बाईक्वाटरनियन: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 17: Line 17:


:<math> h \mathbf i = \mathbf i h,\ \ h \mathbf j = \mathbf j h,\ \ h \mathbf k = \mathbf k h .</math>
:<math> h \mathbf i = \mathbf i h,\ \ h \mathbf j = \mathbf j h,\ \ h \mathbf k = \mathbf k h .</math>
हैमिल्टन ने वास्तविक चतुष्कोणों के साथ उपयोग की जाने वाली धारणाओं का विस्तार करने के लिए [[ बाइवेक्टर (जटिल) ]], बाइकॉन्जुगेट, बिटेंसर और बाइवर्सर शब्द प्रस्तुत किए। {{math|'''H'''}}.
हैमिल्टन ने वास्तविक चतुष्कोणों के साथ उपयोग की जाने वाली धारणाओं का विस्तार करने के लिए [[ बाइवेक्टर (जटिल) | बाइवेक्टर (जटिल)]], बाइकॉन्जुगेट, बिटेंसर और बाइवर्सर शब्द प्रस्तुत किए। {{math|'''H'''}}.


1853 में हैमिल्टन की बायकाटर्नियन्स पर प्राथमिक व्याख्या उनके लेक्चर्स ऑन क्वाटरनियंस में आई थी। 1866 में [[विलियम एडविन हैमिल्टन]] (रोवन के पुत्र) और 1899, 1901 में [[चार्ल्स जैस्पर जोली]] द्वारा एलिमेंट्स ऑफ क्वाटरनियंस के संस्करणों ने वास्तविक क्वाटरनियन के पक्ष में द्विभाजन कवरेज को कम कर दिया।
1853 में हैमिल्टन की बायकाटर्नियन्स पर प्राथमिक व्याख्या उनके लेक्चर्स ऑन क्वाटरनियंस में आई थी। 1866 में [[विलियम एडविन हैमिल्टन]] (रोवन के पुत्र) और 1899, 1901 में [[चार्ल्स जैस्पर जोली]] द्वारा एलिमेंट्स ऑफ क्वाटरनियंस के संस्करणों ने वास्तविक क्वाटरनियन के पक्ष में द्विभाजन कवरेज को कम कर दिया।
Line 35: Line 35:


:<math>\begin{pmatrix}u+hv & w+hx\\-w+hx & u-hv\end{pmatrix}</math>
:<math>\begin{pmatrix}u+hv & w+hx\\-w+hx & u-hv\end{pmatrix}</math>
biquaternion q = u 1 + v i + w j + x k का प्रतिनिधित्व करता है।
बायकाटर्नियन q = u 1 + v i + w j + x k का प्रतिनिधित्व करता है।


किसी भी 2 × 2 जटिल मैट्रिक्स को देखते हुए इसे इस रूप में रखने के लिए जटिल मान u, v, w, और x हैं ताकि [[मैट्रिक्स रिंग]] M(2,C) आइसोमॉर्फिक हो<ref>[[Leonard Dickson]] (1914) [https://babel.hathitrust.org/cgi/pt?id=uc1.b5008837;view=1up;seq=25 Linear Algebras'', §13 "Equivalence of the complex quaternion and matric algebras"''], page 13, via [[HathiTrust]]</ref> बायक्वाटरनियन रिंग (गणित) के लिए।
किसी भी 2 × 2 जटिल मैट्रिक्स को देखते हुए इसे इस रूप में रखने के लिए जटिल मान u, v, w, और x हैं ताकि [[मैट्रिक्स रिंग]] M(2,C) आइसोमॉर्फिक हो<ref>[[Leonard Dickson]] (1914) [https://babel.hathitrust.org/cgi/pt?id=uc1.b5008837;view=1up;seq=25 Linear Algebras'', §13 "Equivalence of the complex quaternion and matric algebras"''], page 13, via [[HathiTrust]]</ref> बायक्वाटरनियन रिंग (गणित) के लिए।
Line 45: Line 45:
एक [[आधार (रैखिक बीजगणित)]] बनाता है इसलिए बीजगणित के आठ वास्तविक [[आयाम]] हैं। तत्वों का वर्ग {{math|''h'''''i''', ''h'''''j'''}}, और {{math|''h'''''k'''}} सभी निश्चित हैं उदाहरण के लिए {{math|1=(''h'''''i''')<sup>2</sup> = ''h''<sup>2</sup>'''i'''<sup>2</sup> = (−'''1''')(−'''1''') = +'''1'''}}.
एक [[आधार (रैखिक बीजगणित)]] बनाता है इसलिए बीजगणित के आठ वास्तविक [[आयाम]] हैं। तत्वों का वर्ग {{math|''h'''''i''', ''h'''''j'''}}, और {{math|''h'''''k'''}} सभी निश्चित हैं उदाहरण के लिए {{math|1=(''h'''''i''')<sup>2</sup> = ''h''<sup>2</sup>'''i'''<sup>2</sup> = (−'''1''')(−'''1''') = +'''1'''}}.


द्वारा दिया गया [[subalgebra]]
द्वारा दिया गया [[subalgebra|सबलजेब्रा]]


:<math>\{ x + y(h\mathbf i) : x, y \in \R \} </math>
:<math>\{ x + y(h\mathbf i) : x, y \in \R \} </math>
Line 57: Line 57:
एक तीसरा सबलजेब्रा जिसे [[coquaternion|कोक्वाटरनियन]] कहा जाता है यह किसके द्वारा उत्पन्न होता है {{math|''h'''''j'''}} और {{math|''h'''''k'''}}. ऐसा देखा गया है {{math|1=(''h'''''j''')(''h'''''k''') = (−'''1''')'''i'''}}, और यह कि इस तत्व का वर्ग है {{math|−'''1'''}}. ये तत्व वर्ग के [[डायहेड्रल समूह]] को उत्पन्न करते हैं। आधार के साथ रैखिक उपसमष्टि {{math|{'''1''', '''i''', ''h'''''j''', ''h'''''k'''<nowiki>}</nowiki>}} इस प्रकार गुणा के तहत बंद हो जाता है और कोक्वाटरनियन बीजगणित बनाता है।
एक तीसरा सबलजेब्रा जिसे [[coquaternion|कोक्वाटरनियन]] कहा जाता है यह किसके द्वारा उत्पन्न होता है {{math|''h'''''j'''}} और {{math|''h'''''k'''}}. ऐसा देखा गया है {{math|1=(''h'''''j''')(''h'''''k''') = (−'''1''')'''i'''}}, और यह कि इस तत्व का वर्ग है {{math|−'''1'''}}. ये तत्व वर्ग के [[डायहेड्रल समूह]] को उत्पन्न करते हैं। आधार के साथ रैखिक उपसमष्टि {{math|{'''1''', '''i''', ''h'''''j''', ''h'''''k'''<nowiki>}</nowiki>}} इस प्रकार गुणा के तहत बंद हो जाता है और कोक्वाटरनियन बीजगणित बनाता है।


