अपचायक समूह: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 3: Line 3:
गणित में, एक अपचायक समूह एक [[क्षेत्र (गणित)]] पर [[रैखिक बीजगणितीय समूह]] का एक प्रकार है। एक परिभाषा यह है कि एक पूर्ण क्षेत्र पर एक संयोजित रैखिक बीजगणितीय समूह G अपचायक है, यदि इसमें परिमित आधार (बीजगणित) के साथ एक समूह का निरूपण होता है जो अखंडनीय प्रस्तुतियों का [[प्रत्यक्ष योग]] है। अपचायक समूहों में गणित के कुछ सबसे महत्वपूर्ण समूह सम्मिलित हैं, जैसे [[सामान्य रैखिक समूह]] ''GL''(''n'') व्युत्क्रम आव्यूह, [[विशेष ऑर्थोगोनल समूह|विशेष लंब कोणीय समूह]] ''SO''(''n'') , और [[सहानुभूतिपूर्ण समूह|सममिती समूह]] ''Sp''(2''n'')। सरल बीजगणितीय समूह और (अधिक सामान्यतः) अर्धसरल बीजगणितीय समूह अपचायक होते हैं।
गणित में, एक अपचायक समूह एक [[क्षेत्र (गणित)]] पर [[रैखिक बीजगणितीय समूह]] का एक प्रकार है। एक परिभाषा यह है कि एक पूर्ण क्षेत्र पर एक संयोजित रैखिक बीजगणितीय समूह G अपचायक है, यदि इसमें परिमित आधार (बीजगणित) के साथ एक समूह का निरूपण होता है जो अखंडनीय प्रस्तुतियों का [[प्रत्यक्ष योग]] है। अपचायक समूहों में गणित के कुछ सबसे महत्वपूर्ण समूह सम्मिलित हैं, जैसे [[सामान्य रैखिक समूह]] ''GL''(''n'') व्युत्क्रम आव्यूह, [[विशेष ऑर्थोगोनल समूह|विशेष लंब कोणीय समूह]] ''SO''(''n'') , और [[सहानुभूतिपूर्ण समूह|सममिती समूह]] ''Sp''(2''n'')। सरल बीजगणितीय समूह और (अधिक सामान्यतः) अर्धसरल बीजगणितीय समूह अपचायक होते हैं।


[[क्लाउड चेवेली]] ने दिखाया कि किसी भी [[बीजीय रूप से बंद क्षेत्र|बीजीय रूप से संवृत्त क्षेत्र]] पर अपचायक समूहों का वर्गीकरण समान है। विशेष रूप से, साधारण बीजगणितीय समूहों को डाइनकिन आरेखों द्वारा वर्गीकृत किया जाता है, जैसा कि संहत लाई समूहों के सिद्धांत या जटिल लाई बीजगणित अर्धसरल लाई बीजगणित में होता है। एक स्वेच्छ क्षेत्र पर अपचायक समूह वर्गीकृत करना जटिल होता है, परन्तु कई क्षेत्रों जैसे कि [[वास्तविक संख्या]] आर या एक [[संख्या क्षेत्र]] के लिए, वर्गीकरण ठीक रूप से समझा जाता है। [[परिमित सरल समूहों का वर्गीकरण]] कहता है कि अधिकांश परिमित सरल समूह ''k'' के समूह ''G''(''k'') के रूप में उत्पन्न होते हैं - एक परिमित पर एक साधारण बीजीय समूह ''G'' के [[तर्कसंगत बिंदु]] क्षेत्र ''के'', या उस निर्माण के लघु रूपों के रूप में है।
[[क्लाउड चेवेली]] ने दिखाया कि किसी भी [[बीजीय रूप से बंद क्षेत्र|बीजीय रूप से संवृत क्षेत्र]] पर अपचायक समूहों का वर्गीकरण समान है। विशेष रूप से, साधारण बीजगणितीय समूहों को डाइनकिन आरेखों द्वारा वर्गीकृत किया जाता है, जैसा कि संहत लाई समूहों के सिद्धांत या जटिल लाई बीजगणित अर्धसरल लाई बीजगणित में होता है। एक स्वेच्छ क्षेत्र पर अपचायक समूह वर्गीकृत करना जटिल होता है, परन्तु कई क्षेत्रों जैसे कि [[वास्तविक संख्या]] R या एक [[संख्या क्षेत्र]] के लिए, वर्गीकरण ठीक रूप से समझा जाता है। [[परिमित सरल समूहों का वर्गीकरण]] कहता है कि अधिकांश परिमित सरल समूह ''k'' के समूह ''G''(''k'') के रूप में उत्पन्न होते हैं - एक परिमित पर एक साधारण बीजीय समूह ''G'' के [[तर्कसंगत बिंदु]] क्षेत्र ''के'', या उस निर्माण के लघु रूपों के रूप में है।


अपचायक समूहों के निकट विभिन्न संदर्भों में एक समृद्ध [[प्रतिनिधित्व सिद्धांत|निरूपण सिद्धांत]] है। सबसे पहले, एक बीजगणितीय समूह के रूप में एक क्षेत्र ''k'' पर एक अपचायक समूह ''G'' के निरूपण का अध्ययन कर सकता है, जो ''k''-सदिश रिक्त समष्टि पर ''G'' की क्रियाएं हैं। परन्तु साथ ही, समूह ''G''(''k'') के जटिल निरूपण का अध्ययन कर सकता है जब ''k'' एक [[परिमित क्षेत्र]] है, या एक वास्तविक अपचायक समूह का अनंत-विमीय एकात्मक निरूपण, या एक एडिलिक बीजगणितीय समूह के स्वसमाकृतिक निरूपण है। इन सभी क्षेत्रों में अपचायक समूहों के संरचना सिद्धांत का उपयोग किया जाता है।
अपचायक समूहों के निकट विभिन्न संदर्भों में एक समृद्ध [[प्रतिनिधित्व सिद्धांत|निरूपण सिद्धांत]] है। सबसे पहले, एक बीजगणितीय समूह के रूप में एक क्षेत्र ''k'' पर एक अपचायक समूह ''G'' के निरूपण का अध्ययन कर सकता है, जो ''k''-सदिश रिक्त समष्टि पर ''G'' की क्रियाएं हैं। परन्तु साथ ही, समूह ''G''(''k'') के जटिल निरूपण का अध्ययन कर सकता है जब ''k'' एक [[परिमित क्षेत्र]] है, या एक वास्तविक अपचायक समूह का अनंत-विमीय एकात्मक निरूपण, या एक एडिलिक बीजगणितीय समूह के स्वसमाकृतिक निरूपण है। इन सभी क्षेत्रों में अपचायक समूहों के संरचना सिद्धांत का उपयोग किया जाता है।
Line 9: Line 9:
== परिभाषाएँ ==
== परिभाषाएँ ==
{{main|रैखिक बीजगणितीय समूह}}
{{main|रैखिक बीजगणितीय समूह}}
किसी क्षेत्र k पर एक रेखीय बीजगणितीय समूह को कुछ धनात्मक पूर्णांक n के लिए k पर GL(n) की एक [[चिकनी योजना|समृणीकृत पद्धति]] संवृत्त [[समूह योजना|समूह पद्धति]] के रूप में परिभाषित किया गया है। समतुल्य रूप से, k पर एक रेखीय बीजगणितीय समूह k के ऊपर एक समृणीकृत संबंध पद्धति समूह पद्धति है।
किसी क्षेत्र k पर एक रेखीय बीजगणितीय समूह को कुछ धनात्मक पूर्णांक n के लिए k पर GL(n) की एक [[चिकनी योजना|समृणीकृत पद्धति]] संवृत [[समूह योजना|समूह पद्धति]] के रूप में परिभाषित किया गया है। समतुल्य रूप से, k पर एक रेखीय बीजगणितीय समूह k पर एक समृणीकृत संबंध पद्धति समूह पद्धति है।


=== एकांगी मूलक के साथ ===
=== एकांगी मूलक के साथ ===
एक संयोजित समष्टि रैखिक बीजगणितीय समूह <math>G</math> एक बीजगणितीय रूप से संवृत्त क्षेत्र को अर्द्धसरल कहा जाता है यदि प्रत्येक समृणीकृत रूप से संयोजित [[हल करने योग्य समूह]] का [[सामान्य उपसमूह]] <math>G</math> नगण्य है। अधिक सामान्यतः, एक संयोजित रैखिक बीजगणितीय समूह <math>G</math> एक बीजगणितीय रूप से संवृत्त क्षेत्र पर अपचायक कहा जाता है यदि <math>G</math> के सबसे बड़े समृणीकृत रूप से संयोजित रैखिक बीजगणितीय समूह सामान्य उपसमूह नगण्य है।<ref>SGA 3 (2011), v. 3, Définition XIX.1.6.1.</ref> इस सामान्य उपसमूह को एकांगी मूलक कहा जाता है और इसे <math>R_u(G)</math> के रूप में दर्शाया जाता है। (कुछ लेखकों को जोड़ने के लिए अपचायक समूहों की आवश्यकता नहीं होती है।) एक स्वेच्छ क्षेत्र k पर एक समूह <math>G</math> को अर्द्धसरल या अपचायक कहा जाता है यदि [[योजनाओं के फाइबर उत्पाद|पद्धतिओं के फाइबर उत्पाद]] <math>G_{\overline k}</math> अर्द्धसरल या अपचायक है, जहां <math>\overline k</math> k का [[बीजगणितीय समापन|बीजगणितीय संवरक]] है। (यह परिचय में अपचायक समूह की परिभाषा के बराबर है जब k उतम है।<ref>Milne (2017), Proposition 21.60.</ref>) k के ऊपर कोई भी रैखिक बीजगणितीय समूह, जैसे गुणक समूह G<sub>''m''</sub>, अपचायक होता है।  
एक संयोजित समष्टि रैखिक बीजगणितीय समूह <math>G</math> एक बीजगणितीय रूप से संवृत क्षेत्र को अर्द्धसरल कहा जाता है यदि प्रत्येक समृणीकृत रूप से संयोजित [[हल करने योग्य समूह]] का [[सामान्य उपसमूह]] <math>G</math> नगण्य है। अधिक सामान्यतः, एक संयोजित रैखिक बीजगणितीय समूह <math>G</math> एक बीजगणितीय रूप से संवृत क्षेत्र पर अपचायक कहा जाता है यदि <math>G</math> के सबसे बड़े समृणीकृत रूप से संयोजित रैखिक बीजगणितीय समूह सामान्य उपसमूह नगण्य है।<ref>SGA 3 (2011), v. 3, Définition XIX.1.6.1.</ref> इस सामान्य उपसमूह को एकांगी मूलक कहा जाता है और इसे <math>R_u(G)</math> के रूप में दर्शाया जाता है। (कुछ लेखकों को जोड़ने के लिए अपचायक समूहों की आवश्यकता नहीं होती है।) एक स्वेच्छ क्षेत्र k पर एक समूह <math>G</math> को अर्द्धसरल या अपचायक कहा जाता है यदि [[योजनाओं के फाइबर उत्पाद|पद्धतिओं के तन्तु उत्पाद]] <math>G_{\overline k}</math> अर्द्धसरल या अपचायक है, जहां <math>\overline k</math> k का [[बीजगणितीय समापन|बीजगणितीय संवरक]] है। (यह परिचय में अपचायक समूह की परिभाषा के बराबर है जब k उतम है।<ref>Milne (2017), Proposition 21.60.</ref>) k पर कोई भी रैखिक बीजगणितीय समूह, जैसे गुणक समूह G<sub>''m''</sub>, अपचायक होता है।  


=== निरूपण सिद्धांत के साथ ===
=== निरूपण सिद्धांत के साथ ===
Line 25: Line 25:


=== विभाजित-अपचायक समूह ===
=== विभाजित-अपचायक समूह ===
क्षेत्र k पर एक अपचायक समूह G को 'विभाजित' कहा जाता है, यदि इसमें k के ऊपर एक विभाजित अधिकतम टोरस T होता है (अर्थात, G में एक रैखिक बीजगणितीय समूह जिसका आधार बदल जाता है) <math>\overline k</math> में एक अधिकतम टोरस है <math>G_{\overline k}</math>)। यह कहने के बराबर है कि टी G में विभाजित टोरस है जो कि G में सभी के-टोरी के बीच अधिकतम है।<ref>Borel (1991), 18.2(i).</ref> इस प्रकार के समूह उपयोगी होते हैं क्योंकि उनके वर्गीकरण को संयोजी आंकड़ों के माध्यम से वर्णित किया जा सकता है जिसे मूल आंकड़ें कहा जाता है।
क्षेत्र k पर एक अपचायक समूह G को 'विभाजित' कहा जाता है, यदि इसमें k पर एक विभाजित अधिकतम टोरस T होता है (अर्थात, G में एक रैखिक बीजगणितीय समूह जिसका आधार बदल जाता है) <math>\overline k</math> में एक अधिकतम टोरस है <math>G_{\overline k}</math>)। यह कहने के बराबर है कि टी G में विभाजित टोरस है जो कि G में सभी के-टोरी के बीच अधिकतम है।<ref>Borel (1991), 18.2(i).</ref> इस प्रकार के समूह उपयोगी होते हैं क्योंकि उनके वर्गीकरण को संयोजी आंकड़ों के माध्यम से वर्णित किया जा सकता है जिसे मूल आंकड़ें कहा जाता है।


== उदाहरण ==
== उदाहरण ==
Line 33: Line 33:


=== O(n), SO(n), और SP(n) ===
=== O(n), SO(n), और SP(n) ===
एक महत्वपूर्ण सरल समूह क्षेत्र k पर सममिती समूह Sp(2n) है, GL(2n) का उपसमूह जो सदिश समष्टि k<sup>2n</sup> पर एक गैर-अपघटित वैकल्पिक [[द्विरेखीय रूप]] को संरक्षित करता है। इसी प्रकार, लांबिक समूह O(q) सामान्य रैखिक समूह का उपसमूह है जो क्षेत्र k पर सदिश समष्टि पर एक अविकृत [[द्विघात रूप]] q को संरक्षित करता है। बीजगणितीय समूह O(q) में दो संयोजित घटक (सांस्थिति) हैं, और इसकी [[पहचान घटक|तत्समक घटक]] SO(q) अपचायक है, वस्तुतः विमा n के q के लिए कम से कम 3 सरल है। (विशेषता 2 और n विषम के k के लिए, समूह पद्धति O(q) वस्तुतः सम्बद्ध है, परन्तु k पर समृणीकृत नहीं है। सरल समूह SO(q) को सदैव O(q) के अधिक से अधिक समृणीकृत रूप से संयोजित उपसमूह के रूप में परिभाषित किया जा सकता है।) जब k बीजगणितीय रूप से संवृत्त होता है, तो कोई भी दो ( अनपभ्रष्ट) एक ही विमा के द्विघात रूप समरूपी हैं, और इसलिए इस समूह को SO(n) कहना उचित है। एक सामान्य क्षेत्र k के लिए, विमा n के विभिन्न द्विघात रूपों से k के ऊपर गैर-समरूपी सरल समूह SO(q) प्राप्त हो सकते हैं, यद्यपि उन सभी में बीजगणितीय संवरक <math>\overline k</math> में समान आधार परिवर्तन होता है।
एक महत्वपूर्ण सरल समूह क्षेत्र k पर सममिती समूह Sp(2n) है, GL(2n) का उपसमूह जो सदिश समष्टि k<sup>2n</sup> पर एक गैर-अपघटित वैकल्पिक [[द्विरेखीय रूप]] को संरक्षित करता है। इसी प्रकार, लांबिक समूह O(q) सामान्य रैखिक समूह का उपसमूह है जो क्षेत्र k पर सदिश समष्टि पर एक अविकृत [[द्विघात रूप]] q को संरक्षित करता है। बीजगणितीय समूह O(q) में दो संयोजित घटक (सांस्थिति) हैं, और इसकी [[पहचान घटक|तत्समक घटक]] SO(q) अपचायक है, वस्तुतः विमा n के q के लिए कम से कम 3 सरल है। (विशेषता 2 और n विषम के k के लिए, समूह पद्धति O(q) वस्तुतः सम्बद्ध है, परन्तु k पर समृणीकृत नहीं है। सरल समूह SO(q) को सदैव O(q) के अधिक से अधिक समृणीकृत रूप से संयोजित उपसमूह के रूप में परिभाषित किया जा सकता है।) जब k बीजगणितीय रूप से संवृत होता है, तो कोई भी दो ( अनपभ्रष्ट) एक ही विमा के द्विघात रूप समरूपी हैं, और इसलिए इस समूह को SO(n) कहना उचित है। एक सामान्य क्षेत्र k के लिए, विमा n के विभिन्न द्विघात रूपों से k पर गैर-समरूपी सरल समूह SO(q) प्राप्त हो सकते हैं, यद्यपि उन सभी में बीजगणितीय संवरक <math>\overline k</math> में समान आधार परिवर्तन होता है।


