीके हैं। जब तक संदर्भ से अन्यथा स्पष्ट न हो, यह लेख यूक्लिडियन अनुरूप ज्यामिति के मामले को इस समझ के साथ मानता है कि यह छद्म-यूक्लिडियन स्थिति पर, यथोचित परिवर्तनों सहित, भी लागू होता है।

उलटा प्रारूप

अनुरूप ज्यामिति के उलटा प्रारूप में यूक्लिडियन अंतरिक्ष ई पर स्थानीय परिवर्तनों का समूह होता हैn गोलों में व्युत्क्रम द्वारा उत्पन्न। लिउविले के प्रमेय (अनुरूप मैपिंग) द्वारा लिउविल के प्रमेय, किसी भी कोण-संरक्षित स्थानीय (अनुरूप) परिवर्तन इस रूप का है।[5] इस दृष्टिकोण से, समतल अनुरूप स्थान के परिवर्तन गुण व्युत्क्रम ज्यामिति के हैं।

प्रोजेक्टिव प्रारूप

प्रोजेक्टिव प्रारूप प्रक्षेपण स्थान में निश्चित क्वाड्रिक के साथ अनुरूप क्षेत्र की पहचान करता है। मान लीजिए q 'R' पर लॉरेंत्ज़ियन द्विघात रूप को निरूपित करता हैn+2 द्वारा परिभाषित

प्रोजेक्टिव स्पेस में पी (आरn+2), मान लीजिए कि S का बिंदुपथ है q = 0. तब S अनुरूप ज्यामिति का प्रक्षेपी (या मोबियस) प्रारूप है। एस पर अनुरूप परिवर्तन 'पी' ('आर') का प्रक्षेपी रैखिक समूह हैn+2) जो चतुर्भुज अपरिवर्तनीय छोड़ देता है।

संबंधित निर्माण में, द्विघात S को मिन्कोव्स्की अंतरिक्ष में अशक्त शंकु के अनंत पर आकाशीय क्षेत्र के रूप में माना जाता है Rn+1,1, जो ऊपर के रूप में द्विघात रूप q से सुसज्जित है। अशक्त शंकु द्वारा परिभाषित किया गया है

यह प्रक्षेपी चतुर्भुज S. मान लीजिए N के ऊपर सजातीय शंकु है+ नल कोन का भविष्य का हिस्सा हो (मूल हटाए जाने के साथ)। फिर टॉटोलॉजिकल प्रोजेक्शन Rn+1,1 ∖ {0} → P(Rn+2) प्रक्षेपण तक सीमित N+S. इससे एन+ S के ऊपर लाइन बंडल की संरचना। S पर अनुरूप परिवर्तन लोरेंत्ज़ परिवर्तनों से प्रेरित हैं Rn+1,1, चूंकि ये सजातीय रैखिक परिवर्तन हैं जो भविष्य के अशक्त शंकु को संरक्षित करते हैं।

यूक्लिडियन क्षेत्र

सहज रूप से, गोले की अनुरूप समतल ज्यामिति गोले के रिमेंनियन ज्यामिति की तुलना में कम कठोर होती है। गोले की अनुरूप समरूपता उसके सभी अति क्षेत्रों में व्युत्क्रम द्वारा उत्पन्न होती है। दूसरी ओर, क्षेत्र के रिमानियन ज्यामिति को geodesic हाइपरस्फीयर में व्युत्क्रम द्वारा उत्पन्न किया जाता है (कार्टन-ड्यूडोने प्रमेय देखें।) यूक्लिडियन क्षेत्र को विहित तरीके से अनुरूप क्षेत्र में मैप किया जा सकता है, लेकिन इसके विपरीत नहीं।

यूक्लिडियन इकाई क्षेत्र 'आर' में लोकस हैएन+1

इसे Minkowski अंतरिक्ष में मैप किया जा सकता है Rn+1,1 जैसे भी हो

यह आसानी से देखा जा सकता है कि इस परिवर्तन के तहत गोले की छवि मिंकोस्की अंतरिक्ष में शून्य है, और इसलिए यह शंकु एन पर स्थित है+. नतीजतन, यह लाइन बंडल के क्रॉस-सेक्शन को निर्धारित करता है N+S.

फिर भी, मनमाना विकल्प था। अगर κ(x) का कोई सकारात्मक कार्य है x = (z, x0, ..., xn), फिर असाइनमेंट

एन में मैपिंग भी देता है+. फ़ंक्शन κ अनुरूप पैमाने का मनमाना विकल्प है।

प्रतिनिधि आव्यूह

क्षेत्र पर प्रतिनिधि रिमेंनियन मापीय मापीय है जो मानक क्षेत्र मापीय के समानुपाती होता है। यह अनुरूप ज्यामिति#Conformal manifolds के रूप में गोले का अहसास देता है। मानक क्षेत्र मापीय आर पर यूक्लिडियन मापीय का प्रतिबंध हैएन+1

गोले को

जी का अनुरूप प्रतिनिधि फॉर्म λ का मापीय है2g, जहाँ λ गोले पर धनात्मक फलन है। जी का अनुरूप वर्ग, निरूपित [जी], ऐसे सभी प्रतिनिधियों का संग्रह है:

यूक्लिडियन क्षेत्र का एन में एम्बेडिंग+, जैसा कि पिछले अनुभाग में है, S पर अनुरूप स्केल निर्धारित करता है। इसके विपरीत, S पर कोई भी अनुरूप स्केल इस तरह के एम्बेडिंग द्वारा दिया जाता है। इस प्रकार लाइन बंडल N+S एस पर अनुरूप तराजू के बंडल के साथ पहचाना जाता है: इस बंडल का खंड देने के लिए अनुरूप वर्ग [जी] में मापीय निर्दिष्ट करने के समान है।

परिवेश मापीय प्रारूप

प्रतिनिधि आव्यूह को महसूस करने का अन्य तरीका विशेष समन्वय प्रणाली के माध्यम से है Rn+1, 1. मान लीजिए कि यूक्लिडियन एन-क्षेत्र एस त्रिविम प्रक्षेपण करता है। इसमें निम्नलिखित मानचित्र सम्मिलित हैं RnSRn+1:

इन त्रिविम निर्देशांकों के संदर्भ में, नल शंकु एन पर समन्वय प्रणाली देना संभव है+ Minkowski अंतरिक्ष में। ऊपर दिए गए एम्बेडिंग का उपयोग करते हुए, अशक्त शंकु का प्रतिनिधि मापीय अनुभाग है

एन के फैलाव के अनुरूप नया चर टी पेश करें+, ताकि अशक्त शंकु द्वारा समन्वित हो

अंत में, ρ को N का निम्नलिखित परिभाषित कार्य होने दें+:

टी में, ρ, y पर निर्देशांक Rn+1,1, मिन्कोव्स्की मापीय रूप लेता है:

जहां जीij गोले पर मापीय है।

इन शर्तों में, बंडल एन का खंड+ में वेरिएबल के मान का विनिर्देश होता है t = t(yi) वाई के समारोह के रूप मेंi शून्य शंकु के साथ ρ = 0. यह एस पर अनुरूप मापीय के निम्नलिखित प्रतिनिधि उत्पन्न करता है:

क्लेनियन प्रारूप

प्रथम यूक्लिडियन सिग्नेचर में समतल कंफर्मल ज्यामिति की स्थिति पर विचार करता है। एन-आयामी प्रारूप का आकाशीय क्षेत्र है (n + 2)-आयामी लोरेंट्ज़ियन स्पेस आरएन+1,1. यहाँ प्रारूप क्लेन ज्यामिति है: सजातीय स्थान G/H जहाँ G = SO(n + 1, 1) पर अभिनय कर रहा है (n + 2)-डायमेंशनल लोरेंट्ज़ियन स्पेस आरn+1,1 और H प्रकाश शंकु में निश्चित शून्य किरण का आइसोट्रॉपी समूह है। इस प्रकार अनुरूप रूप से सपाट प्रारूप प्रतिलोम ज्यामिति के स्थान हैं। मापीय हस्ताक्षर के छद्म-यूक्लिडियन के लिए (p, q), प्रारूप समतल ज्यामिति को समान रूप से सजातीय स्थान के रूप में परिभाषित किया गया है O(p + 1, q + 1)/H, जहां H को फिर से अशक्त रेखा के स्टेबलाइजर के रूप में लिया जाता है। ध्यान दें कि यूक्लिडियन और छद्म-यूक्लिडियन प्रारूप स्पेस दोनों कॉम्पैक्ट जगह हैं।

अनुरूप लाइ बीजगणित

समतल प्रारूप स्थान में सम्मिलित समूहों और बीजगणितों का वर्णन करने के लिए, Rp+1,q+1 पर निम्न रूप को ठीक करें :

जहाँ J हस्ताक्षर का द्विघात रूप (p, q) है। तब G = O(p + 1, q + 1) में (n + 2) × (n + 2) आव्यूह होते हैं जो Q : tMQM = Q को स्थिर करते हैं। लाइ बीजगणित कार्टन अपघटन स्वीकार करता है:

जहां

वैकल्पिक रूप से, यह अपघटन Rncso(p, q) ⊕ (Rn) पर परिभाषित प्राकृतिक लाइ बीजगणित संरचना से सहमत है।

अंतिम निर्देशांक सदिश को प्रदर्शित करने वाली अशक्त किरण का स्थिरीकरण बोरेल उपबीजगणित द्वारा दिया जाता है:

h = g0g1

यह भी देखें

टिप्पणियाँ

  1. Paul Ginsparg (1989), Applied Conformal Field Theory. arXiv:hep-th/9108028. Published in Ecole d'Eté de Physique Théorique: Champs, cordes et phénomènes critiques/Fields, strings and critical phenomena (Les Houches), ed. by E. Brézin and J. Zinn-Justin, Elsevier Science Publishers B.V.
  2. Kobayashi (1972).
  3. Due to a general theorem of Sternberg (1962).
  4. Slovak (1993).
  5. S.A. Stepanov (2001) [1994], "Liouville theorems", Encyclopedia of Mathematics, EMS Press. G. Monge (1850). "Extension au case des trois dimensions de la question du tracé géographique, Note VI (by J. Liouville)". Application de l'Analyse à la géometrie. Bachelier, Paris. pp. 609–615..


संदर्भ


बाहरी संबंध