[[क्वांटम यांत्रिकी]] और [[spinor]] बीजगणित के संदर्भ में द्विभाजित {{math|''h'''''i''', ''h'''''j'''}}, और {{math|''h'''''k'''}} (या उनके निष्क्रिय) में देखा गया {{math|M<sub>2</sub>('''C''')}} प्रतिनिधित्व को [[पॉल मैट्रिसेस]] कहा जाता है।
[[क्वांटम यांत्रिकी]] और [[spinor|स्पिनर]] बीजगणित के संदर्भ में द्विभाजित {{math|''h'''''i''', ''h'''''j'''}}, और {{math|''h'''''k'''}} (या उनके निष्क्रिय) में देखा गया {{math|M<sub>2</sub>('''C''')}} प्रतिनिधित्व को [[पॉल मैट्रिसेस]] कहा जाता है।


== बीजगणितीय गुण ==
== बीजगणितीय गुण ==
Line 88: Line 88:


:<math>T(q) = g^* q g^{\star}.</math>
:<math>T(q) = g^* q g^{\star}.</math>
प्रस्ताव: अगर {{mvar|q}} में है {{mvar|M}}, तब {{math|''T''(''q'')}} में भी है {{math|''M''}}.
प्रस्ताव: अगर {{mvar|q}} में है {{mvar|M}} तब {{math|''T''(''q'')}} में भी है {{math|''M''}}.


सबूत: <math>(g^* q g^{\star})^* = (g^{\star})^* q^* g = (g^*)^{\star} q^{\star} g = (g^* q g^{\star})^{\star}.</math>
सबूत: <math>(g^* q g^{\star})^* = (g^{\star})^* q^* g = (g^*)^{\star} q^{\star} g = (g^* q g^{\star})^{\star}.</math>
Line 94: Line 94:
प्रस्ताव: <math>\quad T(q) (T(q))^* = q q^* </math>
प्रस्ताव: <math>\quad T(q) (T(q))^* = q q^* </math>


सबूत: पहले ध्यान दें {{math|1=''gg''* = '''1'''}} का अर्थ है कि इसके चार जटिल घटकों के वर्गों का योग एक है। तब इन घटकों के जटिल संयुग्मों के वर्गों का योग भी एक होता है। इसलिए, <math>g^{\star} (g^{\star})^* = \mathbf 1.</math> अब
सबूत: पहले ध्यान दें {{math|1=''gg''* = '''1'''}} का अर्थ है कि इसके चार जटिल घटकों के वर्गों का योग एक है। तब इन घटकों के जटिल संयुग्मों के वर्गों का योग भी एक होता है। इसलिए <math>g^{\star} (g^{\star})^* = \mathbf 1.</math> अब


:<math>(g^* q g^{\star})(g^* q g^{\star})^* = g^* q g^{\star} (g^{\star})^* q^* g = g^* q q^* g = q q^*.</math>
:<math>(g^* q g^{\star})(g^* q g^{\star})^* = g^* q g^{\star} (g^{\star})^* q^* g = g^* q q^* g = q q^*.</math>
== संबद्ध शब्दावली ==
== संबद्ध शब्दावली ==
चूंकि [[गणितीय भौतिकी]] की शुरुआत के बाद से बाईक्वाटरनियंस रैखिक बीजगणित की एक स्थिरता रही है ऐसी अवधारणाओं की एक सरणी है जो द्विभाजित बीजगणित द्वारा सचित्र या प्रस्तुत की जाती हैं। [[परिवर्तन समूह]] <math>G = \lbrace g : g g^* = 1 \rbrace </math> दो भाग हैं, <math>G \cap H</math> और <math>G \cap M.</math> प्रथम भाग की विशेषता है <math>g = g^{\star}</math> ; फिर लोरेंत्ज़ परिवर्तन के अनुरूप {{mvar|g}} द्वारा दिया गया है <math>T(q) = g^{-1} q g </math> तब से <math>g^* = g^{-1}. </math> ऐसा परिवर्तन चतुष्कोण और स्थानिक घुमाव है और उनका संग्रह [[SO(3)]] है <math>\cong G \cap H .</math> लेकिन यह उपसमूह {{mvar|G}} [[सामान्य उपसमूह]] नहीं है इसलिए कोई [[भागफल समूह]] नहीं बनाया जा सकता है।
चूंकि [[गणितीय भौतिकी]] की प्रारम्भ के बाद से बाईक्वाटरनियंस रैखिक बीजगणित की एक स्थिरता रही है ऐसी अवधारणाओं की एक सरणी है जो द्विभाजित बीजगणित द्वारा सचित्र या प्रस्तुत की जाती हैं। [[परिवर्तन समूह]] <math>G = \lbrace g : g g^* = 1 \rbrace </math> दो भाग हैं, <math>G \cap H</math> और <math>G \cap M.</math> प्रथम भाग की विशेषता है <math>g = g^{\star}</math> ; फिर लोरेंत्ज़ परिवर्तन के अनुरूप {{mvar|g}} द्वारा दिया गया है <math>T(q) = g^{-1} q g </math> तब से <math>g^* = g^{-1}. </math> ऐसा परिवर्तन चतुष्कोण और स्थानिक घुमाव है और उनका संग्रह [[SO(3)]] है <math>\cong G \cap H .</math> लेकिन यह उपसमूह {{mvar|G}} [[सामान्य उपसमूह]] नहीं है इसलिए कोई [[भागफल समूह]] नहीं बनाया जा सकता है।