=== टोरी ===
=== टोरी ===
Line 64: Line 64:
संलग्न निरूपण G की क्रिया है जो इसके लाई बीजगणित <math>\mathfrak g</math> पर संयुग्मन द्वारा होता है। G के एक मूल का अर्थ है एक गैर-शून्य भार जो <math>\mathfrak g</math>पर ''T'' ⊂ G की क्रिया में होता है। प्रत्येक मूल के अनुरूप <math>\mathfrak g</math> की उप-समष्टि उपक्षेत्र 1-विमीय है, और T द्वारा निश्चित की गई <math>\mathfrak g</math> की उपसमष्टि यथार्थ T की लाई बीजगणित <math>\mathfrak t</math> है।<ref name="M2111">Milne (2017), Theorem 21.11.</ref> इसलिए, G का लाई बीजगणित <math>\mathfrak t</math> में मूलों के सम्मुचय Φ द्वारा अनुक्रमित 1-आयामी उप-स्थानों के साथ विघटित होता है:
संलग्न निरूपण G की क्रिया है जो इसके लाई बीजगणित <math>\mathfrak g</math> पर संयुग्मन द्वारा होता है। G के एक मूल का अर्थ है एक गैर-शून्य भार जो <math>\mathfrak g</math>पर ''T'' ⊂ G की क्रिया में होता है। प्रत्येक मूल के अनुरूप <math>\mathfrak g</math> की उप-समष्टि उपक्षेत्र 1-विमीय है, और T द्वारा निश्चित की गई <math>\mathfrak g</math> की उपसमष्टि यथार्थ T की लाई बीजगणित <math>\mathfrak t</math> है।<ref name="M2111">Milne (2017), Theorem 21.11.</ref> इसलिए, G का लाई बीजगणित <math>\mathfrak t</math> में मूलों के सम्मुचय Φ द्वारा अनुक्रमित 1-आयामी उप-स्थानों के साथ विघटित होता है:
:<math>{\mathfrak g} = {\mathfrak t}\oplus \bigoplus_{\alpha\in\Phi} {\mathfrak g}_{\alpha}.</math>
:<math>{\mathfrak g} = {\mathfrak t}\oplus \bigoplus_{\alpha\in\Phi} {\mathfrak g}_{\alpha}.</math>
उदाहरण के लिए, जब G समूह GL(n) है, तो इसका लाई बीजगणित <math>{\mathfrak gl}(n)</math>, k पर सभी n × n आव्यूहों की सदिश समष्टि है। मान लीजिए कि G में विकर्ण आव्यूहों का उपसमूह T है। फिर मूल-समष्टि अपघटन <math>{\mathfrak gl}(n)</math> को विकर्ण आव्यूह के प्रत्यक्ष योग और संवृत्त-विकर्ण पदों (i, j) द्वारा अनुक्रमित 1-विमीय उप-समष्टि के रूप में व्यक्त करता है। भार जालक X(T) ≅ 'Z <sup>n</sup>' के मानक आधार के लिए L<sub>1</sub>,..., L<sub>''n''</sub> लिखते हुए, 1 से n तक सभी i ≠ j के लिए मूल अवयव Li - Lj हैं।
उदाहरण के लिए, जब G समूह GL(n) है, तो इसका लाई बीजगणित <math>{\mathfrak gl}(n)</math>, k पर सभी n × n आव्यूहों की सदिश समष्टि है। मान लीजिए कि G में विकर्ण आव्यूहों का उपसमूह T है। फिर मूल-समष्टि अपघटन <math>{\mathfrak gl}(n)</math> को विकर्ण आव्यूह के प्रत्यक्ष योग और संवृत-विकर्ण पदों (i, j) द्वारा अनुक्रमित 1-विमीय उप-समष्टि के रूप में व्यक्त करता है। भार जालक X(T) ≅ 'Z <sup>n</sup>' के मानक आधार के लिए L<sub>1</sub>,..., L<sub>''n''</sub> लिखते हुए, 1 से n तक सभी i ≠ j के लिए मूल अवयव Li - Lj हैं।


एक अर्धसरल समूह की मूल एक 'मूल पद्धति' बनाती हैं; यह एक मिश्रित संरचना है जिसे पूर्ण रूप से वर्गीकृत किया जा सकता है। अधिक सामान्यतः, एक अपचायक समूह की मूल [[ रूट तिथि |मूल आधार]] बनाती हैं, एक सधारण भिन्नता।<ref>Milne (2017), Corollary 21.12.</ref> अपचायक समूह G के [[वेइल समूह]] का अर्थ है टोरस द्वारा अधिकतम टोरस के [[ नॉर्मलाइज़र |प्रसामान्यक]] का [[भागफल समूह]], ''W'' = ''n''<sub>''G''</sub>(T) / T। वेइल समूह वस्तुतः परावर्तनों द्वारा उत्पन्न परिमित समूह है। उदाहरण के लिए, समूह GL(n) (या SL(n)) के लिए, वेइल समूह [[सममित समूह]] S<sub>''n''</sub> है।
एक अर्धसरल समूह की मूल एक 'मूल पद्धति' बनाती हैं; यह एक मिश्रित संरचना है जिसे पूर्ण रूप से वर्गीकृत किया जा सकता है। अधिक सामान्यतः, एक अपचायक समूह की मूल [[ रूट तिथि |मूल आधार]] बनाती हैं, एक सधारण भिन्नता।<ref>Milne (2017), Corollary 21.12.</ref> अपचायक समूह G के [[वेइल समूह]] का अर्थ है टोरस द्वारा अधिकतम टोरस के [[ नॉर्मलाइज़र |प्रसामान्यक]] का [[भागफल समूह]], ''W'' = ''n''<sub>''G''</sub>(T) / T। वेइल समूह वस्तुतः परावर्तनों द्वारा उत्पन्न परिमित समूह है। उदाहरण के लिए, समूह GL(n) (या SL(n)) के लिए, वेइल समूह [[सममित समूह]] S<sub>''n''</sub> है।
Line 72: Line 72:
उदाहरण के लिए, यदि B, GL (n) में ऊपरी-त्रिकोणीय आव्यूहों का बोरेल उपसमूह है, तो यह <math>{\mathfrak gl}(n)</math> में ऊपरी-त्रिकोणीय आव्यूहों के उप-समष्टि <math>\mathfrak b</math> का स्पष्ट अपघटन है। 1 ≤ i <j ≤ n के लिए धनात्मक मूल L<sub>''i''</sub> - L<sub>''j''</sub> हैं।
उदाहरण के लिए, यदि B, GL (n) में ऊपरी-त्रिकोणीय आव्यूहों का बोरेल उपसमूह है, तो यह <math>{\mathfrak gl}(n)</math> में ऊपरी-त्रिकोणीय आव्यूहों के उप-समष्टि <math>\mathfrak b</math> का स्पष्ट अपघटन है। 1 ≤ i <j ≤ n के लिए धनात्मक मूल L<sub>''i''</sub> - L<sub>''j''</sub> हैं।


एक 'सरल मूल' का अर्थ एक धनात्मक मूल है जो दो अन्य धनात्मक मूलों का योग नहीं है। सरल मूलों के समुच्चय के लिए Δ लिखिए। सरल मूलों की संख्या आर G के [[कम्यूटेटर उपसमूह|क्रमविनिमेयक उपसमूह]] के पद के बराबर है, जिसे G के 'अर्धसरल पद' कहा जाता है (जो कि G के अर्धसरल होने पर मात्र G का पद है)। उदाहरण के लिए, GL(n) (या SL(n)) के लिए सरल मूल 1 ≤ i ≤ n − 1 के लिए L<sub>''i''</sub> - L<sub>''i''+1</sub> हैं।
एक 'सरल मूल' का अर्थ एक धनात्मक मूल है जो दो अन्य धनात्मक मूलों का योग नहीं है। सरल मूलों के समुच्चय के लिए Δ लिखिए। सरल मूलों की संख्या R G के [[कम्यूटेटर उपसमूह|क्रमविनिमेयक उपसमूह]] के पद के बराबर है, जिसे G के 'अर्धसरल पद' कहा जाता है (जो कि G के अर्धसरल होने पर मात्र G का पद है)। उदाहरण के लिए, GL(n) (या SL(n)) के लिए सरल मूल 1 ≤ i ≤ n − 1 के लिए L<sub>''i''</sub> - L<sub>''i''+1</sub> हैं।


मूल पद्धति को संबंधित डायनकिन आरेख द्वारा वर्गीकृत किया जाता है, जो एक परिमित [[ग्राफ (असतत गणित)|आरेख (असतत गणित)]] है (कुछ किनारों को निर्देशित या एकाधिक के साथ)। डायनकिन आरेख के शीर्षों का समुच्चय सरल मूलों का समुच्चय है। संक्षेप में, डायनकिन आरेख भार जाली पर एक वेइल समूह-निश्‍चर आंतरिक उत्पाद के संबंध में सरल मूलों और उनकी सापेक्ष लंबाई के बीच के कोणों का वर्णन करता है। संयोजित डायकिन आरेख (सरल समूहों के अनुरूप) नीचे चित्रित किए गए हैं।
मूल पद्धति को संबंधित डायनकिन आरेख द्वारा वर्गीकृत किया जाता है, जो एक परिमित [[ग्राफ (असतत गणित)|आरेख (असतत गणित)]] है (कुछ किनारों को निर्देशित या एकाधिक के साथ)। डायनकिन आरेख के शीर्षों का समुच्चय सरल मूलों का समुच्चय है। संक्षेप में, डायनकिन आरेख भार जाली पर एक वेइल समूह-निश्‍चर आंतरिक उत्पाद के संबंध में सरल मूलों और उनकी सापेक्ष लंबाई के बीच के कोणों का वर्णन करता है। संयोजित डायकिन आरेख (सरल समूहों के अनुरूप) नीचे चित्रित किए गए हैं।
Line 79: Line 79:


== [[परवलयिक उपसमूह]] ==
== [[परवलयिक उपसमूह]] ==
एक क्षेत्र k पर विभाजित अपचायक समूह G के लिए, G के समृणीकृत संयोजित उपसमूह जिनमें G का दिया गया बोरेल उपसमूह B होता है, सरल मूलों के सम्मुचय Δ के उपसम्मुचय के साथ एक-से-एक संगति में होते हैं (या समतुल्य, उपसम्मुचय) डायकिन आरेख के शीर्षों के सम्मुचय का)। मान लीजिए r Δ की कोटि है, जो G का अर्धसरल कोटि है। G का प्रत्येक 'परवलयिक उपसमूह' G(k) के किसी अवयव द्वारा B युक्त उपसमूह से संयुग्मित होता है। फलस्वरूप, k पर G में परवलयिक उपसमूहों के वस्तुतः 2<sup>r</sup> संयुग्मन वर्ग हैं।<ref>Borel (1991), Proposition 21.12.</ref> स्पष्ट रूप से, Δ के दिए गए उपसमुच्चय S के संगत परवलयिक उपसमूह, S में α के लिए मूल उपसमूहों U<sub>−α</sub> के साथ मिलकर B द्वारा उत्पन्न समूह है। उदाहरण के लिए, एस में α के लिए। उदाहरण के लिए, GL (n) के परवलयिक उपसमूहों में उपरोक्त बोरेल उपसमूह B होते हैं, विकर्ण के साथ वर्गों के दिए गए सम्मुचय के नीचे शून्य प्रविष्टियों के साथ व्युत्क्रम आव्यूह के समूह होते हैं, जैसे:
एक क्षेत्र k पर विभाजित अपचायक समूह G के लिए, G के समृणीकृत संयोजित उपसमूह जिनमें G का दिया गया बोरेल उपसमूह B होता है, सरल मूलों के सम्मुचय Δ के उपसम्मुचय के साथ एक-से-एक संगति में होते हैं (या समतुल्य, उपसम्मुचय) डायकिन आरेख के शीर्षों के सम्मुचय का)। मान लीजिए r Δ की कोटि है, जो G का अर्धसरल कोटि है। G का प्रत्येक 'परवलयिक उपसमूह' G(k) के किसी अवयव द्वारा B युक्त उपसमूह से संयुग्मित होता है। फलस्वरूप, k पर G में परवलयिक उपसमूहों के वस्तुतः 2<sup>r</sup> संयुग्मन वर्ग हैं।<ref>Borel (1991), Proposition 21.12.</ref> स्पष्ट रूप से, Δ के दिए गए उपसमुच्चय S के संगत परवलयिक उपसमूह, S में α के लिए मूल उपसमूहों U<sub>−α</sub> के साथ मिलकर B द्वारा उत्पन्न समूह है। उदाहरण के लिए, एस में α के लिए। उदाहरण के लिए, GL (n) के परवलयिक उपसमूहों में उपरोक्त बोरेल उपसमूह B होते हैं, विकर्ण के साथ वर्गों के दिए गए सम्मुचय के नीचे शून्य प्रविष्टियों के साथ व्युत्क्रम आव्यूह के समूह होते हैं, जैसे:
:<math>\left \{ \begin{bmatrix}
:<math>\left \{ \begin{bmatrix}
  * & * & * & *\\
  * & * & * & *\\
Line 86: Line 86:
  0 & 0 & 0 & *
  0 & 0 & 0 & *
\end{bmatrix} \right \}</math>
\end{bmatrix} \right \}</math>
परिभाषा के अनुसार, एक क्षेत्र ''k'' पर अपचायक समूह ''G'' का एक परवलयिक उपसमूह ''P'' एक समृणीकृत ''k''-उपसमूह है, जैसे कि भागफल प्रकार ''G''/P 'K' पर [[उचित योजना|उचित पद्धति]] है, या 'K' पर समकक्ष प्रक्षेपी विविधता है। इस प्रकार परवलयिक उपसमूहों का वर्गीकरण 'G' के लिए [[सामान्यीकृत ध्वज विविधता]] के वर्गीकरण के बराबर है (समृणीकृत स्थिरक समूह के साथ; यह विशेषता शून्य के ''K'' के लिए कोई प्रतिबंध नहीं है)। ''GL''(''n'') के लिए, ये ध्वज प्रकार हैं, दिए गए विमाओं ''a''<sub>1</sub>,...,a<sub>''i''</sub> के रैखिक उप-स्थानों के प्राचलीकरण अनुक्रम विमा n:
परिभाषा के अनुसार, एक क्षेत्र ''k'' पर अपचायक समूह ''G'' का एक परवलयिक उपसमूह ''P'' एक समृणीकृत ''k''-उपसमूह है, जैसे कि भागफल प्रकार ''G''/P 'K' पर [[उचित योजना|उचित पद्धति]] है, या 'K' पर समकक्ष प्रक्षेपी विविधता है। इस प्रकार परवलयिक उपसमूहों का वर्गीकरण 'G' के लिए [[सामान्यीकृत ध्वज विविधता]] के वर्गीकरण के बराबर है (समृणीकृत स्थिरक समूह के साथ; यह विशेषता शून्य के ''K'' के लिए कोई प्रतिबंध नहीं है)। ''GL''(''n'') के लिए, ये ध्वज प्रकार हैं, दिए गए विमाओं ''a''<sub>1</sub>,...,a<sub>''i''</sub> के रैखिक उप-स्थानों के प्राचलीकरण अनुक्रम विमा n:
:<math>0\subset S_{a_1}\subset \cdots \subset S_{a_i}\subset V</math> के एक निश्चित सदिश समष्टि V में समाहित है
:<math>0\subset S_{a_1}\subset \cdots \subset S_{a_i}\subset V</math> के एक निश्चित सदिश समष्टि V में समाहित है
लंब कोणीय समूह या सममिती समूह के लिए, प्रक्षेप्य सजातीय प्रकारों का एक समान विवरण होता है, जो किसी दिए गए द्विघात रूप या सममिती रूप के संबंध में समानुवर्ती उप-समष्टि ध्वज की प्रकार के रूप में होता है। बोरेल उपसमूह B के साथ किसी भी अपचायक समूह G के लिए, G/B को 'ध्वज प्रकार' या 'ध्वज कई गुना' कहा जाता है।
लंब कोणीय समूह या सममिती समूह के लिए, प्रक्षेप्य सजातीय प्रकारों का एक समान विवरण होता है, जो किसी दिए गए द्विघात रूप या सममिती रूप के संबंध में समानुवर्ती उप-समष्टि ध्वज की प्रकार के रूप में होता है। बोरेल उपसमूह B के साथ किसी भी अपचायक समूह G के लिए, G/B को 'ध्वज प्रकार' या 'ध्वज कई गुना' कहा जाता है।