देखना <math>G \cap M</math> द्विचतुर्भुजों में कुछ सबलजेब्रा संरचना दिखाना आवश्यक है। होने देना {{mvar|r}} चतुष्कोण के एक तत्व का प्रतिनिधित्व करता है और वास्तविक चतुर्धातुक सबलजेब्रा में -1 का वर्गमूल {{math|'''H'''}}. तब {{math|1=(''hr'')<sup>2</sup> = +1}} और बायक्वाटरनियंस के विमान द्वारा दिया गया <math>D_r = \lbrace z = x + yhr : x, y \in \mathbb R \rbrace</math> स्प्लिट-जटिल संख्याओं के तल के लिए एक कम्यूटेटिव सबलजेब्रा आइसोमोर्फिक है। जैसे साधारण जटिल तल में एक इकाई वृत्त होता है, <math>D_r </math> द्वारा दी गई एक इकाई हाइपरबोला है
देखना <math>G \cap M</math> द्विचतुर्भुजों में कुछ सबलजेब्रा संरचना दिखाना आवश्यक है। होने देना {{mvar|r}} चतुष्कोण के एक तत्व का प्रतिनिधित्व करता है और वास्तविक चतुर्धातुक सबलजेब्रा में -1 का वर्गमूल {{math|'''H'''}}. तब {{math|1=(''hr'')<sup>2</sup> = +1}} और बायक्वाटरनियंस के विमान द्वारा दिया गया <math>D_r = \lbrace z = x + yhr : x, y \in \mathbb R \rbrace</math> स्प्लिट-जटिल संख्याओं के तल के लिए एक कम्यूटेटिव सबलजेब्रा आइसोमोर्फिक है। जैसे साधारण जटिल तल में एक इकाई वृत्त होता है <math>D_r </math> द्वारा दी गई एक इकाई हाइपरबोला है


:<math>\exp(ahr) = \cosh(a) + hr\ \sinh(a),\quad a \in R. </math>
:<math>\exp(ahr) = \cosh(a) + hr\ \sinh(a),\quad a \in R. </math>
जिस तरह यूनिट सर्कल अपने किसी एक तत्व के गुणा से बदल जाता है, उसी तरह हाइपरबोला बदल जाता है क्योंकि <math>\exp(ahr) \exp(bhr) = \exp((a+b)hr). </math> इसलिए अतिपरवलय पर इन बीजगणितीय संचालकों को छंद अतिपरवलयिक छंद कहा जाता है। यूनिट सर्कल में {{math|'''C'''}} और यूनिट हाइपरबोला में {{math|''D''<sub>''r''</sub>}} [[एक-पैरामीटर समूह]]ों के उदाहरण हैं। प्रत्येक वर्गमूल के लिए {{math|''r''}} माइनस एक इन {{math|'''H'''}}, द्वारा दिए गए द्विचतुर्भुजों में एक-पैरामीटर समूह है <math>G \cap D_r.</math>
जिस तरह यूनिट सर्कल अपने किसी एक तत्व के गुणा से बदल जाता है उसी तरह हाइपरबोला बदल जाता है क्योंकि <math>\exp(ahr) \exp(bhr) = \exp((a+b)hr). </math> इसलिए अतिपरवलय पर इन बीजगणितीय संचालकों को छंद अतिपरवलयिक छंद कहा जाता है। यूनिट सर्कल में {{math|'''C'''}} और यूनिट हाइपरबोला में {{math|''D''<sub>''r''</sub>}} [[एक-पैरामीटर समूह]] के उदाहरण हैं। प्रत्येक वर्गमूल के लिए {{math|''r''}} माइनस एक इन {{math|'''H'''}}, द्वारा दिए गए द्विचतुर्भुजों में एक-पैरामीटर समूह है <math>G \cap D_r.</math>
[[ यूक्लिडियन मीट्रिक ]] ऑन के माध्यम से बायकाटर्नियन्स के स्थान में एक प्राकृतिक [[टोपोलॉजी]] है {{math|8}}-अंतरिक्ष। इस टोपोलॉजी के संबंध में, {{mvar|G}} एक सामयिक समूह है। इसके अलावा, इसकी विश्लेषणात्मक संरचना है जो इसे छह-पैरामीटर लाइ समूह बनाती है। बायवेक्टर (जटिल) के उप-स्थान पर विचार करें  <math>A = \lbrace q : q^* = -q \rbrace </math>. फिर घातीय मानचित्र (झूठ सिद्धांत)
<math>\exp:A \to G</math> वास्तविक वैक्टर को ले जाता है <math>G \cap H</math> और यह {{mvar|h}}-सदिश <math>G \cap M.</math> [[कम्यूटेटर]] से लैस होने पर, {{mvar|A}} का [[झूठ बीजगणित]] बनाता है {{mvar|G}}. इस प्रकार छह-आयामी अंतरिक्ष का यह अध्ययन [[झूठ सिद्धांत]] की सामान्य अवधारणाओं को प्रस्तुत  करने का काम करता है। मैट्रिक्स प्रतिनिधित्व में देखे जाने पर, {{mvar|G}} को [[विशेष रैखिक समूह]] SL(2,C) कहा जाता है {{math|M<sub>2</sub>('''C''')}}.


विशेष आपेक्षिकता की कई अवधारणाओं को द्विचतुर्भुज संरचनाओं के माध्यम से चित्रित किया गया है। उपस्थान {{mvar|M}} मिन्कोव्स्की अंतरिक्ष से मेल खाता है, जिसमें चार निर्देशांक संदर्भ के आराम करने वाले फ्रेम में घटनाओं के समय और स्थान के स्थान देते हैं। कोई अतिशयोक्तिपूर्ण छंद {{math|exp(''ahr'')}} दिशा में एक [[वेग]] से मेल खाती है {{mvar|r}गति का {{math|''c'' tanh ''a''}} कहाँ {{mvar|c}} [[प्रकाश का वेग]] है। [[लोरेंत्ज़ बूस्ट]] को लागू करके इस वेग के संदर्भ के जड़त्वीय फ्रेम को आराम करने वाला फ्रेम बनाया जा सकता है {{mvar|T}} द्वारा दिए गए {{math|1=''g'' = exp(0.5''ahr'')}} के बाद से <math>g^{\star} = \exp(-0.5ahr) = g^*</math> ताकि <math>T(\exp(ahr)) = 1 .</math>
[[ यूक्लिडियन मीट्रिक | यूक्लिडियन मीट्रिक]] ऑन के माध्यम से बायकाटर्नियन्स के स्थान में एक प्राकृतिक [[टोपोलॉजी]] है {{math|8}}-अंतरिक्ष। इस टोपोलॉजी के संबंध में {{mvar|G}} एक सामयिक समूह है। इसके अतिरिक्त इसकी विश्लेषणात्मक संरचना है जो इसे छह-पैरामीटर लाइ समूह बनाती है। बायवेक्टर (जटिल) के उप-स्थान पर विचार करें  <math>A = \lbrace q : q^* = -q \rbrace </math>. फिर घातीय मानचित्र (झूठ सिद्धांत)
स्वाभाविक रूप से [[hyperboloid]] <math>G \cap M,</math> जो उप-ल्यूमिनल गति के लिए वेगों की सीमा का प्रतिनिधित्व करता है, भौतिक रुचि का है। इस वेलोसिटी स्पेस को [[ अतिशयोक्तिपूर्ण ज्यामिति ]] के [[हाइपरबोलाइड मॉडल]] के साथ जोड़ने का काफी काम किया गया है। विशेष सापेक्षता में, अतिशयोक्तिपूर्ण छंद के [[अतिशयोक्तिपूर्ण कोण]] पैरामीटर को [[ तेज़ी ]] कहा जाता है। इस प्रकार हम द्विअर्थी समूह देखते हैं {{mvar|G}} लोरेंत्ज़ समूह के लिए एक [[समूह प्रतिनिधित्व]] प्रदान करता है।


स्पिनर सिद्धांत की शुरुआत के बाद, विशेष रूप से [[वोल्फगैंग पाउली]] और एली कार्टन के हाथों में, लोरेंत्ज़ समूह के द्विअर्थी प्रतिनिधित्व को हटा दिया गया था। सेट में आधार (रैखिक बीजगणित) पर नई विधियों की स्थापना की गई थी
<math>\exp:A \to G</math> वास्तविक वैक्टर को ले जाता है <math>G \cap H</math> और यह {{mvar|h}}-सदिश <math>G \cap M.</math> [[कम्यूटेटर]] से लैस होने पर {{mvar|A}} का [[झूठ बीजगणित]] बनाता है {{mvar|G}}. इस प्रकार छह-आयामी अंतरिक्ष का यह अध्ययन [[झूठ सिद्धांत]] की सामान्य अवधारणाओं को प्रस्तुत करने का काम करता है। मैट्रिक्स प्रतिनिधित्व में देखे जाने पर {{mvar|G}} को [[विशेष रैखिक समूह]] SL(2,C) कहा जाता है {{math|M<sub>2</sub>('''C''')}}.
 
विशेष आपेक्षिकता की कई अवधारणाओं को द्विचतुर्भुज संरचनाओं के माध्यम से चित्रित किया गया है। उपस्थान {{mvar|M}} मिन्कोव्स्की अंतरिक्ष से मेल खाता है, जिसमें चार निर्देशांक संदर्भ के आराम करने वाले फ्रेम में घटनाओं के समय और स्थान के स्थान देते हैं। कोई अतिशयोक्तिपूर्ण छंद {{math|exp(''ahr'')}} दिशा में एक [[वेग]]<nowiki> से मेल खाती है {{mvar|r}गति का </nowiki>{{math|''c'' tanh ''a''}}  कहाँ {{mvar|c}} [[प्रकाश का वेग]] है। [[लोरेंत्ज़ बूस्ट]] को लागू करके इस वेग के संदर्भ के जड़त्वीय फ्रेम को आराम करने वाला फ्रेम बनाया जा सकता है {{mvar|T}} द्वारा दिए गए {{math|1=''g'' = exp(0.5''ahr'')}} के बाद से <math>g^{\star} = \exp(-0.5ahr) = g^*</math> ताकि <math>T(\exp(ahr)) = 1 .</math>
 
स्वाभाविक रूप से [[hyperboloid|हाइपरबोलाइड]] <math>G \cap M,</math> जो उप-ल्यूमिनल गति के लिए वेगों की सीमा का प्रतिनिधित्व करता है। इस वेलोसिटी स्पेस को [[ अतिशयोक्तिपूर्ण ज्यामिति |अतिशयोक्तिपूर्ण ज्यामिति]] के [[हाइपरबोलाइड मॉडल]] के साथ जोड़ने का काफी काम किया गया है। विशेष सापेक्षता में अतिशयोक्तिपूर्ण छंद के [[अतिशयोक्तिपूर्ण कोण]] पैरामीटर को [[ तेज़ी |तेज़ी]] कहा जाता है। इस प्रकार हम द्विअर्थी समूह देखते हैं {{mvar|G}} लोरेंत्ज़ समूह के लिए एक [[समूह प्रतिनिधित्व]] प्रदान करता है।
 
स्पिनर सिद्धांत की प्रारम्भ के बाद विशेष रूप से [[वोल्फगैंग पाउली]] और एली कार्टन के हाथों में लोरेंत्ज़ समूह के द्विअर्थी प्रतिनिधित्व को हटा दिया गया था। सेट में आधार (रैखिक बीजगणित) पर नई विधियों की स्थापना की गई थी