== विभाजित अपचायक समूह का वर्गीकरण ==
== विभाजित अपचायक समूह का वर्गीकरण ==
[[File:Finite Dynkin diagrams.svg|480px|thumb|संयोजित डायनकिन आरेख]]शेवाली ने 1958 में दिखाया कि किसी भी बीजगणितीय रूप से संवृत्त क्षेत्र पर अपचायक समूहों को मूल आंकड़ों द्वारा समरूपता तक वर्गीकृत किया जाता है।<ref>Chevalley (2005); Springer (1998), 9.6.2 and 10.1.1.</ref> विशेष रूप से, एक बीजगणितीय रूप से संवृत्त क्षेत्र पर अर्ध-सरल समूहों को उनके डायनकिन आरेख द्वारा केंद्रीय समरूपता तक वर्गीकृत किया जाता है, और सरल समूह संयोजित आरेखों के अनुरूप होते हैं। इस प्रकार A<sub>''n''</sub>, B<sub>''n''</sub>, C<sub>''n''</sub>, D<sub>''n''</sub>, E<sub>6</sub>, E<sub>7</sub>, E<sub>8</sub>, F<sub>4</sub>, G<sub>2</sub> के सरल समूह हैं। यह परिणाम अनिवार्य रूप से 1880 और 1890 के दशक में [[ विल्हेम हत्या |विल्हेम किलिंग]] और एली कार्टन द्वारा संहत लाई समूहों या जटिल अर्ध-सरल लाई बीजगणित के वर्गीकरण के समान है। विशेष रूप से, साधारण बीजगणितीय समूहों के विमा, केंद्र और अन्य गुणों को सरल लाई समूहों की सूची से पढ़ा जा सकता है। यह उल्लेखनीय है कि अपचायक समूहों का वर्गीकरण विशेषता से स्वतंत्र है। तुलना के लिए, अभिलक्षणिक शून्य की तुलना में धनात्मक अभिलक्षण में बहुत अधिक सरल लाई बीजगणित हैं।
[[File:Finite Dynkin diagrams.svg|480px|thumb|संयोजित डायनकिन आरेख]]शेवाली ने 1958 में दिखाया कि किसी भी बीजगणितीय रूप से संवृत क्षेत्र पर अपचायक समूहों को मूल आंकड़ों द्वारा समरूपता तक वर्गीकृत किया जाता है।<ref>Chevalley (2005); Springer (1998), 9.6.2 and 10.1.1.</ref> विशेष रूप से, एक बीजगणितीय रूप से संवृत क्षेत्र पर अर्ध-सरल समूहों को उनके डायनकिन आरेख द्वारा केंद्रीय समरूपता तक वर्गीकृत किया जाता है, और सरल समूह संयोजित आरेखों के अनुरूप होते हैं। इस प्रकार A<sub>''n''</sub>, B<sub>''n''</sub>, C<sub>''n''</sub>, D<sub>''n''</sub>, E<sub>6</sub>, E<sub>7</sub>, E<sub>8</sub>, F<sub>4</sub>, G<sub>2</sub> के सरल समूह हैं। यह परिणाम अनिवार्य रूप से 1880 और 1890 के दशक में [[ विल्हेम हत्या |विल्हेम किलिंग]] और एली कार्टन द्वारा संहत लाई समूहों या जटिल अर्ध-सरल लाई बीजगणित के वर्गीकरण के समान है। विशेष रूप से, साधारण बीजगणितीय समूहों के विमा, केंद्र और अन्य गुणों को सरल लाई समूहों की सूची से पढ़ा जा सकता है। यह उल्लेखनीय है कि अपचायक समूहों का वर्गीकरण विशेषता से स्वतंत्र है। तुलना के लिए, अभिलक्षणिक शून्य की तुलना में धनात्मक अभिलक्षण में बहुत अधिक सरल लाई बीजगणित हैं।


G प्रकार के [[असाधारण समूह]] G<sub>2</sub> और <sub>6</sub> लियोनार्ड यूजीन डिक्सन | L द्वारा कम से कम सार समूह G (के) के रूप में पहले बनाया गया था। ई। डिक्सन। उदाहरण के लिए, समूह जी<sub>2</sub> k पर एक [[ऑक्टोनियन बीजगणित]] का [[ऑटोमोर्फिज्म समूह]] है। इसके विपरीत, टाइप एफ के शेवेलली समूह<sub>4</sub>, और<sub>7</sub>, और<sub>8</sub> धनात्मक विशेषताओं के क्षेत्र में पूर्ण रूप से नए थे।
प्रकार G<sub>2</sub> और E<sub>6</sub> के [[असाधारण समूह]] G का निर्माण कम से कम सार समूह G (K) के रूप में लियोनार्ड यूजीन डिक्सन द्वारा किया गया था। उदाहरण के लिए, समूह G<sub>2</sub> k पर एक [[ऑक्टोनियन बीजगणित|अष्टकैक बीजगणित]] का [[ऑटोमोर्फिज्म समूह|स्वसमाकृतिकता समूह]] है। इसके विपरीत, धनात्मक विशेषताओं के क्षेत्र में F<sub>4</sub>, E<sub>7</sub>, E<sub>8</sub> प्रकार के शेवाले समूह पूर्ण रूप से नवीन थे।


अधिक सामान्यतः, विभाजित अपचायक समूहों का वर्गीकरण किसी भी क्षेत्र में समान होता है।<ref>Milne (2017), Theorems 23.25 and 23.55.</ref> एक क्षेत्र k पर एक अर्द्धसरल समूह G को 'सिम्पली संयोजित' कहा जाता है, यदि अर्द्धसरल समूह से G तक प्रत्येक सेंट्रल आइसोजिनी एक समरूपता है। (जटिल संख्याओं पर G अर्धसरल के लिए, इस अर्थ में [[बस जुड़ा हुआ है|बस संयोजित है]] G ('सी') के बराबर है जो शास्त्रीय सांस्थिति में बस संयोजित है।) चेवेली का वर्गीकरण देता है कि, किसी भी क्षेत्र के ऊपर, एक अद्वितीय बस संयोजित विभाजन है एक दिए गए डायनकिन आरेख के साथ अर्धसरल समूह जी, संयोजित आरेखों के अनुरूप सरल समूहों के साथ। दूसरे चरम पर, एक अर्धसरल समूह 'संलग्न प्रकार' का होता है यदि इसका केंद्र नगण्य होता है। दिए गए डायनकिन आरेख के साथ k पर विभाजित अर्धसरल समूह वस्तुतः समूह G/A हैं, जहाँ G सरल रूप से संयोजित समूह है और A, G के केंद्र की एक k-उपसमूह पद्धति है।
अधिक सामान्यतः, विभाजित अपचायक समूहों का वर्गीकरण किसी भी क्षेत्र में समान होता है।<ref>Milne (2017), Theorems 23.25 and 23.55.</ref> एक क्षेत्र k पर एक अर्द्धसरल समूह G को ' पूर्णतः संयोजित' कहा जाता है, यदि अर्द्धसरल समूह से G तक प्रत्येक केंद्रीय समरूपता एक समरूपता है। (जटिल संख्याओं पर G अर्धसरल के लिए, इस अर्थ में [[बस जुड़ा हुआ है|पूर्णतः संयोजित]] G ('C') के बराबर है जो शास्त्रीय सांस्थिति में पूर्णतः संयोजित है।) चेवेली का वर्गीकरण देता है कि, किसी भी क्षेत्र पर, एक दिए गए डायनकिन आरेख के साथ एक अद्वितीय सरलता से संयोजित विभाजित अर्धसरल समूह G है, जिसमें संयोजित आरेखों के अनुरूप सरल समूह हैं। दूसरे परम पर, एक अर्धसरल समूह 'संलग्न प्रकार' का होता है यदि इसका केंद्र नगण्य होता है। दिए गए डायनकिन आरेख के साथ k पर विभाजित अर्धसरल समूह वस्तुतः समूह G/A हैं, जहाँ G सरल रूप से संयोजित समूह है और A, G के केंद्र की एक k-उपसमूह पद्धति है।


उदाहरण के लिए, क्लासिकल डायनकिन आरेखों के संगत क्षेत्र k पर सरलता से संयोजित विभाजित सरल समूह इस प्रकार हैं:
उदाहरण के लिए, शास्त्रीय डायनकिन आरेखों के संगत क्षेत्र k पर सरलता से संयोजित विभाजित सरल समूह इस प्रकार हैं:
*<sub>''n''</sub>: SL(n+1) ओवर के;
*A<sub>''n''</sub>: SL(n+1) पर K;
*बी<sub>''n''</sub>: [[स्पिन समूह]] स्पिन (2n+1) Witt इंडेक्स n के साथ विमा 2n+1 ओवर k के द्विघात रूप से संयोजित है, उदाहरण के लिए फॉर्म
*B<sub>''n''</sub>: [[स्पिन समूह|चक्रण समूह]] चक्रण (2n+1) विट अनुक्रमणिका n के साथ विमा 2n+1 पर k के द्विघात रूप से संयोजित है, उदाहरण के लिए रूप
::<math>q(x_1,\ldots,x_{2n+1})=x_1x_2+x_3x_4+\cdots+x_{2n-1}x_{2n}+x_{2n+1}^2;</math>
::<math>q(x_1,\ldots,x_{2n+1})=x_1x_2+x_3x_4+\cdots+x_{2n-1}x_{2n}+x_{2n+1}^2;</math>
*सी<sub>''n''</sub>: सममिती समूह Sp(2n) over k;
*C<sub>''n''</sub>: सममिती समूह Sp(2n) k पर ;
*डी<sub>''n''</sub>: स्पिन समूह स्पिन (2n) Witt इंडेक्स n के साथ विमा 2n ओवर k के द्विघात रूप से सम्बद्ध है, जिसे इस प्रकार लिखा जा सकता है:
*D<sub>''n''</sub>: चक्रण समूह चक्रण (2n) विट अनुक्रमणिका n के साथ विमा 2n पर k के द्विघात रूप से सम्बद्ध है, जिसे इस प्रकार लिखा जा सकता है:
::<math>q(x_1,\ldots,x_{2n})=x_1x_2+x_3x_4+\cdots+x_{2n-1}x_{2n}.</math>
::<math>q(x_1,\ldots,x_{2n})=x_1x_2+x_3x_4+\cdots+x_{2n-1}x_{2n}.</math>
एक क्षेत्र k पर विभाजित अपचायक समूह G का बाहरी ऑटोमोर्फिज़्म समूह, G के मूल डेटम के ऑटोमोर्फिज़्म समूह के लिए समरूपी है। इसके अतिरिक्त , G का ऑटोमोर्फिज़्म समूह एक [[अर्ध-प्रत्यक्ष उत्पाद]] के रूप में विभाजित होता है:
एक क्षेत्र k पर विभाजित अपचायक समूह G का बाहरी स्वसमाकृतिकता समूह, G के मूल आधार के स्वसमाकृतिकता समूह के लिए समरूपी है। इसके अतिरिक्त , G का स्वसमाकृतिकता समूह एक [[अर्ध-प्रत्यक्ष उत्पाद]] के रूप में विभाजित होता है:
:<math>\operatorname{Aut}(G)\cong \operatorname{Out}(G)\ltimes (G/Z)(k),</math>
:<math>\operatorname{Aut}(G)\cong \operatorname{Out}(G)\ltimes (G/Z)(k),</math>
जहाँ Z, G का केंद्र है।<ref>Milne (2017), Corollary 23.47.</ref> एक विभाजित अर्ध-सरल के लिए एक क्षेत्र पर बस संयोजित समूह G के लिए, G के बाहरी ऑटोमोर्फिज़्म समूह का एक सरल विवरण है: यह G के डायनकिन आरेख का ऑटोमोर्फिज़्म समूह है।
जहाँ Z, G का केंद्र है।<ref>Milne (2017), Corollary 23.47.</ref> एक विभाजित अर्ध-सरल के लिए एक क्षेत्र पर पूर्णतः संयोजित समूह G के लिए, G के बाहरी स्वसमाकृतिकता समूह का एक सरल विवरण है: यह G के डायनकिन आरेख का स्वसमाकृतिकता समूह है।


== अपचायक समूह स्कीम्स ==
== अपचायक समूह पद्धति ==
एक पद्धति S पर एक समूह पद्धति G को 'अपचायक' कहा जाता है यदि आकारिकी G → S [[चिकनी आकारिकी|समृणीकृत आकारिकी]] और संकरण है, और प्रत्येक ज्यामितीय फाइबर <math>G_{\overline k}</math> अपचायक है। (एस में एक बिंदु पी के लिए, संबंधित ज्यामितीय फाइबर का अर्थ है बीजगणितीय संवृत्त करने के लिए G का आधार परिवर्तन <math>\overline k</math> पी के अवशेष क्षेत्र का।) शेवेले के काम का विस्तार करते हुए, [[मिशेल डेमाज़र]] और ग्रोथेंडिक ने दिखाया कि किसी भी गैर-खाली पद्धति एस पर विभाजित अपचायक समूह पद्धतिओं को मूल आंकड़ों द्वारा वर्गीकृत किया गया है।<ref>SGA 3 (2011), v. 3, Théorème XXV.1.1; Conrad (2014), Theorems 6.1.16 and 6.1.17.</ref> इस कथन में ज़ेड से अधिक समूह पद्धतिओं के रूप में चेवेली समूहों का अस्तित्व सम्मिलित है, और यह कहता है कि एक पद्धति 'एस' पर प्रत्येक विभाजित अपचायक समूह ज़ेड से 'एस' तक एक चेवली समूह के आधार परिवर्तन के लिए समरूपी है।
एक पद्धति S पर एक समूह पद्धति G को 'अपचायक' कहा जाता है यदि आकारिकी G → S [[चिकनी आकारिकी|समृणीकृत आकारिकी]] और संकरण है, और प्रत्येक ज्यामितीय तन्तु <math>G_{\overline k}</math> अपचायक है। (S में एक बिंदु p के लिए, संबंधित ज्यामितीय तन्तु का अर्थ है बीजगणितीय संवृत करने के लिए G का आधार परिवर्तन <math>\overline k</math> p के अवशेष क्षेत्र का।) चेवेली के काम का विस्तार करते हुए, [[मिशेल डेमाज़र]] और ग्रोथेंडिक ने दिखाया कि किसी भी गैर-रिक्त पद्धति S पर विभाजित अपचायक समूह पद्धतिओं को मूल आंकड़ों द्वारा वर्गीकृत किया गया है।<ref>SGA 3 (2011), v. 3, Théorème XXV.1.1; Conrad (2014), Theorems 6.1.16 and 6.1.17.</ref> इस कथन में Z से अधिक समूह पद्धतिओं के रूप में चेवेली समूहों का अस्तित्व सम्मिलित है, और यह कहता है कि एक पद्धति 'S' पर प्रत्येक विभाजित अपचायक समूह Z से 'S' तक एक चेवली समूह के आधार परिवर्तन के लिए समरूपी है।