:<math>\{ q \ :\  q q^* = 0 \} = \left\{ w + x\mathbf i + y\mathbf j + z\mathbf k \ :\ w^2 + x^2 + y^2 + z^2 = 0 \right\} </math>
:<math>\{ q \ :\  q q^* = 0 \} = \left\{ w + x\mathbf i + y\mathbf j + z\mathbf k \ :\ w^2 + x^2 + y^2 + z^2 = 0 \right\} </math>
जिसे जटिल प्रकाश शंकु कहा जाता है। लोरेंत्ज़ समूह के उपरोक्त प्रतिनिधित्व सिद्धांत के साथ मेल खाता है जिसे भौतिक विज्ञानी चार-वैक्टर के रूप में संदर्भित करते हैं। चार-वैक्टरों के अलावा, कण भौतिकी के [[मानक मॉडल]] में अन्य लोरेंत्ज़ निरूपण भी सम्मिलित हैं, जिन्हें [[लोरेंत्ज़ अदिश]] के रूप में जाना जाता है, और {{math|(1, 0) ⊕ (0, 1)}}-प्रतिनिधित्व से जुड़े उदाहरण के लिए [[विद्युत चुम्बकीय क्षेत्र टेंसर]]। इसके अलावा, कण भौतिकी का उपयोग करता है {{math|SL(2, '''C''')}} अभ्यावेदन (या लोरेंत्ज़ समूह के प्रक्षेपी निरूपण) को बाएँ और दाएँ हाथ के [[वेइल स्पिनर]]्स, [[मेजराना स्पिनर]]्स और [[डिराक स्पिनर]]्स के रूप में जाना जाता है। यह ज्ञात है कि इन सात अभ्यावेदनों में से प्रत्येक को द्विभाजित उप-स्थानों के रूप में अपरिवर्तनीय उप-स्थानों के रूप में बनाया जा सकता है।<ref>{{cite journal|last=Furey|first=C.|title=आदर्शों का एकीकृत सिद्धांत|journal=Phys. Rev. D|year=2012|volume=86|issue=2|pages=025024|doi=10.1103/PhysRevD.86.025024|arxiv=1002.1497|bibcode = 2012PhRvD..86b5024F |s2cid=118458623}}</ref>
जिसे जटिल प्रकाश शंकु कहा जाता है। लोरेंत्ज़ समूह के उपरोक्त प्रतिनिधित्व सिद्धांत के साथ मेल खाता है जिसे भौतिक विज्ञानी चार-वैक्टर के रूप में संदर्भित करते हैं। चार-वैक्टरों के अतिरिक्त कण भौतिकी के [[मानक मॉडल]] में अन्य लोरेंत्ज़ निरूपण भी सम्मिलित हैं जिन्हें [[लोरेंत्ज़ अदिश]] के रूप में जाना जाता है और {{math|(1, 0) ⊕ (0, 1)}}-प्रतिनिधित्व से जुड़े उदाहरण के लिए [[विद्युत चुम्बकीय क्षेत्र टेंसर]]। इसके अतिरिक्त कण भौतिकी का उपयोग करता है {{math|SL(2, '''C''')}} अभ्यावेदन (या लोरेंत्ज़ समूह के प्रक्षेपी निरूपण) को बाएँ और दाएँ हाथ के [[वेइल स्पिनर|वेइल]] स्पिनर्स, [[मेजराना स्पिनर|मेजराना]] स्पिनर्स और [[डिराक स्पिनर|डिराक]] स्पिनर्स के रूप में जाना जाता है। यह ज्ञात है कि इन सात अभ्यावेदनों में से प्रत्येक को द्विभाजित उप-स्थानों के रूप में अपरिवर्तनीय उप-स्थानों के रूप में बनाया जा सकता है।<ref>{{cite journal|last=Furey|first=C.|title=आदर्शों का एकीकृत सिद्धांत|journal=Phys. Rev. D|year=2012|volume=86|issue=2|pages=025024|doi=10.1103/PhysRevD.86.025024|arxiv=1002.1497|bibcode = 2012PhRvD..86b5024F |s2cid=118458623}}</ref>
== एक रचना बीजगणित के रूप में ==
== रचना बीजगणित के रूप में ==
हालांकि डब्लू.आर. हैमिल्टन ने 19वीं सदी में बाइक्वाटरनियंस की शुरुआत की थी, एक क्षेत्र पर एक विशेष प्रकार के बीजगणित के रूप में इसकी [[गणितीय संरचना]] का चित्रण 20वीं सदी में पूरा किया गया था: बाइकाटर्नियंस को बाइकॉमप्लेक्स संख्याओं से उसी तरह उत्पन्न किया जा सकता है जिस तरह से [[एड्रियन अल्बर्ट]] ने उत्पन्न किया था। तथाकथित केली-डिक्सन निर्माण में जटिल संख्याओं से वास्तविक चतुष्कोण। इस रचना में, एक द्विजटिल संख्या (w,z) का संयुग्मी (w,z)* = (w, – z) है।
हालांकि डब्लू.आर. हैमिल्टन ने 19वीं सदी में बाइक्वाटरनियंस की प्रारम्भ की थी एक क्षेत्र पर एक विशेष प्रकार के बीजगणित के रूप में इसकी [[गणितीय संरचना]] का चित्रण 20वीं सदी में पूरा किया गया था: बाइकाटर्नियंस को बाइकॉमप्लेक्स संख्याओं से उसी तरह उत्पन्न किया जा सकता है जिस तरह से [[एड्रियन अल्बर्ट]] ने उत्पन्न किया था। तथाकथित केली-डिक्सन निर्माण में जटिल संख्याओं से वास्तविक चतुष्कोण। इस रचना में एक द्विजटिल संख्या (w,z) का संयुग्मी (w,z)* = (w, – z) है।


Biquaternion तब bicomplex संख्याओं (a,b) की एक जोड़ी है, जहां दूसरे biquaternion (c, d) वाला उत्पाद है
बायकाटर्नियन तब बाइकॉमप्लेक्स संख्याओं (a,b) की एक जोड़ी है, जहां दूसरे बायकाटर्नियन (c, d) वाला उत्पाद है
:<math>(a,b)(c,d) = (a c - d^* b, d a + b c^* ).</math>
:<math>(a,b)(c,d) = (a c - d^* b, d a + b c^* ).</math>
अगर <math>a = (u, v), b = (w,z), </math> फिर उभयलिंगी <math>(a, b)^* = (a^*, -b).</math>
अगर <math>a = (u, v), b = (w,z), </math> फिर उभयलिंगी <math>(a, b)^* = (a^*, -b).</math>
जब (a,b)* को साधारण सम्मिश्र संख्याओं के 4-वेक्टर के रूप में लिखा जाता है,
जब (a,b)* को साधारण सम्मिश्र संख्याओं के 4-वेक्टर के रूप में लिखा जाता है,
:<math>(u, v, w, z)^* = (u, -v, -w, -z). </math>
:<math>(u, v, w, z)^* = (u, -v, -w, -z). </math>
बाईक्वेटरनियंस एक चतुर्धातुक बीजगणित का एक उदाहरण है, और इसका मानदंड है
बाईक्वेटरनियंस एक चतुर्धातुक बीजगणित का एक उदाहरण है और इसका मानदंड है
:<math>N(u,v,w,z) = u^2 + v^2 + w^2 + z^2 .</math>
:<math>N(u,v,w,z) = u^2 + v^2 + w^2 + z^2 .</math>
दो द्विअंश p और q संतुष्ट करते हैं <math>N(p q) = N(p) N(q) </math> यह दर्शाता है कि N एक द्विघात रूप है जो संघटन को स्वीकार करता है, जिससे कि द्विअर्थी एक रचना बीजगणित बनाते हैं।
दो द्विअंश p और q संतुष्ट करते हैं <math>N(p q) = N(p) N(q) </math> यह दर्शाता है कि N एक द्विघात रूप है जो संघटन को स्वीकार करता है जिससे कि द्विअर्थी एक रचना बीजगणित बनाते हैं।
 