== वास्तविक अपचायक समूह ==
== वास्तविक अपचायक समूह ==
बीजगणितीय समूहों के बजाय [[झूठ समूह]]ों के संदर्भ में, एक वास्तविक अपचायक समूह एक झूठ समूह G है, जैसे कि आर के ऊपर एक रैखिक बीजीय समूह ''L'' है जिसका तत्समक घटक ([[जरिस्की टोपोलॉजी|जरिस्की सांस्थिति]] में) अपचायक है , और एक समरूपता ''G'' → ''L''(R) जिसका आधार परिमित है और जिसकी छवि ''L''(R) (शास्त्रीय सांस्थिति में) में खुली है। यह मानने के लिए भी मानक है कि आसन्न निरूपण Ad(''G'') की छवि Int(''g'' में निहित है<sub>'''C'''</sub>) = विज्ञापन (L<sup>0</sup>(C)) (जो ''G'' संयोजित के लिए स्वचालित है)।<ref>Springer (1979), section 5.1.</ref>
बीजगणितीय समूहों के अतिरिक्त [[झूठ समूह|लाई समूहों]] के संदर्भ में, एक वास्तविक अपचायक समूह एक लाई समूह G है, जैसे कि R पर एक रैखिक बीजीय समूह ''L'' है जिसका तत्समक घटक ([[जरिस्की टोपोलॉजी|जरिस्की सांस्थिति]] में) अपचायक है , और एक समरूपता ''G'' → ''L''(R) जिसका आधार परिमित है और जिसका प्रतिरूप ''L''(R) (शास्त्रीय सांस्थिति में) में विवृत है। यह मानने के लिए भी मानक है कि आसन्न निरूपण Ad(''G'') का प्रतिरूप Int(''g''<sub>'''C'''</sub> = Ad (L<sup>0</sup>(C)) में निहित है (जो ''G'' संयोजित के लिए स्वचालित है)।<ref>Springer (1979), section 5.1.</ref>
विशेष रूप से, प्रत्येक संयोजित अर्ध-सरल लाई समूह (जिसका अर्थ है कि इसका लाई बीजगणित अर्ध-सरल है) अपचायक है। इसके अतिरिक्त , लाई समूह आर इस अर्थ में अपचायक है, क्योंकि इसे ''GL'' (1, आर) ≅ आर * के तत्समक घटक के रूप में देखा जा सकता है। वास्तविक अपचायक समूहों को वर्गीकृत करने की समस्या काफी हद तक साधारण झूठ समूहों को वर्गीकृत करने के लिए कम हो जाती है। इन्हें उनके सैटेक आरेख द्वारा वर्गीकृत किया गया है; या कोई साधारण झूठ समूहों (परिमित आवरण तक) की सूची का उल्लेख कर सकता है।


इस व्यापकता में वास्तविक अपचायक समूहों के लिए [[स्वीकार्य प्रतिनिधित्व|स्वीकार्य निरूपण]] और एकात्मक निरूपण के उपयोगी सिद्धांत विकसित किए गए हैं। इस परिभाषा और एक अपचायक बीजगणितीय समूह की परिभाषा के बीच मुख्य अंतर इस तथ्य के साथ है कि एक बीजगणितीय समूह ''G'' R के ऊपर एक बीजगणितीय समूह के रूप में सम्बद्ध हो सकता है जबकि झूठ समूह ''G''(R) सम्बद्ध नहीं है, और इसी प्रकार मात्र संयोजित समूहों के लिए।
विशेष रूप से, प्रत्येक संयोजित अर्ध-सरल लाई समूह (जिसका अर्थ है कि इसका लाई बीजगणित अर्ध-सरल है) अपचायक है। इसके अतिरिक्त , लाई समूह R इस अर्थ में अपचायक है, क्योंकि इसे ''GL'' (1, R) ≅ R * के तत्समक घटक के रूप में देखा जा सकता है। वास्तविक अपचायक समूहों को वर्गीकृत करने की समस्या व्यापक रूप से साधारण लाई समूहों को वर्गीकृत करने के लिए कम हो जाती है। इन्हें उनके सैटेक आरेख द्वारा वर्गीकृत किया गया है; या कोई साधारण लाई समूहों (परिमित आवरण तक) की सूची का उल्लेख कर सकता है।


उदाहरण के लिए, [[प्रक्षेपी रैखिक समूह]] ''पीGL''(2) किसी भी क्षेत्र पर एक बीजगणितीय समूह के रूप में संयोजित है, परन्तु इसके वास्तविक बिंदुओं के समूह ''पीGL''(2,आर) में दो संयोजित घटक हैं। ''पीGL''(2,आर) (कभी-कभी ''पीSL''(2,आर) कहा जाता है) का तत्समक घटक एक वास्तविक अपचायक समूह है जिसे बीजगणितीय समूह के रूप में नहीं देखा जा सकता है। इसी प्रकार, ''SL''(2) किसी भी क्षेत्र पर एक बीजगणितीय समूह के रूप में बस संयोजित है, परन्तु झूठ समूह ''SL''(2,R) में पूर्णांक Z के लिए मूलभूत समूह समरूपी है, और इसलिए ''SL' '(2, आर) में नॉनट्रिविअल [[ अंतरिक्ष को कवर करना |समष्टि को कवर करना]] हैं। परिभाषा के अनुसार, ''SL''(2,R) के सभी परिमित आवरण (जैसे कि [[मेटाप्लेक्टिक समूह]]) वास्तविक अपचायक समूह हैं। दूसरी ओर, ''SL''(2,R) का [[सार्वभौमिक आवरण]] एक वास्तविक अपचायक समूह नहीं है, भले ही इसका लाई बीजगणित अपचायक लाई बीजगणित है, जो कि अर्द्धसरल लाई बीजगणित और एक एबेलियन लाई का उत्पाद है। बीजगणित।''
इस व्यापकता में वास्तविक अपचायक समूहों के लिए [[स्वीकार्य प्रतिनिधित्व|स्वीकार्य निरूपण]] और एकात्मक निरूपण के उपयोगी सिद्धांत विकसित किए गए हैं। इस परिभाषा और एक अपचायक बीजगणितीय समूह की परिभाषा के बीच मुख्य अंतर इस तथ्य के साथ है कि एक बीजगणितीय समूह ''G'' R पर एक बीजगणितीय समूह के रूप में सम्बद्ध हो सकता है जबकि लाई समूह ''G''(R) सम्बद्ध नहीं है, और इसी प्रकार मात्र संयोजित समूहों के लिए।


एक संयोजित वास्तविक अपचायक समूह G के लिए, [[अधिकतम कॉम्पैक्ट उपसमूह|अधिकतम संहत उपसमूह]] ''के'' द्वारा G का भागफल कई गुना ''जी''/''के'' गैर-संहत का एक [[सममित स्थान|सममित]] समष्टि है प्रकार। वस्तुतः, गैर-संहत प्रकार का प्रत्येक सममित समष्टि इस प्रकार से उत्पन्न होता है। ये गैर-धनात्मक [[अनुभागीय वक्रता]] के साथ कई गुना्स के रीमैनियन ज्यामिति में केंद्रीय उदाहरण हैं। उदाहरण के लिए, ''SL''(2,R)/''SO''(2) [[ अतिशयोक्तिपूर्ण विमान |अतिशयोक्तिपूर्ण विमान]] है, और ''SL''(2,C)/''SU''(2) हाइपरबोलिक 3 है -समष्टि।
उदाहरण के लिए, [[प्रक्षेपी रैखिक समूह]] ''PGL''(2) किसी भी क्षेत्र पर एक बीजगणितीय समूह के रूप में संयोजित है, परन्तु इसके वास्तविक बिंदुओं के समूह ''PGL''(2,R) में दो संयोजित घटक हैं। ''PGL''(2,R) (कभी-कभी ''PSL''(2,R) कहा जाता है) का तत्समक घटक एक वास्तविक अपचायक समूह है जिसे बीजगणितीय समूह के रूप में नहीं देखा जा सकता है। इसी प्रकार, ''SL''(2) किसी भी क्षेत्र पर एक बीजगणितीय समूह के रूप में पूर्णतः संयोजित है, परन्तु लाई समूह ''SL''(2,R) में पूर्णांक Z के लिए मूलभूत समूह समरूपी है, और इसलिए ''SL' '(2, R) में असतहीय [[ अंतरिक्ष को कवर करना |समष्टि को आच्छादित करना]] हैं। परिभाषा के अनुसार, ''SL''(2,R) के सभी परिमित आवरण (जैसे कि [[मेटाप्लेक्टिक समूह]]) वास्तविक अपचायक समूह हैं। दूसरी ओर, ''SL''(2,R) का [[सार्वभौमिक आवरण]] एक वास्तविक अपचायक समूह नहीं है, यद्यपि इसका लाई बीजगणित अपचायक लाई बीजगणित है, जो कि अर्द्धसरल लाई बीजगणित और एक एबेलियन लाई बीजगणित का उत्पाद है।''


अपचायक समूह ''G'' के लिए एक क्षेत्र ''k'' पर जो [[असतत मूल्यांकन]] के संबंध में पूर्ण है (जैसे p-adic नंबर Q<sub>''p''</sub>), इमारत (गणित) ''G'' का ''एक्स'' सममित समष्टि की भूमिका निभाता है। अर्थात, ''X'' ''G''(''k'') की क्रिया के साथ एक साधारण परिसर है, और ''G''(''k'') 'पर [[CAT(0)]] मीट्रिक को संरक्षित करता है। 'X', गैर-धनात्मक वक्रता वाले मीट्रिक का nालॉग। सजातीय बिल्डिंग का विमा G का ''के''-पद है। उदाहरण के लिए, ''SL'' (2, क्यू<sub>''p''</sub>) एक [[पेड़ (ग्राफ सिद्धांत)|पेड़ (आरेख सिद्धांत)]] है।
एक संयोजित वास्तविक अपचायक समूह G के लिए, [[अधिकतम कॉम्पैक्ट उपसमूह|अधिकतम संहत उपसमूह]] ''K'' द्वारा G का भागफल कई गुना ''G''/''K'' गैर-संहत प्रकार का एक [[सममित स्थान|सममित]] समष्टि है। वस्तुतः, गैर-संहत प्रकार का प्रत्येक सममित समष्टि इस प्रकार से उत्पन्न होता है। ये गैर-धनात्मक [[अनुभागीय वक्रता]] के साथ कई गुना के रीमैनियन ज्यामिति में केंद्रीय उदाहरण हैं। उदाहरण के लिए, ''SL''(2,R)/''SO''(2) [[ अतिशयोक्तिपूर्ण विमान |अतिपरवलयिक तल]] है, और ''SL''(2,C)/''SU''(2) अतिपरवलयिक 3-समष्टि है।
 
एक क्षेत्र ''k'' पर अपचायक समूह ''G'' के लिए जो [[असतत मूल्यांकन]] (जैसे p-एडिक संख्या Q<sub>''p''</sub>) के संबंध में पूर्ण है, G का सजातीय निर्माण X सममित स्थान की भूमिका निभाता है। अर्थात, ''X'' ''G''(''k'') की क्रिया के साथ एक साधारण परिसर है, और ''G''(''k'') गैर-धनात्मक वक्रता वाले मापीय का रेखीय सजातीय 'X' पर [[CAT(0)]] मापीय को संरक्षित करता है। सजातीय निर्माण की विमा G का ''के''-पद है। उदाहरण के लिए, ''SL'' (2, क्यू<sub>''p''</sub>) एक [[पेड़ (ग्राफ सिद्धांत)|पेड़ (आरेख सिद्धांत)]] है।


== अपचायक समूहों का निरूपण ==
== अपचायक समूहों का निरूपण ==
एक क्षेत्र k पर एक विभाजित अपचायक समूह G के लिए, G (बीजगणितीय समूह के रूप में) के अलघुकरणीय निरूपण को प्रमुख भार द्वारा पैरामीट्रिज किया जाता है, जिसे भार जालक X(T) ≅ 'Z' के प्रतिच्छेदन के रूप में परिभाषित किया जाता है।<sup>n</sup> 'आर' में एक उत्तल शंकु (एक [[वेइल कक्ष]]) के साथ<sup>n</sup>। विशेष रूप से, यह पैरामीट्रिजेशन k की विशेषता से स्वतंत्र है। अधिक विस्तार से, एक विभाजित अधिकतम टोरस और एक बोरेल उपसमूह, टी ⊂ बी ⊂ G को ठीक करें। फिर बी एक समृणीकृत संयोजित एकांगी उपसमूह यू के साथ टी का सेमीडायरेक्ट उत्पाद है। G ओवर के निरूपण वी में 'उच्चतम भार सदिश' परिभाषित करें k एक गैर-शून्य सदिश v होना चाहिए जैसे कि B स्वयं में v द्वारा फैलाई गई रेखा को मैप करता है। फिर बी उस रेखा पर अपने भागफल समूह टी के माध्यम से भार जालक एक्स (टी) के कुछ अवयव λ द्वारा कार्य करता है। शेवाली ने दिखाया कि G के प्रत्येक इर्रिडिएबल निरूपण में स्केलर तक एक अद्वितीय उच्चतम भार सदिश होता है; संबंधित उच्चतम भार λ प्रमुख है; और प्रत्येक प्रमुख भार λ, समरूपता तक G के एक अद्वितीय इरेड्यूसबल निरूपण L(λ) का उच्चतम भार है।<ref>Milne (2017), Theorem 22.2.</ref>
एक क्षेत्र k पर एक विभाजित अपचायक समूह G के लिए, G (बीजगणितीय समूह के रूप में) के अलघुकरणीय निरूपण को प्रमुख भार द्वारा पैरामीट्रिज किया जाता है, जिसे भार जालक X(T) ≅ 'Z' के प्रतिच्छेदन के रूप में परिभाषित किया जाता है।<sup>n</sup> 'R' में एक उत्तल शंकु (एक [[वेइल कक्ष]]) के साथ<sup>n</sup>। विशेष रूप से, यह पैरामीट्रिजेशन k की विशेषता से स्वतंत्र है। अधिक विस्तार से, एक विभाजित अधिकतम टोरस और एक बोरेल उपसमूह, टी ⊂ बी ⊂ G को ठीक करें। फिर बी एक समृणीकृत संयोजित एकांगी उपसमूह यू के साथ टी का सेमीडायरेक्ट उत्पाद है। G पर के निरूपण वी में 'उच्चतम भार सदिश' परिभाषित करें k एक गैर-शून्य सदिश v होना चाहिए जैसे कि B स्वयं में v द्वारा फैलाई गई रेखा को मैप करता है। फिर बी उस रेखा पर अपने भागफल समूह टी के माध्यम से भार जालक एक्स (टी) के कुछ अवयव λ द्वारा कार्य करता है। शेवाली ने दिखाया कि G के प्रत्येक इर्रिडिएबल निरूपण में स्केलर तक एक अद्वितीय उच्चतम भार सदिश होता है; संबंधित उच्चतम भार λ प्रमुख है; और प्रत्येक प्रमुख भार λ, समरूपता तक G के एक अद्वितीय इरेड्यूसबल निरूपण L(λ) का उच्चतम भार है।<ref>Milne (2017), Theorem 22.2.</ref>
दिए गए उच्चतम भार के साथ अलघुकरणीय निरूपण का वर्णन करने की समस्या बनी हुई है। विशेषता शून्य के k के लिए, अनिवार्य रूप से पूर्ण उत्तर हैं। एक प्रमुख भार λ के लिए, 'शूर मॉड्यूल' को परिभाषित करें ∇(λ) जी-इक्विवेरिएंट [[उलटा शीफ|व्युत्क्रम शीफ]] के वर्गों के के-सदिश समष्टि के रूप में फ्लैग कई गुना जी/बी पर λ से संयोजित है; यह G का एक निरूपण है। विशेषता शून्य के k के लिए, बोरेल-वील प्रमेय का कहना है कि अलघुकरणीय निरूपण L(λ) शूर मॉड्यूल ∇(λ) के लिए आइसोमॉर्फिक है। इसके अतिरिक्त , वेइल चरित्र सूत्र इस निरूपण के [[चरित्र सिद्धांत]] (और विशेष रूप से विमा) देता है।
दिए गए उच्चतम भार के साथ अलघुकरणीय निरूपण का वर्णन करने की समस्या बनी हुई है। विशेषता शून्य के k के लिए, अनिवार्य रूप से पूर्ण उत्तर हैं। एक प्रमुख भार λ के लिए, 'शूर मॉड्यूल' को परिभाषित करें ∇(λ) जी-इक्विवेरिएंट [[उलटा शीफ|व्युत्क्रम शीफ]] के वर्गों के के-सदिश समष्टि के रूप में फ्लैग कई गुना जी/बी पर λ से संयोजित है; यह G का एक निरूपण है। विशेषता शून्य के k के लिए, बोरेल-वील प्रमेय का कहना है कि अलघुकरणीय निरूपण L(λ) शूर मॉड्यूल ∇(λ) के लिए आइसोमॉर्फिक है। इसके अतिरिक्त , वेइल चरित्र सूत्र इस निरूपण के [[चरित्र सिद्धांत]] (और विशेष रूप से विमा) देता है।


Line 132: Line 133:
== गैर-विभाजित अपचायक समूह ==
== गैर-विभाजित अपचायक समूह ==
जैसा कि ऊपर चर्चा की गई है, विभाजित अपचायक समूहों का वर्गीकरण किसी भी क्षेत्र में समान है। इसके विपरीत, आधार क्षेत्र के आधार पर स्वेच्छ अपचायक समूहों का वर्गीकरण जटिल हो सकता है। [[शास्त्रीय समूह]]ों में से कुछ उदाहरण हैं:
जैसा कि ऊपर चर्चा की गई है, विभाजित अपचायक समूहों का वर्गीकरण किसी भी क्षेत्र में समान है। इसके विपरीत, आधार क्षेत्र के आधार पर स्वेच्छ अपचायक समूहों का वर्गीकरण जटिल हो सकता है। [[शास्त्रीय समूह]]ों में से कुछ उदाहरण हैं:
* एक क्षेत्र k पर प्रत्येक अविकृत द्विघात रूप q एक अपचायक समूह G = SO(q) निर्धारित करता है। यहाँ G सरल है यदि q का विमा n कम से कम 3 है, क्योंकि <math>G_{\overline k}</math> एक बीजगणितीय संवृत्त होने पर SO(n) के लिए समरूपी है <math>\overline k</math>। G का के-पद क्यू के 'विट इंडेक्स' के बराबर है (के पर एक आइसोटोपिक सबसमष्टि का अधिकतम विमा)।<ref name="B234">Borel (1991), section 23.4.</ref> तो साधारण समूह G को k पर विभाजित किया जाता है यदि और मात्र यदि q में अधिकतम संभव विट इंडेक्स है, <math>\lfloor n/2\rfloor</math>।
* एक क्षेत्र k पर प्रत्येक अविकृत द्विघात रूप q एक अपचायक समूह G = SO(q) निर्धारित करता है। यहाँ G सरल है यदि q का विमा n कम से कम 3 है, क्योंकि <math>G_{\overline k}</math> एक बीजगणितीय संवृत होने पर SO(n) के लिए समरूपी है <math>\overline k</math>। G का के-पद क्यू के 'विट अनुक्रमणिका' के बराबर है (के पर एक आइसोटोपिक सबसमष्टि का अधिकतम विमा)।<ref name="B234">Borel (1991), section 23.4.</ref> तो साधारण समूह G को k पर विभाजित किया जाता है यदि और मात्र यदि q में अधिकतम संभव विट अनुक्रमणिका है, <math>\lfloor n/2\rfloor</math>।
* प्रत्येक [[केंद्रीय सरल बीजगणित]] ए ओवर के एक अपचायक समूह G = SL (1, ए) निर्धारित करता है, यूनिट ए * के समूह पर [[कम मानदंड]] का आधार (के से अधिक बीजगणितीय समूह के रूप में)। ए की 'डिग्री' का अर्थ ए के विमा के वर्ग मूल को के-सदिश समष्टि के रूप में दर्शाता है। यहाँ G सरल है यदि A के निकट डिग्री n कम से कम 2 है, क्योंकि <math>G_{\overline k}</math> SL(n) ओवर के लिए तुल्याकारी है <math>\overline k</math>। यदि ए में इंडेक्स आर है (जिसका अर्थ है कि ए आव्यूहों बीजगणित एम के लिए समरूपी है<sub>''n''/''r''</sub>(डी) डिग्री आर ओवर के के [[विभाजन बीजगणित]] डी के लिए), तो G का के-पद (n / आर) - 1 है।<ref>Borel (1991), section 23.2.</ref> तो साधारण समूह G को k पर विभाजित किया जाता है यदि और मात्र यदि A, k के ऊपर एक आव्यूहों बीजगणित है।
* प्रत्येक [[केंद्रीय सरल बीजगणित]] ए पर के एक अपचायक समूह G = SL (1, ए) निर्धारित करता है, यूनिट ए * के समूह पर [[कम मानदंड]] का आधार (के से अधिक बीजगणितीय समूह के रूप में)। ए की 'डिग्री' का अर्थ ए के विमा के वर्ग मूल को के-सदिश समष्टि के रूप में दर्शाता है। यहाँ G सरल है यदि A के निकट डिग्री n कम से कम 2 है, क्योंकि <math>G_{\overline k}</math> SL(n) पर के लिए तुल्याकारी है <math>\overline k</math>। यदि ए में अनुक्रमणिका R है (जिसका अर्थ है कि ए आव्यूहों बीजगणित एम के लिए समरूपी है<sub>''n''/''r''</sub>(डी) डिग्री R पर के के [[विभाजन बीजगणित]] डी के लिए), तो G का के-पद (n / R) - 1 है।<ref>Borel (1991), section 23.2.</ref> तो साधारण समूह G को k पर विभाजित किया जाता है यदि और मात्र यदि A, k पर एक आव्यूहों बीजगणित है।


परिणामस्वरूप, k पर अपचायक समूहों को वर्गीकृत करने की समस्या में अनिवार्य रूप से k पर सभी द्विघात रूपों को वर्गीकृत करने की समस्या या k पर सभी केंद्रीय सरल बीजगणित सम्मिलित हैं। बीजगणितीय रूप से संवृत्त k के लिए ये समस्याएँ आसान हैं, और उन्हें कुछ अन्य क्षेत्रों जैसे संख्या क्षेत्रों के लिए समझा जाता है, परन्तु स्वेच्छ क्षेत्रों के लिए कई खुले प्रश्न हैं।
परिणामस्वरूप, k पर अपचायक समूहों को वर्गीकृत करने की समस्या में अनिवार्य रूप से k पर सभी द्विघात रूपों को वर्गीकृत करने की समस्या या k पर सभी केंद्रीय सरल बीजगणित सम्मिलित हैं। बीजगणितीय रूप से संवृत k के लिए ये समस्याएँ आसान हैं, और उन्हें कुछ अन्य क्षेत्रों जैसे संख्या क्षेत्रों के लिए समझा जाता है, परन्तु स्वेच्छ क्षेत्रों के लिए कई खुले प्रश्न हैं।


किसी क्षेत्र k पर एक अपचायक समूह को ' समानुवर्ती' कहा जाता है, यदि इसमें k-पद 0 से अधिक होता है (अर्थात, यदि इसमें एक नॉनट्रिविअल विभाजित टोरस होता है), और अन्यथा 'अनिसोट्रोपिक'। क्षेत्र k पर अर्धसरल समूह G के लिए, निम्न स्थितियाँ समतुल्य हैं:
किसी क्षेत्र k पर एक अपचायक समूह को ' समानुवर्ती' कहा जाता है, यदि इसमें k-पद 0 से अधिक होता है (अर्थात, यदि इसमें एक असतहीय विभाजित टोरस होता है), और अन्यथा 'अनिसोट्रोपिक'। क्षेत्र k पर अर्धसरल समूह G के लिए, निम्न स्थितियाँ समतुल्य हैं:
* जी समानुवर्ती है (अर्थात, G में गुणक समूह G की एक प्रति है<sub>''m''</sub> ओवर के);
* जी समानुवर्ती है (अर्थात, G में गुणक समूह G की एक प्रति है<sub>''m''</sub> पर के);
*G में k के ऊपर एक परवलयिक उपसमूह है जो G के बराबर नहीं है;
*G में k पर एक परवलयिक उपसमूह है जो G के बराबर नहीं है;
*जी में योगात्मक समूह G की एक प्रति है<sub>''a''</sub> कश्मीर से अधिक
*जी में योगात्मक समूह G की एक प्रति है<sub>''a''</sub> कश्मीर से अधिक
के परिपूर्ण के लिए, यह कहने के बराबर भी है कि G (के) में 1 के अतिरिक्त एक रैखिक बीजगणितीय समूह#सेमिसिम्पल और एकांगी अवयव अवयव सम्मिलित हैं।<ref>Borel & Tits (1971), Corollaire 3.8.</ref>
के परिपूर्ण के लिए, यह कहने के बराबर भी है कि G (के) में 1 के अतिरिक्त एक रैखिक बीजगणितीय समूह#सेमिसिम्पल और एकांगी अवयव अवयव सम्मिलित हैं।<ref>Borel & Tits (1971), Corollaire 3.8.</ref>
विशेषता शून्य (जैसे वास्तविक संख्या) के एक स्थानीय क्षेत्र k पर संयोजित रैखिक बीजगणितीय समूह G के लिए, समूह G(k) शास्त्रीय सांस्थिति में [[ कॉम्पैक्ट जगह |संहत जगह]] है (k की सांस्थिति पर आधारित) यदि और मात्र यदि G है अपचायक और अनिसोट्रोपिक।<ref>Platonov & Rapinchuk (1994), Theorem 3.1.</ref> उदाहरण: लंब कोणीय समूह अनिश्चितकालीन लंब कोणीय समूह | SO(p,q) over 'R' का वास्तविक पद min(p,q) है, और इसलिए यह अनिसोट्रोपिक है यदि और मात्र यदि p या q शून्य है।<ref name = "B234" />
विशेषता शून्य (जैसे वास्तविक संख्या) के एक स्थानीय क्षेत्र k पर संयोजित रैखिक बीजगणितीय समूह G के लिए, समूह G(k) शास्त्रीय सांस्थिति में [[ कॉम्पैक्ट जगह |संहत जगह]] है (k की सांस्थिति पर आधारित) यदि और मात्र यदि G है अपचायक और अनिसोट्रोपिक।<ref>Platonov & Rapinchuk (1994), Theorem 3.1.</ref> उदाहरण: लंब कोणीय समूह अनिश्चितकालीन लंब कोणीय समूह | SO(p,q) पर 'R' का वास्तविक पद min(p,q) है, और इसलिए यह अनिसोट्रोपिक है यदि और मात्र यदि p या q शून्य है।<ref name = "B234" />


एक क्षेत्र k पर अपचायक समूह G को 'क्वैसी-विभाजित' कहा जाता है, यदि इसमें k के ऊपर एक बोरेल उपसमूह होता है। एक विभाजित अपचायक समूह क्वासी-विभाजित है। यदि G कश्मीर पर अर्ध-विभाजित है, तो G के किसी भी दो बोरेल उपसमूह G (के) के कुछ अवयव से संयुग्मित होते हैं।<ref>Borel (1991), Theorem 20.9(i).</ref> उदाहरण: लांबिक समूह SO(p,q) ओवर 'R' विभाजित है यदि और मात्र यदि |p−q| ≤ 1, और यह अर्ध-विभाजित है यदि और मात्र यदि |p−q| ≤ 2।<ref name = "B234" />
एक क्षेत्र k पर अपचायक समूह G को 'क्वैसी-विभाजित' कहा जाता है, यदि इसमें k पर एक बोरेल उपसमूह होता है। एक विभाजित अपचायक समूह क्वासी-विभाजित है। यदि G कश्मीर पर अर्ध-विभाजित है, तो G के किसी भी दो बोरेल उपसमूह G (के) के कुछ अवयव से संयुग्मित होते हैं।<ref>Borel (1991), Theorem 20.9(i).</ref> उदाहरण: लांबिक समूह SO(p,q) पर 'R' विभाजित है यदि और मात्र यदि |p−q| ≤ 1, और यह अर्ध-विभाजित है यदि और मात्र यदि |p−q| ≤ 2।<ref name = "B234" />




Line 150: Line 151:
क्षेत्र k पर सरल रूप से संयोजित विभाजित अर्धसरल समूह G के लिए, [[रॉबर्ट स्टाइनबर्ग]] ने अमूर्त समूह G(k) के एक समूह की एक स्पष्ट प्रस्तुति दी।<ref>Steinberg (2016), Theorem 8.</ref> यह G के डायनकिन आरेख द्वारा निर्धारित संबंधों के साथ G (मूल उपसमूह) की मूलों द्वारा अनुक्रमित के योगात्मक समूह की प्रतियों द्वारा उत्पन्न होता है।
क्षेत्र k पर सरल रूप से संयोजित विभाजित अर्धसरल समूह G के लिए, [[रॉबर्ट स्टाइनबर्ग]] ने अमूर्त समूह G(k) के एक समूह की एक स्पष्ट प्रस्तुति दी।<ref>Steinberg (2016), Theorem 8.</ref> यह G के डायनकिन आरेख द्वारा निर्धारित संबंधों के साथ G (मूल उपसमूह) की मूलों द्वारा अनुक्रमित के योगात्मक समूह की प्रतियों द्वारा उत्पन्न होता है।


एक पूर्ण क्षेत्र k पर सरल रूप से संयोजित विभाजित अर्धसरल समूह G के लिए, स्टाइनबर्ग ने अमूर्त समूह G(k) के ऑटोमोर्फिज्म समूह का भी निर्धारण किया। प्रत्येक ऑटोमोर्फिज्म एक [[आंतरिक ऑटोमोर्फिज्म]] का उत्पाद है, एक विकर्ण ऑटोमोर्फिज्म (अर्थात् एक उपयुक्त द्वारा संयुग्मन <math>\overline k</math>-एक अधिकतम टोरस का बिंदु), एक आरेख ऑटोमोर्फिज्म (डाइनकिन आरेख के एक ऑटोमोर्फिज्म के अनुरूप), और एक क्षेत्र ऑटोमोर्फिज्म (क्षेत्र के एक ऑटोमोर्फिज्म से आ रहा है)।<ref>Steinberg (2016), Theorem 30.</ref>
एक पूर्ण क्षेत्र k पर सरल रूप से संयोजित विभाजित अर्धसरल समूह G के लिए, स्टाइनबर्ग ने अमूर्त समूह G(k) के स्वसमाकृतिकता समूह का भी निर्धारण किया। प्रत्येक स्वसमाकृतिकता एक [[आंतरिक ऑटोमोर्फिज्म|आंतरिक स्वसमाकृतिकता]] का उत्पाद है, एक विकर्ण स्वसमाकृतिकता (अर्थात् एक उपयुक्त द्वारा संयुग्मन <math>\overline k</math>-एक अधिकतम टोरस का बिंदु), एक आरेख स्वसमाकृतिकता (डाइनकिन आरेख के एक स्वसमाकृतिकता के अनुरूप), और एक क्षेत्र स्वसमाकृतिकता (क्षेत्र के एक स्वसमाकृतिकता से आ रहा है)।<ref>Steinberg (2016), Theorem 30.</ref>
एक के-सरल बीजगणितीय समूह G के लिए, 'स्तन की सरलता प्रमेय' कहती है कि सार समूह G (के) सरल होने के करीब है, हल्के अनुमानों के अंतर्गत। अर्थात्, मान लीजिए कि G, k पर समदैशिक है, और मान लीजिए कि क्षेत्र k में कम से कम 4 अवयव हैं। चलो G (के)<sup>+</sup> योगात्मक समूह G की प्रतियों के k-बिंदुओं द्वारा उत्पन्न अमूर्त समूह G(k) का उपसमूह हो<sub>''a''</sub> G में समाहित k से अधिक। (यह मानकर कि G k पर समदैशिक है, समूह G(k)<sup>+</sup> असतहीय है, और यदि k अनंत है तो G में ज़रिस्की सघन भी है।) फिर G(k) का भागफल समूह<sup>+</sup> इसके केंद्र द्वारा सरल है (एक सार समूह के रूप में)।<ref>Tits (1964), Main Theorem; Gille (2009), Introduction.</ref> सबूत [[ जैक्स स्तन |जैक्स स्तन]] की बीn-जोड़े की मशीनरी का उपयोग करता है।
एक के-सरल बीजगणितीय समूह G के लिए, 'स्तन की सरलता प्रमेय' कहती है कि सार समूह G (के) सरल होने के करीब है, हल्के अनुमानों के अंतर्गत। अर्थात्, मान लीजिए कि G, k पर समदैशिक है, और मान लीजिए कि क्षेत्र k में कम से कम 4 अवयव हैं। चलो G (के)<sup>+</sup> योगात्मक समूह G की प्रतियों के k-बिंदुओं द्वारा उत्पन्न अमूर्त समूह G(k) का उपसमूह हो<sub>''a''</sub> G में समाहित k से अधिक। (यह मानकर कि G k पर समदैशिक है, समूह G(k)<sup>+</sup> असतहीय है, और यदि k अनंत है तो G में ज़रिस्की सघन भी है।) फिर G(k) का भागफल समूह<sup>+</sup> इसके केंद्र द्वारा सरल है (एक सार समूह के रूप में)।<ref>Tits (1964), Main Theorem; Gille (2009), Introduction.</ref> सबूत [[ जैक्स स्तन |जैक्स स्तन]] की बीn-जोड़े की मशीनरी का उपयोग करता है।