Revision as of 12:19, 29 April 2023

अमूर्त बीजगणित में द्विचतुर्भुज संख्याएँ w + x i + y j + z k हैं जहाँ w, x, y, और z सम्मिश्र संख्याएँ हैं या इसके भिन्न रूप हैं और इसके तत्व {1, i, j, k} हैं चतुष्कोणीय समूह के रूप में गुणा करें और उनके गुणांकों के साथ परिवर्तित करें। सम्मिश्र संख्याओं और उनकी विविधताओं के अनुरूप तीन प्रकार के द्विचतुर्भुज हैं:

यह लेख 1844 में विलियम रोवन हैमिल्टन द्वारा नामित सामान्य द्विअर्थी के बारे में है (देखें रॉयल आयरिश अकादमी की कार्यवाही 1844 और 1850 पृष्ठ 388[1]). इन बाईक्वेटरनियंस के कुछ अधिक प्रमुख समर्थकों में अलेक्जेंडर मैकफर्लेन, आर्थर डब्ल्यू कॉनवे, लुडविग सिल्बरस्टीन और कॉर्नेलियस लैंक्ज़ोस सम्मिलित हैं। जैसा कि नीचे विकसित किया गया है और द्विचतुर्भुजों की इकाई अर्ध-क्षेत्र लोरेंत्ज़ समूह का प्रतिनिधित्व प्रदान करता है जो विशेष सापेक्षता की नींव है।

बाईक्वेटरनियंस के बीजगणित को बीजगणित का टेंसर उत्पाद माना जा सकता है (वास्तविक पर कब्जा कर लिया) जहां C या जटिल संख्याओं का क्षेत्र (गणित) है और H या (वास्तविक) चतुष्कोणों का विभाजन बीजगणित है। दूसरे शब्दों में द्विचतुर्भुज चतुष्कोणों की जटिलता मात्र हैं। एक जटिल बीजगणित के रूप में देखा जाता है द्विचतुर्भुज के बीजगणित के समरूपी होते हैं 2 × 2 जटिल मैट्रिक्स M2(C) वे सहित कई क्लिफर्ड बीजगणित के लिए भी आइसोमोर्फिक हैं H(C) = Cℓ03(C) = Cℓ2(C) = Cℓ1,2(R),[2]: 112, 113  पाउली बीजगणित Cℓ3,0(R),[2]: 112 [3]: 404  और Cℓ01,3(R) = Cℓ03,1(R) दिक्-काल बीजगणित का सम भाग है।[3]: 386 

परिभाषा

होने देना {1, i, j, k} (वास्तविक) चतुष्कोणों का आधार बनें H, और जाने u, v, w, x तब सम्मिश्र संख्याएँ हों

द्विचतुर्भुज है।[4]: 639  बाइक्वाटर्नियन्स में माइनस एक के वर्गमूलों में अंतर करने के लिए हैमिल्टन[4]: 730 [5] और आर्थर डब्ल्यू। कॉनवे ने स्केलर फ़ील्ड सी में शून्य से एक के वर्गमूल का प्रतिनिधित्व करने के सम्मेलन का उपयोग एच द्वारा भ्रम से बचने के लिए किया i चतुष्कोणीय समूह में। चतुर्धातुक समूह के साथ अदिश क्षेत्र की क्रमविनिमेयता मान ली गई है:

हैमिल्टन ने वास्तविक चतुष्कोणों के साथ उपयोग की जाने वाली धारणाओं का विस्तार करने के लिए बाइवेक्टर (जटिल), बाइकॉन्जुगेट, बिटेंसर और बाइवर्सर शब्द प्रस्तुत किए। H.

1853 में हैमिल्टन की बायकाटर्नियन्स पर प्राथमिक व्याख्या उनके लेक्चर्स ऑन क्वाटरनियंस में आई थी। 1866 में विलियम एडविन हैमिल्टन (रोवन के पुत्र) और 1899, 1901 में चार्ल्स जैस्पर जोली द्वारा एलिमेंट्स ऑफ क्वाटरनियंस के संस्करणों ने वास्तविक क्वाटरनियन के पक्ष में द्विभाजन कवरेज को कम कर दिया।

चतुर्भुज समूह के अनुसार घटक-वार जोड़ और गुणा के संचालन के साथ विचार किया जाता है और यह संग्रह चार-आयामी अंतरिक्ष बनाता है | चार-आयामी बीजगणित जटिल संख्या 'सी' पर एक क्षेत्र पर। बाईक्वेटरनियंस का बीजगणित साहचर्य है लेकिन क्रम विनिमेय नहीं है। द्विचतुर्भुज या तो एक इकाई (रिंग थ्योरी) या एक शून्य विभाजक है। बाईक्वेटरनियंस का बीजगणित एक संयोजन बीजगणित बनाता है और द्विजटिल संख्याओं से निर्मित किया जा सकता है। नीचे एक संयोजन बीजगणित के रूप में § देखें।

रिंग थ्योरी में जगह

रेखीय प्रतिनिधित्व

मैट्रिक्स उत्पाद पर ध्यान दें

.

क्योंकि h एक काल्पनिक इकाई है इन तीन सरणियों में से प्रत्येक में पहचान मैट्रिक्स के ऋणात्मक के बराबर एक वर्ग है।

जब इस मैट्रिक्स उत्पाद की व्याख्या i j = k के रूप में की जाती है तो एक मेट्रिसेस का एक उपसमूह प्राप्त करता है जो कि चतुर्धातुक समूह के लिए समरूपता है। फलस्वरूप,

बायकाटर्नियन q = u 1 + v i + w j + x k का प्रतिनिधित्व करता है।

किसी भी 2 × 2 जटिल मैट्रिक्स को देखते हुए इसे इस रूप में रखने के लिए जटिल मान u, v, w, और x हैं ताकि मैट्रिक्स रिंग M(2,C) आइसोमॉर्फिक हो[6] बायक्वाटरनियन रिंग (गणित) के लिए।

सबलजेब्रस

वास्तविक संख्याओं के अदिश क्षेत्र पर द्विअर्थी बीजगणित को ध्यान में रखते हुए R, सेट

एक आधार (रैखिक बीजगणित) बनाता है इसलिए बीजगणित के आठ वास्तविक आयाम हैं। तत्वों का वर्ग hi, hj, और hk सभी निश्चित हैं उदाहरण के लिए (hi)2 = h2i2 = (−1)(−1) = +1.