क्रम 2 या 3 के क्षेत्रों के अपवादों को ठीक रूप से समझा गया है। के = 'एफ' के लिए<sub>2</sub>, स्तन की सरलता प्रमेय मान्य रहता है सिवाय इसके कि जब G प्रकार A का विभाजन हो<sub>1</sub>, बी<sub>2</sub>, या जी<sub>2</sub>, या नॉन-विभाजित (अर्थात एकात्मक) टाइप ए<sub>2</sub>। के = 'एफ' के लिए<sub>3</sub>, प्रमेय प्रकार A के G को छोड़कर धारण करता है<sub>1</sub>।<ref>Tits (1964), section 1.2.</ref>
क्रम 2 या 3 के क्षेत्रों के अपवादों को ठीक रूप से समझा गया है। के = 'एफ' के लिए<sub>2</sub>, स्तन की सरलता प्रमेय मान्य रहता है सिवाय इसके कि जब G प्रकार A का विभाजन हो<sub>1</sub>, बी<sub>2</sub>, या जी<sub>2</sub>, या नॉन-विभाजित (अर्थात एकात्मक) प्रकार ए<sub>2</sub>। के = 'एफ' के लिए<sub>3</sub>, प्रमेय प्रकार A के G को छोड़कर धारण करता है<sub>1</sub>।<ref>Tits (1964), section 1.2.</ref>
एक के-सरल समूह G के लिए, पूर्ण समूह G (के) को समझने के लिए, कोई 'व्हाइटहेड समूह' डब्ल्यू (के, जी) = G (के)/जी (के) पर विचार कर सकता है।<sup>+</sup>। G के लिए बस संयोजित है और अर्ध-विभाजित है, व्हाइटहेड समूह छोटा है, और इसलिए पूरा समूह G (के) सरल मोडुलो इसका केंद्र है।<ref>Gille (2009), Théorème 6.1.</ref> अधिक सामान्यतः, केनेसर-टीट्स समस्या पूछती है कि व्हाइटहेड समूह कौन सा आइसोटोपिक के-सरल समूह नगण्य है। सभी ज्ञात उदाहरणों में, W(k, G) आबेली है।
एक के-सरल समूह G के लिए, पूर्ण समूह G (के) को समझने के लिए, कोई 'व्हाइटहेड समूह' डब्ल्यू (के, जी) = G (के)/जी (के) पर विचार कर सकता है।<sup>+</sup>। G के लिए पूर्णतः संयोजित है और अर्ध-विभाजित है, व्हाइटहेड समूह छोटा है, और इसलिए पूरा समूह G (के) सरल मोडुलो इसका केंद्र है।<ref>Gille (2009), Théorème 6.1.</ref> अधिक सामान्यतः, केनेसर-टीट्स समस्या पूछती है कि व्हाइटहेड समूह कौन सा आइसोटोपिक के-सरल समूह नगण्य है। सभी ज्ञात उदाहरणों में, W(k, G) आबेली है।


अनिसोट्रोपिक के-सरल समूह G के लिए, अमूर्त समूह G (के) सरल से बहुत दूर हो सकता है। उदाहरण के लिए, मान लीजिए कि D एक विभाजन बीजगणित है जिसका केंद्र a p-adic क्षेत्र k है। मान लीजिए कि k पर D का विमा परिमित है और 1 से अधिक है। फिर G = SL(1,D) एक अनिसोट्रोपिक k-सरल समूह है। जैसा ऊपर बताया गया है, G (के) शास्त्रीय सांस्थिति में संहत है। चूंकि यह [[पूरी तरह से डिस्कनेक्ट|पूर्ण रूप से डिस्कनेक्ट]] भी है, G (के) एक असीमित समूह है (परन्तु सीमित नहीं है)। फलस्वरूप, G (के) में उपसमूह के परिमित सूचकांक के असीम रूप से कई सामान्य उपसमूह होते हैं।<ref>Platonov & Rapinchuk (1994), section 9.1.</ref>
अनिसोट्रोपिक के-सरल समूह G के लिए, अमूर्त समूह G (के) सरल से बहुत दूर हो सकता है। उदाहरण के लिए, मान लीजिए कि D एक विभाजन बीजगणित है जिसका केंद्र a p-एडिक क्षेत्र k है। मान लीजिए कि k पर D का विमा परिमित है और 1 से अधिक है। फिर G = SL(1,D) एक अनिसोट्रोपिक k-सरल समूह है। जैसा ऊपर बताया गया है, G (के) शास्त्रीय सांस्थिति में संहत है। चूंकि यह [[पूरी तरह से डिस्कनेक्ट|पूर्ण रूप से डिस्कनेक्ट]] भी है, G (के) एक असीमित समूह है (परन्तु सीमित नहीं है)। फलस्वरूप, G (के) में उपसमूह के परिमित सूचकांक के असीम रूप से कई सामान्य उपसमूह होते हैं।<ref>Platonov & Rapinchuk (1994), section 9.1.</ref>




Line 162: Line 163:
मान लीजिए G परिमेय संख्याओं 'Q' पर एक रैखिक बीजगणितीय समूह है। फिर G को 'जेड' पर एक सजातीय समूह पद्धति G तक बढ़ाया जा सकता है, और यह एक अमूर्त समूह G ('जेड') निर्धारित करता है। एक 'अंकगणितीय समूह' का अर्थ G('Q') का कोई भी उपसमूह है जो G('Z') के साथ समानता (समूह सिद्धांत) है। (G('Q') के एक उपसमूह की अंकगणितीयता 'Z'-संरचना की पसंद से स्वतंत्र है।) उदाहरण के लिए, SL(n,'Z') SL(n,'Q') का एक अंकगणितीय उपसमूह है।
मान लीजिए G परिमेय संख्याओं 'Q' पर एक रैखिक बीजगणितीय समूह है। फिर G को 'जेड' पर एक सजातीय समूह पद्धति G तक बढ़ाया जा सकता है, और यह एक अमूर्त समूह G ('जेड') निर्धारित करता है। एक 'अंकगणितीय समूह' का अर्थ G('Q') का कोई भी उपसमूह है जो G('Z') के साथ समानता (समूह सिद्धांत) है। (G('Q') के एक उपसमूह की अंकगणितीयता 'Z'-संरचना की पसंद से स्वतंत्र है।) उदाहरण के लिए, SL(n,'Z') SL(n,'Q') का एक अंकगणितीय उपसमूह है।


एक लाई समूह G के लिए, G में एक '[[जाली (असतत उपसमूह)]]' का अर्थ है G का एक असतत उपसमूह Γ जैसे कि कई गुना G/Γ में परिमित आयतन (G-invariant माप के संबंध में) है। उदाहरण के लिए, एक असतत उपसमूह Γ एक जाली है यदि G/Γ संहत है। [[अंकगणित समूह]] # मार्गुलिस अंकगणितीय प्रमेय विशेष रूप से कहता है: कम से कम 2 वास्तविक पद के एक साधारण झूठ समूह G के लिए, G में प्रत्येक जाली एक अंकगणितीय समूह है।
एक लाई समूह G के लिए, G में एक '[[जाली (असतत उपसमूह)]]' का अर्थ है G का एक असतत उपसमूह Γ जैसे कि कई गुना G/Γ में परिमित आयतन (G-invariant माप के संबंध में) है। उदाहरण के लिए, एक असतत उपसमूह Γ एक जाली है यदि G/Γ संहत है। [[अंकगणित समूह]] # मार्गुलिस अंकगणितीय प्रमेय विशेष रूप से कहता है: कम से कम 2 वास्तविक पद के एक साधारण लाई समूह G के लिए, G में प्रत्येक जाली एक अंकगणितीय समूह है।


== डाइनकिन डायग्राम पर गैलोज क्रिया ==
== डाइनकिन डायग्राम पर गैलोज क्रिया ==
{{Main article|Tits index}}
{{Main article|Tits index}}
अपचायक समूहों को वर्गीकृत करने की मांग में, जिन्हें विभाजित करने की आवश्यकता नहीं है, एक कदम [[स्तन सूचकांक]] है, जो अनिसोट्रोपिक समूहों के मामले में समस्या को कम करता है। यह कमी बीजगणित में कई मूलभूत प्रमेयों का सामान्यीकरण करती है। उदाहरण के लिए, विट के अपघटन प्रमेय का कहना है कि एक क्षेत्र पर एक गैर-अपघटित द्विघात रूप को इसके अनिसोट्रोपिक आधार के साथ मिलकर इसके विट इंडेक्स द्वारा समरूपता तक निर्धारित किया जाता है। इसी प्रकार, आर्टिन-वेडरबर्न प्रमेय विभाजन बीजगणित के मामले में एक क्षेत्र पर केंद्रीय सरल बीजगणित के वर्गीकरण को कम करता है। इन परिणामों को सामान्य करते हुए, टिट्स ने दिखाया कि क्षेत्र k पर एक अपचायक समूह समरूपता तक इसके टिट्स इंडेक्स द्वारा इसके अनिसोट्रोपिक आधार, एक संबद्ध अनिसोट्रोपिक अर्द्धसरल k-समूह के साथ निर्धारित किया जाता है।
अपचायक समूहों को वर्गीकृत करने की मांग में, जिन्हें विभाजित करने की आवश्यकता नहीं है, एक कदम [[स्तन सूचकांक]] है, जो अनिसोट्रोपिक समूहों के मामले में समस्या को कम करता है। यह कमी बीजगणित में कई मूलभूत प्रमेयों का सामान्यीकरण करती है। उदाहरण के लिए, विट के अपघटन प्रमेय का कहना है कि एक क्षेत्र पर एक गैर-अपघटित द्विघात रूप को इसके अनिसोट्रोपिक आधार के साथ मिलकर इसके विट अनुक्रमणिका द्वारा समरूपता तक निर्धारित किया जाता है। इसी प्रकार, आर्टिन-वेडरबर्न प्रमेय विभाजन बीजगणित के मामले में एक क्षेत्र पर केंद्रीय सरल बीजगणित के वर्गीकरण को कम करता है। इन परिणामों को सामान्य करते हुए, टिट्स ने दिखाया कि क्षेत्र k पर एक अपचायक समूह समरूपता तक इसके टिट्स अनुक्रमणिका द्वारा इसके अनिसोट्रोपिक आधार, एक संबद्ध अनिसोट्रोपिक अर्द्धसरल k-समूह के साथ निर्धारित किया जाता है।


एक क्षेत्र k पर अपचायक समूह G के लिए, [[पूर्ण गैलोज़ समूह]] Gal(k<sub>''s''</sub>/k) G के पूर्ण डायनकिन आरेख पर (निरंतर) कार्य करता है, अर्थात, एक वियोज्य क्लोजर k पर G का डायनकिन आरेख<sub>s</sub> (जो एक बीजगणितीय संवृत्त होने पर G का डायकिन आरेख भी है <math>{\overline k}</math>)। G के ब्रेस्ट इंडेक्स में G का मूल डेटम होता है<sub>''k''<sub>''s''</sub></sub>, इसके डायनकिन डायग्राम पर गैलोज़ एक्शन, और डाइकिन डायग्राम के शीर्षों का एक गैलोज़-निश्‍चर उपसमुच्चय। परंपरागत रूप से, दिए गए उपसमुच्चय में गैलोज़ कक्षाओं के चक्कर लगाकर टिट्स इंडेक्स तैयार किया जाता है।
एक क्षेत्र k पर अपचायक समूह G के लिए, [[पूर्ण गैलोज़ समूह]] Gal(k<sub>''s''</sub>/k) G के पूर्ण डायनकिन आरेख पर (निरंतर) कार्य करता है, अर्थात, एक वियोज्य क्लोजर k पर G का डायनकिन आरेख<sub>s</sub> (जो एक बीजगणितीय संवृत होने पर G का डायकिन आरेख भी है <math>{\overline k}</math>)। G के ब्रेस्ट अनुक्रमणिका में G का मूल आधार होता है<sub>''k''<sub>''s''</sub></sub>, इसके डायनकिन डायग्राम पर गैलोज़ एक्शन, और डाइकिन डायग्राम के शीर्षों का एक गैलोज़-निश्‍चर उपसमुच्चय। परंपरागत रूप से, दिए गए उपसमुच्चय में गैलोज़ कक्षाओं के चक्कर लगाकर टिट्स अनुक्रमणिका तैयार किया जाता है।


इन शर्तों में अर्ध-विभाजित समूहों का पूर्ण वर्गीकरण है। अर्थात्, डायनकिन आरेख पर एक क्षेत्र k के निरपेक्ष गैलोज़ समूह की प्रत्येक क्रिया के लिए, दिए गए क्रिया के साथ एक अद्वितीय अर्ध-विभाजित अर्ध-विभाजित समूह H ओवर k है। (अर्ध-विभाजित समूह के लिए, डायनकिन आरेख में प्रत्येक गैलोज़ कक्षा परिक्रमा की जाती है।) इसके अतिरिक्त , दी गई क्रिया के साथ कोई अन्य सरल रूप से संयोजित अर्ध-सरल समूह G, अर्ध-विभाजित समूह H का एक [[आंतरिक रूप]] है, जिसका अर्थ है कि G है [[गैलोइस कोहोलॉजी]] सम्मुचय एच के एक अवयव से सम्बद्ध समूह<sup>1</sup>(k,H/Z), जहां Z, H का केंद्र है। दूसरे शब्दों में, G कुछ H/Z-torsor over k से सम्बद्ध H का ट्विस्ट है, जैसा कि अगले भाग में चर्चा की गई है।
इन शर्तों में अर्ध-विभाजित समूहों का पूर्ण वर्गीकरण है। अर्थात्, डायनकिन आरेख पर एक क्षेत्र k के निरपेक्ष गैलोज़ समूह की प्रत्येक क्रिया के लिए, दिए गए क्रिया के साथ एक अद्वितीय अर्ध-विभाजित अर्ध-विभाजित समूह H पर k है। (अर्ध-विभाजित समूह के लिए, डायनकिन आरेख में प्रत्येक गैलोज़ कक्षा परिक्रमा की जाती है।) इसके अतिरिक्त , दी गई क्रिया के साथ कोई अन्य सरल रूप से संयोजित अर्ध-सरल समूह G, अर्ध-विभाजित समूह H का एक [[आंतरिक रूप]] है, जिसका अर्थ है कि G है [[गैलोइस कोहोलॉजी]] सम्मुचय एच के एक अवयव से सम्बद्ध समूह<sup>1</sup>(k,H/Z), जहां Z, H का केंद्र है। दूसरे शब्दों में, G कुछ H/Z-torsor पर k से सम्बद्ध H का ट्विस्ट है, जैसा कि अगले भाग में चर्चा की गई है।


उदाहरण: मान लीजिए कि n ≥ 5 के साथ 2 नहीं विशेषता वाले क्षेत्र k पर सम विमा 2n का गैर-डीजेनरेट द्विघात रूप है। (इन प्रतिबंधों से बचा जा सकता है।) G को k पर साधारण समूह SO(q) होने दें। G का पूर्ण डायनकिन आरेख प्रकार डी का है<sub>''n''</sub>, और इसलिए इसका ऑटोमोर्फिज्म समूह क्रम 2 का है, डी के दो पैरों को बदल रहा है<sub>''n''</sub> आरेख। डायनकिन आरेख पर के के पूर्ण गैलोज़ समूह की कार्रवाई मामूली है यदि और मात्र यदि क्यू में क्यू के द्विघात रूप डी के हस्ताक्षर किए गए भेदभाव के */(के *)<sup>2</sup> नगण्य है। यदि d असतहीय है, तो यह डायनकिन आरेख पर गाल्वा क्रिया में n्कोड किया गया है: तत्समक के रूप में कार्य करने वाले गाल्वा समूह का सूचकांक -2 उपसमूह है <math>\operatorname{Gal}(k_s/k(\sqrt{d}))\subset \operatorname{Gal}(k_s/k)</math>। समूह G को विभाजित किया जाता है यदि और मात्र यदि q का Witt सूचकांक n है, जो अधिकतम संभव है, और G अर्ध-विभाजित है यदि और मात्र यदि q का Witt सूचकांक कम से कम n − 1 है।<ref name = "B234" />
उदाहरण: मान लीजिए कि n ≥ 5 के साथ 2 नहीं विशेषता वाले क्षेत्र k पर सम विमा 2n का गैर-डीजेनरेट द्विघात रूप है। (इन प्रतिबंधों से बचा जा सकता है।) G को k पर साधारण समूह SO(q) होने दें। G का पूर्ण डायनकिन आरेख प्रकार डी का है<sub>''n''</sub>, और इसलिए इसका स्वसमाकृतिकता समूह क्रम 2 का है, डी के दो पैरों को बदल रहा है<sub>''n''</sub> आरेख। डायनकिन आरेख पर के के पूर्ण गैलोज़ समूह की कार्रवाई मामूली है यदि और मात्र यदि क्यू में क्यू के द्विघात रूप डी के हस्ताक्षर किए गए भेदभाव के */(के *)<sup>2</sup> नगण्य है। यदि d असतहीय है, तो यह डायनकिन आरेख पर गाल्वा क्रिया में n्कोड किया गया है: तत्समक के रूप में कार्य करने वाले गाल्वा समूह का सूचकांक -2 उपसमूह है <math>\operatorname{Gal}(k_s/k(\sqrt{d}))\subset \operatorname{Gal}(k_s/k)</math>। समूह G को विभाजित किया जाता है यदि और मात्र यदि q का विट सूचकांक n है, जो अधिकतम संभव है, और G अर्ध-विभाजित है यदि और मात्र यदि q का विट सूचकांक कम से कम n − 1 है।<ref name = "B234" />