द्वारा दिया गया सबलजेब्रा

विभाजन-जटिल संख्याओं के तल के लिए वलय समरूपता है जिसकी एक बीजगणितीय संरचना इकाई अतिपरवलय पर बनी है। अवयव hj और hk ऐसे सबलजेब्रस भी निर्धारित करते हैं।

आगे,

tessarines के लिए एक सबलजेब्रा आइसोमॉर्फिक है।

एक तीसरा सबलजेब्रा जिसे कोक्वाटरनियन कहा जाता है यह किसके द्वारा उत्पन्न होता है hj और hk. ऐसा देखा गया है (hj)(hk) = (−1)i, और यह कि इस तत्व का वर्ग है 1. ये तत्व वर्ग के डायहेड्रल समूह को उत्पन्न करते हैं। आधार के साथ रैखिक उपसमष्टि {1, i, hj, hk} इस प्रकार गुणा के तहत बंद हो जाता है और कोक्वाटरनियन बीजगणित बनाता है।

क्वांटम यांत्रिकी और स्पिनर बीजगणित के संदर्भ में द्विभाजित hi, hj, और hk (या उनके निष्क्रिय) में देखा गया M2(C) प्रतिनिधित्व को पॉल मैट्रिसेस कहा जाता है।

बीजगणितीय गुण

बाईक्वेटरनियंस के दो संयुग्मन हैं:

  • 'बाईकोनजुगेट' या बाइस्केलर माइनस बाइवेक्टर (कॉम्प्लेक्स) है और
  • द्विभाजन गुणांकों का जटिल संयुग्मन

कहाँ कब

ध्यान दें कि

स्पष्टतः यदि तब q एक शून्य भाजक है। अन्यथा जटिल संख्याओं पर परिभाषित किया गया है। आगे, आसानी से सत्यापित है। यह एक व्युत्क्रम को परिभाषित करने की अनुमति देता है

  • , अगर

लोरेंत्ज़ परिवर्तनों से संबंध

अब रैखिक उपसमष्टि पर विचार करें[7]

M सबलजेब्रा नहीं है क्योंकि यह क्लोजर (गणित) नहीं है; उदाहरण के लिए . वास्तव में M एक बीजगणित नहीं बना सकता यदि वह मैग्मा (बीजगणित) भी नहीं है।

प्रस्ताव: अगर q में है M, तब

सबूत: परिभाषाओं से,

परिभाषा: द्विभाजित होने दें g संतुष्ट करना फिर लोरेंत्ज़ परिवर्तन से जुड़ा g द्वारा दिया गया है

प्रस्ताव: अगर q में है M तब T(q) में भी है M.

सबूत:

प्रस्ताव:

सबूत: पहले ध्यान दें gg* = 1 का अर्थ है कि इसके चार जटिल घटकों के वर्गों का योग एक है। तब इन घटकों के जटिल संयुग्मों के वर्गों का योग भी एक होता है। इसलिए अब

संबद्ध शब्दावली

चूंकि गणितीय भौतिकी की प्रारम्भ के बाद से बाईक्वाटरनियंस रैखिक बीजगणित की एक स्थिरता रही है ऐसी अवधारणाओं की एक सरणी है जो द्विभाजित बीजगणित द्वारा सचित्र या प्रस्तुत की जाती हैं। परिवर्तन समूह दो भाग हैं, और प्रथम भाग की विशेषता है  ; फिर लोरेंत्ज़ परिवर्तन के अनुरूप g द्वारा दिया गया है तब से ऐसा परिवर्तन चतुष्कोण और स्थानिक घुमाव है और उनका संग्रह SO(3) है लेकिन यह उपसमूह G सामान्य उपसमूह नहीं है इसलिए कोई भागफल समूह नहीं बनाया जा सकता है।

देखना द्विचतुर्भुजों में कुछ सबलजेब्रा संरचना दिखाना आवश्यक है। होने देना r चतुष्कोण के एक तत्व का प्रतिनिधित्व करता है और वास्तविक चतुर्धातुक सबलजेब्रा में -1 का वर्गमूल H. तब (hr)2 = +1 और बायक्वाटरनियंस के विमान द्वारा दिया गया स्प्लिट-जटिल संख्याओं के तल के लिए एक कम्यूटेटिव सबलजेब्रा आइसोमोर्फिक है। जैसे साधारण जटिल तल में एक इकाई वृत्त होता है द्वारा दी गई एक इकाई हाइपरबोला है

जिस तरह यूनिट सर्कल अपने किसी एक तत्व के गुणा से बदल जाता है उसी तरह हाइपरबोला बदल जाता है क्योंकि इसलिए अतिपरवलय पर इन बीजगणितीय संचालकों को छंद अतिपरवलयिक छंद कहा जाता है। यूनिट सर्कल में C और यूनिट हाइपरबोला में Dr एक-पैरामीटर समूह के उदाहरण हैं। प्रत्येक वर्गमूल के लिए r माइनस एक इन H, द्वारा दिए गए द्विचतुर्भुजों में एक-पैरामीटर समूह है

यूक्लिडियन मीट्रिक ऑन के माध्यम से बायकाटर्नियन्स के स्थान में एक प्राकृतिक टोपोलॉजी है 8-अंतरिक्ष। इस टोपोलॉजी के संबंध में G एक सामयिक समूह है। इसके अतिरिक्त इसकी विश्लेषणात्मक संरचना है जो इसे छह-पैरामीटर लाइ समूह बनाती है। बायवेक्टर (जटिल) के उप-स्थान पर विचार करें . फिर घातीय मानचित्र (झूठ सिद्धांत)

वास्तविक वैक्टर को ले जाता है और यह h-सदिश कम्यूटेटर से लैस होने पर A का झूठ बीजगणित बनाता है G. इस प्रकार छह-आयामी अंतरिक्ष का यह अध्ययन झूठ सिद्धांत की सामान्य अवधारणाओं को प्रस्तुत करने का काम करता है। मैट्रिक्स प्रतिनिधित्व में देखे जाने पर G को विशेष रैखिक समूह SL(2,C) कहा जाता है M2(C).