== [[ धड़ ]]्स और हस्से सिद्धांत ==
== [[ धड़ ]]्स और हस्से सिद्धांत ==
एक क्षेत्र ''k'' पर एक affine समूह पद्धति ''G'' के लिए एक टॉर्सर का अर्थ है ''k'' के ऊपर एक affine पद्धति ''X'' ''G'' की एक समूह कार्रवाई (गणित) के साथ जैसे कि <math>X_{\overline k}</math> के लिए समरूपी है <math>G_{\overline k}</math> की क्रिया के साथ <math>G_{\overline k}</math> बाएँ अनुवाद द्वारा स्वयं पर। एक टॉर्सर को k पर fppf सांस्थिति के संबंध में k पर एक प्रमुख G-बंडल के रूप में भी देखा जा सकता है, या étale सांस्थिति यदि G k पर समृणीकृत है। K पर G-torsors के समरूपता वर्गों के नुकीले सम्मुचय को H कहा जाता है<sup>1</sup>(k,G), गाल्वा कोहोलॉजी की भाषा में।
एक क्षेत्र ''k'' पर एक सजातीय समूह पद्धति ''G'' के लिए एक टॉर्सर का अर्थ है ''k'' पर एक सजातीय पद्धति ''X'' ''G'' की एक समूह कार्रवाई (गणित) के साथ जैसे कि <math>X_{\overline k}</math> के लिए समरूपी है <math>G_{\overline k}</math> की क्रिया के साथ <math>G_{\overline k}</math> बाएँ अनुवाद द्वारा स्वयं पर। एक टॉर्सर को k पर fppf सांस्थिति के संबंध में k पर एक प्रमुख G-बंडल के रूप में भी देखा जा सकता है, या étale सांस्थिति यदि G k पर समृणीकृत है। K पर G-torsors के समरूपता वर्गों के नुकीले सम्मुचय को H कहा जाता है<sup>1</sup>(k,G), गाल्वा कोहोलॉजी की भाषा में।


जब भी कोई दिए गए बीजगणितीय वस्तु Y के 'रूपों' को एक क्षेत्र k पर वर्गीकृत करने का प्रयास करता है, तो टॉर्स उत्पन्न होते हैं, जिसका अर्थ है कि x से अधिक k पर वस्तुएँ जो k के बीजगणितीय संवृत्त होने पर Y के लिए समरूपी बन जाती हैं। अर्थात्, इस प्रकार के रूप (समरूपता तक) सम्मुचय एच के साथ एक-से-एक संगति में हैं<sup>1</sup>(के, ऑट (वाई))। उदाहरण के लिए, (nondegenerate) k पर विमा n के द्विघात रूपों को H द्वारा वर्गीकृत किया गया है<sup>1</sup>(k,O(n)), और डिग्री n से अधिक k के केंद्रीय सरल बीजगणित को H द्वारा वर्गीकृत किया गया है<sup>1</sup>(के,पीGL(n))। साथ ही, दिए गए बीजगणितीय समूह G के k-रूपों (जिन्हें कभी-कभी G का घुमाव कहा जाता है) को H द्वारा वर्गीकृत किया जाता है<sup>1</sup>(के, ऑट (जी))। ये समस्याएँ G-torsors के व्यवस्थित अध्ययन को प्रेरित करती हैं, विशेष रूप से अपचायक समूह G के लिए।
जब भी कोई दिए गए बीजगणितीय वस्तु Y के 'रूपों' को एक क्षेत्र k पर वर्गीकृत करने का प्रयास करता है, तो टॉर्स उत्पन्न होते हैं, जिसका अर्थ है कि x से अधिक k पर वस्तुएँ जो k के बीजगणितीय संवृत होने पर Y के लिए समरूपी बन जाती हैं। अर्थात्, इस प्रकार के रूप (समरूपता तक) सम्मुचय एच के साथ एक-से-एक संगति में हैं<sup>1</sup>(के, ऑट (वाई))। उदाहरण के लिए, (nondegenerate) k पर विमा n के द्विघात रूपों को H द्वारा वर्गीकृत किया गया है<sup>1</sup>(k,O(n)), और डिग्री n से अधिक k के केंद्रीय सरल बीजगणित को H द्वारा वर्गीकृत किया गया है<sup>1</sup>(के,PGL(n))। साथ ही, दिए गए बीजगणितीय समूह G के k-रूपों (जिन्हें कभी-कभी G का घुमाव कहा जाता है) को H द्वारा वर्गीकृत किया जाता है<sup>1</sup>(के, ऑट (जी))। ये समस्याएँ G-torsors के व्यवस्थित अध्ययन को प्रेरित करती हैं, विशेष रूप से अपचायक समूह G के लिए।


जब संभव हो, तो [[ कोहोलॉजिकल इनवेरिएंट |कोहोलॉजिकल निश्‍चर]] ्स का उपयोग करके जी-टॉर्सर्स को वर्गीकृत करने की उम्मीद है, जो एबेलियन गुणांक समूहों एम, एच के साथ गैलोइस कोहोलॉजी में मान लेने वाले अपरिवर्तनीय हैं।<sup>ए</sup>(के, एम)। इस दिशा में, स्टाइनबर्ग ने [[ जीन पियरे सेरे |जीन पियरे सेरे]] के अनुमान I को सिद्ध किया: एक संयोजित रैखिक बीजीय समूह G के लिए अधिकतम 1, H क्षेत्र के कोहोलॉजिकल विमा के एक आदर्श क्षेत्र पर<sup>1</sup>(के, जी) = 1।<ref>Steinberg (1965), Theorem 1.9.</ref> (परिमित क्षेत्र के मामले को पहले लैंग के प्रमेय के रूप में जाना जाता था।) उदाहरण के लिए, यह इस प्रकार है कि परिमित क्षेत्र पर प्रत्येक अपचायक समूह अर्ध-विभाजित है।
जब संभव हो, तो [[ कोहोलॉजिकल इनवेरिएंट |कोहोलॉजिकल निश्‍चर]] ्स का उपयोग करके जी-टॉर्सर्स को वर्गीकृत करने की उम्मीद है, जो एबेलियन गुणांक समूहों एम, एच के साथ गैलोइस कोहोलॉजी में मान लेने वाले अपरिवर्तनीय हैं।<sup>ए</sup>(के, एम)। इस दिशा में, स्टाइनबर्ग ने [[ जीन पियरे सेरे |जीन पियरे सेरे]] के अनुमान I को सिद्ध किया: एक संयोजित रैखिक बीजीय समूह G के लिए अधिकतम 1, H क्षेत्र के कोहोलॉजिकल विमा के एक आदर्श क्षेत्र पर<sup>1</sup>(के, जी) = 1।<ref>Steinberg (1965), Theorem 1.9.</ref> (परिमित क्षेत्र के मामले को पहले लैंग के प्रमेय के रूप में जाना जाता था।) उदाहरण के लिए, यह इस प्रकार है कि परिमित क्षेत्र पर प्रत्येक अपचायक समूह अर्ध-विभाजित है।


सेरे का अनुमान II (बीजगणित) | सेरे का अनुमान II भविष्यवाणी करता है कि अधिक से अधिक 2, एच पर कोहोलॉजिकल विमा के एक क्षेत्र पर बस संयोजित अर्ध-सरल समूह G के लिए<sup>1</sup>(k,G) = 1। अनुमान [[पूरी तरह से काल्पनिक संख्या क्षेत्र|पूर्ण रूप से काल्पनिक संख्या क्षेत्र]] के लिए जाना जाता है (जिसमें कोहोलॉजिकल विमा 2 है)। अधिक सामान्यतः, किसी भी संख्या क्षेत्र k के लिए, [[मार्टिन केनेसर]], गुंटर हार्डर और व्लादिमीर चेरनौसोव (1989) ने हासे सिद्धांत को साबित किया: एक साधारण रूप से संयोजित अर्धसरल समूह G के लिए k, प्रतिचित्र
सेरे का अनुमान II (बीजगणित) | सेरे का अनुमान II भविष्यवाणी करता है कि अधिक से अधिक 2, एच पर कोहोलॉजिकल विमा के एक क्षेत्र पर पूर्णतः संयोजित अर्ध-सरल समूह G के लिए<sup>1</sup>(k,G) = 1। अनुमान [[पूरी तरह से काल्पनिक संख्या क्षेत्र|पूर्ण रूप से काल्पनिक संख्या क्षेत्र]] के लिए जाना जाता है (जिसमें कोहोलॉजिकल विमा 2 है)। अधिक सामान्यतः, किसी भी संख्या क्षेत्र k के लिए, [[मार्टिन केनेसर]], गुंटर हार्डर और व्लादिमीर चेरनौसोव (1989) ने हासे सिद्धांत को साबित किया: एक साधारण रूप से संयोजित अर्धसरल समूह G के लिए k, प्रतिचित्र
:<math>H^1(k,G)\to \prod_{v} H^1(k_v,G)</math>
:<math>H^1(k,G)\to \prod_{v} H^1(k_v,G)</math>
विशेषण है।<ref>Platonov & Rapinchuk (1994), Theorem 6.6.</ref> यहाँ v k, और k के सभी स्थानों (गणित) पर चलता है<sub>''v''</sub> संबंधित स्थानीय क्षेत्र है (संभवतः आर या सी)। इसके अतिरिक्त , नुकीला सम्मुचय ''H''<sup>1</sup>(के<sub>''v''</sub>, G) प्रत्येक गैर-अर्चिमिडियन स्थानीय क्षेत्र k के लिए नगण्य है<sub>''v''</sub>, और इसलिए मात्र k के वास्तविक समष्टि मायने रखते हैं। धनात्मक विशेषता के एक [[वैश्विक क्षेत्र]] k के लिए अनुरूप परिणाम पहले हार्डर (1975) द्वारा सिद्ध किया गया था: प्रत्येक सरलता से संयोजित अर्द्धसरल समूह G के ऊपर k, H के लिए<sup>1</sup>(k,G) नगण्य है (क्योंकि k का कोई वास्तविक समष्टि नहीं है)।<ref>Platonov & Rapinchuk (1994), section 6.8.</ref>
विशेषण है।<ref>Platonov & Rapinchuk (1994), Theorem 6.6.</ref> यहाँ v k, और k के सभी स्थानों (गणित) पर चलता है<sub>''v''</sub> संबंधित स्थानीय क्षेत्र है (संभवतः R या सी)। इसके अतिरिक्त , नुकीला सम्मुचय ''H''<sup>1</sup>(के<sub>''v''</sub>, G) प्रत्येक गैर-अर्चिमिडियन स्थानीय क्षेत्र k के लिए नगण्य है<sub>''v''</sub>, और इसलिए मात्र k के वास्तविक समष्टि मायने रखते हैं। धनात्मक विशेषता के एक [[वैश्विक क्षेत्र]] k के लिए अनुरूप परिणाम पहले हार्डर (1975) द्वारा सिद्ध किया गया था: प्रत्येक सरलता से संयोजित अर्द्धसरल समूह G पर k, H के लिए<sup>1</sup>(k,G) नगण्य है (क्योंकि k का कोई वास्तविक समष्टि नहीं है)।<ref>Platonov & Rapinchuk (1994), section 6.8.</ref>
एक संख्या क्षेत्र k पर एक निकटवर्ती समूह G के थोड़े अलग मामले में, हासे सिद्धांत एक कमजोर रूप में है: प्राकृतिक प्रतिचित्र
एक संख्या क्षेत्र k पर एक निकटवर्ती समूह G के थोड़े अलग मामले में, हासे सिद्धांत एक कमजोर रूप में है: प्राकृतिक प्रतिचित्र
:<math>H^1(k,G)\to \prod_{v} H^1(k_v,G)</math>
:<math>H^1(k,G)\to \prod_{v} H^1(k_v,G)</math>
इंजेक्शन है।<ref>Platonov & Rapinchuk (1994), Theorem 6.4.</ref> G = पीGL (n) के लिए, यह अल्बर्ट-ब्रुएर-हस्से-नोथेर प्रमेय की मात्रा है, यह कहते हुए कि एक संख्या क्षेत्र पर एक केंद्रीय सरल बीजगणित अपने स्थानीय आक्रमणकारियों द्वारा निर्धारित किया जाता है।
इंजेक्शन है।<ref>Platonov & Rapinchuk (1994), Theorem 6.4.</ref> G = PGL (n) के लिए, यह अल्बर्ट-ब्रुएर-हस्से-नोथेर प्रमेय की मात्रा है, यह कहते हुए कि एक संख्या क्षेत्र पर एक केंद्रीय सरल बीजगणित अपने स्थानीय आक्रमणकारियों द्वारा निर्धारित किया जाता है।


हस्से सिद्धांत पर निर्माण, संख्या क्षेत्रों पर अर्ध-सरल समूहों का वर्गीकरण ठीक रूप से समझा जाता है। उदाहरण के लिए, असाधारण समूह E8 (गणित)|E के ठीक तीन 'Q'-रूप हैं<sub>8</sub>, ई के तीन वास्तविक रूपों के अनुरूप<sub>8</sub>।
हस्से सिद्धांत पर निर्माण, संख्या क्षेत्रों पर अर्ध-सरल समूहों का वर्गीकरण ठीक रूप से समझा जाता है। उदाहरण के लिए, असाधारण समूह E8 (गणित)|E के ठीक तीन 'Q'-रूप हैं<sub>8</sub>, ई के तीन वास्तविक रूपों के अनुरूप<sub>8</sub>।


== यह भी देखें ==
== यह भी देखें ==
*[[झूठ प्रकार का समूह]] परिमित क्षेत्रों पर सरल बीजगणितीय समूहों से निर्मित परिमित सरल समूह हैं।
*[[झूठ प्रकार का समूह|लाई प्रकार का समूह]] परिमित क्षेत्रों पर सरल बीजगणितीय समूहों से निर्मित परिमित सरल समूह हैं।
* सामान्यीकृत ध्वज प्रकार, ब्रुहट अपघटन, [[शुबर्ट किस्म|शुबर्ट प्रकार]], [[शुबर्ट कैलकुलस]]
* सामान्यीकृत ध्वज प्रकार, ब्रुहट अपघटन, [[शुबर्ट किस्म|शुबर्ट प्रकार]], [[शुबर्ट कैलकुलस]]
* [[शूर बीजगणित]], डेलिग्ने-लुज़्ज़टिग सिद्धांत
* [[शूर बीजगणित]], डेलिग्ने-लुज़्ज़टिग सिद्धांत
* [[वास्तविक रूप (झूठ सिद्धांत)]]
* [[वास्तविक रूप (झूठ सिद्धांत)|वास्तविक रूप (लाई सिद्धांत)]]
* तमागावा संख्या पर वील का अनुमान
* तमागावा संख्या पर वील का अनुमान
*[[लैंगलैंड्स वर्गीकरण]], [[ लैंगलैंड्स दोहरे समूह |लैंगलैंड्स दोहरे समूह]] , लैंगलैंड्स प्रोग्राम, [[ ज्यामितीय [[लैंगलैंड्स कार्यक्रम]] ]]
*[[लैंगलैंड्स वर्गीकरण]], [[ लैंगलैंड्स दोहरे समूह |लैंगलैंड्स दोहरे समूह]] , लैंगलैंड्स प्रोग्राम, [[ ज्यामितीय [[लैंगलैंड्स कार्यक्रम]] ]]