विशेष आपेक्षिकता की कई अवधारणाओं को द्विचतुर्भुज संरचनाओं के माध्यम से चित्रित किया गया है। उपस्थान M मिन्कोव्स्की अंतरिक्ष से मेल खाता है, जिसमें चार निर्देशांक संदर्भ के आराम करने वाले फ्रेम में घटनाओं के समय और स्थान के स्थान देते हैं। कोई अतिशयोक्तिपूर्ण छंद exp(ahr) दिशा में एक वेग से मेल खाती है {{mvar|r}गति का c tanh a कहाँ c प्रकाश का वेग है। लोरेंत्ज़ बूस्ट को लागू करके इस वेग के संदर्भ के जड़त्वीय फ्रेम को आराम करने वाला फ्रेम बनाया जा सकता है T द्वारा दिए गए g = exp(0.5ahr) के बाद से ताकि

स्वाभाविक रूप से हाइपरबोलाइड जो उप-ल्यूमिनल गति के लिए वेगों की सीमा का प्रतिनिधित्व करता है। इस वेलोसिटी स्पेस को अतिशयोक्तिपूर्ण ज्यामिति के हाइपरबोलाइड मॉडल के साथ जोड़ने का काफी काम किया गया है। विशेष सापेक्षता में अतिशयोक्तिपूर्ण छंद के अतिशयोक्तिपूर्ण कोण पैरामीटर को तेज़ी कहा जाता है। इस प्रकार हम द्विअर्थी समूह देखते हैं G लोरेंत्ज़ समूह के लिए एक समूह प्रतिनिधित्व प्रदान करता है।

स्पिनर सिद्धांत की प्रारम्भ के बाद विशेष रूप से वोल्फगैंग पाउली और एली कार्टन के हाथों में लोरेंत्ज़ समूह के द्विअर्थी प्रतिनिधित्व को हटा दिया गया था। सेट में आधार (रैखिक बीजगणित) पर नई विधियों की स्थापना की गई थी

जिसे जटिल प्रकाश शंकु कहा जाता है। लोरेंत्ज़ समूह के उपरोक्त प्रतिनिधित्व सिद्धांत के साथ मेल खाता है जिसे भौतिक विज्ञानी चार-वैक्टर के रूप में संदर्भित करते हैं। चार-वैक्टरों के अतिरिक्त कण भौतिकी के मानक मॉडल में अन्य लोरेंत्ज़ निरूपण भी सम्मिलित हैं जिन्हें लोरेंत्ज़ अदिश के रूप में जाना जाता है और (1, 0) ⊕ (0, 1)-प्रतिनिधित्व से जुड़े उदाहरण के लिए विद्युत चुम्बकीय क्षेत्र टेंसर। इसके अतिरिक्त कण भौतिकी का उपयोग करता है SL(2, C) अभ्यावेदन (या लोरेंत्ज़ समूह के प्रक्षेपी निरूपण) को बाएँ और दाएँ हाथ के वेइल स्पिनर्स, मेजराना स्पिनर्स और डिराक स्पिनर्स के रूप में जाना जाता है। यह ज्ञात है कि इन सात अभ्यावेदनों में से प्रत्येक को द्विभाजित उप-स्थानों के रूप में अपरिवर्तनीय उप-स्थानों के रूप में बनाया जा सकता है।[8]

रचना बीजगणित के रूप में

हालांकि डब्लू.आर. हैमिल्टन ने 19वीं सदी में बाइक्वाटरनियंस की प्रारम्भ की थी एक क्षेत्र पर एक विशेष प्रकार के बीजगणित के रूप में इसकी गणितीय संरचना का चित्रण 20वीं सदी में पूरा किया गया था: बाइकाटर्नियंस को बाइकॉमप्लेक्स संख्याओं से उसी तरह उत्पन्न किया जा सकता है जिस तरह से एड्रियन अल्बर्ट ने उत्पन्न किया था। तथाकथित केली-डिक्सन निर्माण में जटिल संख्याओं से वास्तविक चतुष्कोण। इस रचना में एक द्विजटिल संख्या (w,z) का संयुग्मी (w,z)* = (w, – z) है।

बायकाटर्नियन तब बाइकॉमप्लेक्स संख्याओं (a,b) की एक जोड़ी है, जहां दूसरे बायकाटर्नियन (c, d) वाला उत्पाद है

अगर फिर उभयलिंगी

जब (a,b)* को साधारण सम्मिश्र संख्याओं के 4-वेक्टर के रूप में लिखा जाता है,

बाईक्वेटरनियंस एक चतुर्धातुक बीजगणित का एक उदाहरण है और इसका मानदंड है

दो द्विअंश p और q संतुष्ट करते हैं यह दर्शाता है कि N एक द्विघात रूप है जो संघटन को स्वीकार करता है जिससे कि द्विअर्थी एक रचना बीजगणित बनाते हैं।


यह भी देखें

टिप्पणियाँ

  1. Proceedings of the Royal Irish Academy November 1844 (NA) and 1850 page 388 from Google Books [1]
  2. 2.0 2.1 D. J. H. Garling (2011) Clifford Algebras: An Introduction, Cambridge University Press.
  3. 3.0 3.1 Francis and Kosowsky (2005) The construction of spinors in geometric algebra. Annals of Physics, 317, 384—409. Article link
  4. 4.0 4.1 William Rowan Hamilton (1853) Lectures on Quaternions, Article 669. This historical mathematical text is available on-line courtesy of Cornell University
  5. Hamilton (1899) Elements of Quaternions, 2nd edition, page 289
  6. Leonard Dickson (1914) Linear Algebras, §13 "Equivalence of the complex quaternion and matric algebras", page 13, via HathiTrust
  7. Lanczos, Cornelius (1949), The Variational Principles of Mechanics, University of Toronto Press, pp. 304–312 See equation 94.16, page 305. The following algebra compares to Lanczos, except he uses ~ to signify quaternion conjugation and * for complex conjugation
  8. Furey, C. (2012). "आदर्शों का एकीकृत सिद्धांत". Phys. Rev. D. 86 (2): 025024. arXiv:1002.1497. Bibcode:2012PhRvD..86b5024F. doi:10.1103/PhysRevD.86.025024. S2CID 118458623.


संदर्भ