Revision as of 22:33, 6 May 2023

गणित में, एक अपचायक समूह एक क्षेत्र (गणित) पर रैखिक बीजगणितीय समूह का एक प्रकार है। एक परिभाषा यह है कि एक पूर्ण क्षेत्र पर एक संयोजित रैखिक बीजगणितीय समूह G अपचायक है, यदि इसमें परिमित आधार (बीजगणित) के साथ एक समूह का निरूपण होता है जो अखंडनीय प्रस्तुतियों का प्रत्यक्ष योग है। अपचायक समूहों में गणित के कुछ सबसे महत्वपूर्ण समूह सम्मिलित हैं, जैसे सामान्य रैखिक समूह GL(n) व्युत्क्रम आव्यूह, विशेष लंब कोणीय समूह SO(n) , और सममिती समूह Sp(2n)। सरल बीजगणितीय समूह और (अधिक सामान्यतः) अर्धसरल बीजगणितीय समूह अपचायक होते हैं।

क्लाउड चेवेली ने दिखाया कि किसी भी बीजीय रूप से संवृत क्षेत्र पर अपचायक समूहों का वर्गीकरण समान है। विशेष रूप से, साधारण बीजगणितीय समूहों को डाइनकिन आरेखों द्वारा वर्गीकृत किया जाता है, जैसा कि संहत लाई समूहों के सिद्धांत या जटिल लाई बीजगणित अर्धसरल लाई बीजगणित में होता है। एक स्वेच्छ क्षेत्र पर अपचायक समूह वर्गीकृत करना जटिल होता है, परन्तु कई क्षेत्रों जैसे कि वास्तविक संख्या R या एक संख्या क्षेत्र के लिए, वर्गीकरण ठीक रूप से समझा जाता है। परिमित सरल समूहों का वर्गीकरण कहता है कि अधिकांश परिमित सरल समूह k के समूह G(k) के रूप में उत्पन्न होते हैं - एक परिमित पर एक साधारण बीजीय समूह G के तर्कसंगत बिंदु क्षेत्र के, या उस निर्माण के लघु रूपों के रूप में है।

अपचायक समूहों के निकट विभिन्न संदर्भों में एक समृद्ध निरूपण सिद्धांत है। सबसे पहले, एक बीजगणितीय समूह के रूप में एक क्षेत्र k पर एक अपचायक समूह G के निरूपण का अध्ययन कर सकता है, जो k-सदिश रिक्त समष्टि पर G की क्रियाएं हैं। परन्तु साथ ही, समूह G(k) के जटिल निरूपण का अध्ययन कर सकता है जब k एक परिमित क्षेत्र है, या एक वास्तविक अपचायक समूह का अनंत-विमीय एकात्मक निरूपण, या एक एडिलिक बीजगणितीय समूह के स्वसमाकृतिक निरूपण है। इन सभी क्षेत्रों में अपचायक समूहों के संरचना सिद्धांत का उपयोग किया जाता है।

परिभाषाएँ

किसी क्षेत्र k पर एक रेखीय बीजगणितीय समूह को कुछ धनात्मक पूर्णांक n के लिए k पर GL(n) की एक समृणीकृत पद्धति संवृत समूह पद्धति के रूप में परिभाषित किया गया है। समतुल्य रूप से, k पर एक रेखीय बीजगणितीय समूह k पर एक समृणीकृत संबंध पद्धति समूह पद्धति है।

एकांगी मूलक के साथ

एक संयोजित समष्टि रैखिक बीजगणितीय समूह एक बीजगणितीय रूप से संवृत क्षेत्र को अर्द्धसरल कहा जाता है यदि प्रत्येक समृणीकृत रूप से संयोजित हल करने योग्य समूह का सामान्य उपसमूह नगण्य है। अधिक सामान्यतः, एक संयोजित रैखिक बीजगणितीय समूह एक बीजगणितीय रूप से संवृत क्षेत्र पर अपचायक कहा जाता है यदि के सबसे बड़े समृणीकृत रूप से संयोजित रैखिक बीजगणितीय समूह सामान्य उपसमूह नगण्य है।[1] इस सामान्य उपसमूह को एकांगी मूलक कहा जाता है और इसे के रूप में दर्शाया जाता है। (कुछ लेखकों को जोड़ने के लिए अपचायक समूहों की आवश्यकता नहीं होती है।) एक स्वेच्छ क्षेत्र k पर एक समूह को अर्द्धसरल या अपचायक कहा जाता है यदि पद्धतिओं के तन्तु उत्पाद अर्द्धसरल या अपचायक है, जहां k का बीजगणितीय संवरक है। (यह परिचय में अपचायक समूह की परिभाषा के बराबर है जब k उतम है।[2]) k पर कोई भी रैखिक बीजगणितीय समूह, जैसे गुणक समूह Gm, अपचायक होता है।

निरूपण सिद्धांत के साथ

विशेषता शून्य के क्षेत्रों में एक अपचायक समूह की एक और समकक्ष परिभाषा एक संयोजित समूह है एक विश्वासपात्र अर्धसरल निरूपण को स्वीकार करता है जो इसके बीजगणितीय संवरक पर अर्धसरल रहता है [3] पृष्ठ 424

सरल अपचायक समूह

क्षेत्र k पर एक रेखीय बीजगणितीय समूह G को 'सरल' (या k-'सरल') कहा जाता है, यदि यह अर्धसूत्रीय, असतहीय है, और G से अधिक k का प्रत्येक समृणीकृत रूप से संयोजित सामान्य उपसमूह नगण्य या G के बराबर है।[4] (कुछ लेखक इस गुण को लगभग सरल कहते हैं।) यह सार समूहों के लिए शब्दावली से किंचित अलग है, जिसमें एक साधारण बीजगणितीय समूह में असतहीय केंद्र (समूह सिद्धांत) हो सकता है (यद्यपि केंद्र परिमित होना चाहिए)। उदाहरण के लिए, किसी भी पूर्णांक n के लिए कम से कम 2 और किसी भी क्षेत्र k के लिए, k पर समूह SL(n) सरल है, और इसका केंद्र गुणक समूह एकता की nth मूलों की समूह पद्धति μn है।

अपचायक समूहों का एक 'केंद्रीय समरूपता' एक विशेषण समूह समरूपता है जिसमें आधार एक परिमित केंद्रीय उपसमूह पद्धति है। एक क्षेत्र पर प्रत्येक अपचायक समूह एक टोरस और कुछ सरल समूहों के उत्पाद से एक केंद्रीय समरूपता को स्वीकार करता है। उदाहरण के लिए, किसी भी क्षेत्र k,

पर।

यह किंचित अनुपयुक्त है कि एक क्षेत्र पर एक अपचायक समूह की परिभाषा में बीजगणितीय संवरक को पारित करना सम्मिलित है। एक पूर्ण क्षेत्र k के लिए, इससे बचा जा सकता है: k पर एक रैखिक बीजगणितीय समूह G अपचायक है यदि और मात्र यदि G के प्रत्येक समृणीकृत संयोजित एकांगी सामान्य k-उपसमूह नगण्य हैं। एक स्वेच्छ क्षेत्र के लिए, बाद की गुण एक छद्म-अपचायक समूह को परिभाषित करती है, जो कुछ अधिक सामान्य है।

विभाजित-अपचायक समूह

क्षेत्र k पर एक अपचायक समूह G को 'विभाजित' कहा जाता है, यदि इसमें k पर एक विभाजित अधिकतम टोरस T होता है (अर्थात, G में एक रैखिक बीजगणितीय समूह जिसका आधार बदल जाता है) में एक अधिकतम टोरस है )। यह कहने के बराबर है कि टी G में विभाजित टोरस है जो कि G में सभी के-टोरी के बीच अधिकतम है।[5] इस प्रकार के समूह उपयोगी होते हैं क्योंकि उनके वर्गीकरण को संयोजी आंकड़ों के माध्यम से वर्णित किया जा सकता है जिसे मूल आंकड़ें कहा जाता है।

उदाहरण

GLn और SLn

अपचायक समूह का एक मूलभूत उदाहरण प्राकृतिक संख्या n के लिए क्षेत्र k पर व्युत्क्रमणीय n × n आव्यूह सामान्य रैखिक समूह है । विशेष रूप से, 'गुणक समूह' Gm समूह GL (1) है, और इसलिए k-तर्कसंगत बिंदुओं का इसका समूह Gm(k) गुणन के अंतर्गत k के शून्येतर अवयवों का समूह k* है। एक अन्य अपचायक समूह विशेष रैखिक समूह SL(n) एक क्षेत्र k पर, निर्धारक 1 के साथ आव्यूहों का उपसमूह है। वस्तुतः, SL(n) कम से कम 2 n के लिए एक सरल बीजगणितीय समूह है।

O(n), SO(n), और SP(n)

एक महत्वपूर्ण सरल समूह क्षेत्र k पर सममिती समूह Sp(2n) है, GL(2n) का उपसमूह जो सदिश समष्टि k2n पर एक गैर-अपघटित वैकल्पिक द्विरेखीय रूप को संरक्षित करता है। इसी प्रकार, लांबिक समूह O(q) सामान्य रैखिक समूह का उपसमूह है जो क्षेत्र k पर सदिश समष्टि पर एक अविकृत द्विघात रूप q को संरक्षित करता है। बीजगणितीय समूह O(q) में दो संयोजित घटक (सांस्थिति) हैं, और इसकी तत्समक घटक SO(q) अपचायक है, वस्तुतः विमा n के q के लिए कम से कम 3 सरल है। (विशेषता 2 और n विषम के k के लिए, समूह पद्धति O(q) वस्तुतः सम्बद्ध है, परन्तु k पर समृणीकृत नहीं है। सरल समूह SO(q) को सदैव O(q) के अधिक से अधिक समृणीकृत रूप से संयोजित उपसमूह के रूप में परिभाषित किया जा सकता है।) जब k बीजगणितीय रूप से संवृत होता है, तो कोई भी दो ( अनपभ्रष्ट) एक ही विमा के द्विघात रूप समरूपी हैं, और इसलिए इस समूह को SO(n) कहना उचित है। एक सामान्य क्षेत्र k के लिए, विमा n के विभिन्न द्विघात रूपों से k पर गैर-समरूपी सरल समूह SO(q) प्राप्त हो सकते हैं, यद्यपि उन सभी में बीजगणितीय संवरक में समान आधार परिवर्तन होता है।

टोरी

समूह और इसके उत्पादों को बीजगणितीय टोरस कहा जाता है। वे अपचायक समूहों के उदाहरण हैं क्योंकि वे विकर्ण के माध्यम से में अंतःस्थापित होते हैं, और इस निरूपण से, उनका एकरूप मूलक नगण्य है। उदाहरण के लिए, प्रतिचित्र

से में अंतःस्थापित होता है।

गैर-उदाहरण

  • कोई भी एकांगी समूह अपचायक नहीं है क्योंकि उसका एकांगी मूलक स्वयं है। इसमें योजक समूह सम्मिलित है।
  • के बोरेल समूह में विकर्ण पर के साथ ऊपरी-त्रिकोणीय आव्यूह का असतहीय एकांगी मूलक है। यह एक गैर-अपचायक समूह का एक उदाहरण है जो एक-एकांगी नहीं है।

संबद्ध अपचायक समूह

ध्यान दें कि एकांगी मूलक की सामान्यता का तात्पर्य है कि भागफल समूह अपचायक है। उदाहरण के लिए,

अपचायक समूहों के अन्य लक्षण

प्रत्येक संहत संयोजित लाई समूह में एक जटिलता (लाई समूह) होती है, जो एक जटिल अपचायक बीजगणितीय समूह है। वस्तुतः, यह निर्माण समरूपता तक संहत संयोजित लाई समूहों और जटिल अपचायक समूहों के बीच एक-से-एक संगति देता है। जटिलता G के साथ एक संहत लाई समूह k के लिए, k से जटिल अपचायक समूह G ('C') में सम्मिलित होना, G ('C') पर शास्त्रीय सांस्थिति के संबंध में एक समस्थेयता समतुल्यता है। उदाहरण के लिए, एकात्मक समूह U(n) से GL(n,'C') में समावेश एक समस्थेयता तुल्यता है।

एक क्षेत्र शून्य की विशेषता के क्षेत्र में एक अपचायक समूह G के लिए, G के सभी परिमित-विमीय निरूपण (एक बीजगणितीय समूह के रूप में) अर्धसूत्रीय निरूपण हैं, अर्थात, वे अलघुकरणीय अभ्यावेदन के प्रत्यक्ष योग हैं।[6] यह नाम अपचायक का स्रोत है। ध्यान दें, यद्यपि, पूर्ण न्यूनीकरण धनात्मक विशेषता (टोरी के अतिरिक्त ) में अपचायक समूहों के लिए विफल रहता है। अधिक विवरण में: एक क्षेत्र k पर परिमित प्रकार की एक सजातीय समूह पद्धति G को रैखिक रूप से अपचायक' कहा जाता है यदि इसके परिमित-विमीय निरूपण पूर्ण रूप से कम हो जाते हैं। विशेषता शून्य के k के लिए, G रैखिक रूप से अपचायक है यदि और मात्र यदि G का तत्समक घटक Go अपचायक है।[7] विशेषता p>0 के k के लिए, यद्यपि, मासायोशी नागाटा ने दिखाया कि G रैखिक रूप से अपचायक है यदि और मात्र यदि Go गुणक प्रकार का है और G/Go के निकट p से क्रम अभाज्य है।[8]


मूल

अपचायक बीजगणितीय समूहों का वर्गीकरण संबद्ध मूल प्रणाली के संदर्भ में है, जैसा कि जटिल अर्ध-सरल लाई बीजगणित या संहत लाई समूहों के सिद्धांतों में है। यहाँ जिस प्रकार से मूल अपचायक समूहों के लिए दिखाई देती हैं।

G को एक क्षेत्र k पर एक विभाजित अपचायक समूह होने दें, और T को G में एक विभाजित अधिकतम टोरस होने दें; इसलिए T कुछ n के लिए (Gm)n के लिए समरूपी है, जिसमें n को G का पद कहा जाता है। T का प्रत्येक निरूपण (एक बीजगणितीय समूह के रूप में) 1-विमीय निरूपण का प्रत्यक्ष योग है।[9] G के लिए भार का अर्थ है T के 1-विमीय निरूपण का एक समरूपता वर्ग, या समतुल्य समरूपता TGmपूर्णांक 'Zn' की n प्रतियों के उत्पाद के लिए X(T) समरूपता के साथ निरूपण के टेंसर गुणनफल के अंतर्गत भार एक समूह X(T) बनाते हैं।

संलग्न निरूपण G की क्रिया है जो इसके लाई बीजगणित पर संयुग्मन द्वारा होता है। G के एक मूल का अर्थ है एक गैर-शून्य भार जो पर T ⊂ G की क्रिया में होता है। प्रत्येक मूल के अनुरूप की उप-समष्टि उपक्षेत्र 1-विमीय है, और T द्वारा निश्चित की गई की उपसमष्टि यथार्थ T की लाई बीजगणित है।[10] इसलिए, G का लाई बीजगणित में मूलों के सम्मुचय Φ द्वारा अनुक्रमित 1-आयामी उप-स्थानों के साथ विघटित होता है:

उदाहरण के लिए, जब G समूह GL(n) है, तो इसका लाई बीजगणित , k पर सभी n × n आव्यूहों की सदिश समष्टि है। मान लीजिए कि G में विकर्ण आव्यूहों का उपसमूह T है। फिर मूल-समष्टि अपघटन को विकर्ण आव्यूह के प्रत्यक्ष योग और संवृत-विकर्ण पदों (i, j) द्वारा अनुक्रमित 1-विमीय उप-समष्टि के रूप में व्यक्त करता है। भार जालक X(T) ≅ 'Z n' के मानक आधार के लिए L1,..., Ln लिखते हुए, 1 से n तक सभी i ≠ j के लिए मूल अवयव Li - Lj हैं।

एक अर्धसरल समूह की मूल एक 'मूल पद्धति' बनाती हैं; यह एक मिश्रित संरचना है जिसे पूर्ण रूप से वर्गीकृत किया जा सकता है। अधिक सामान्यतः, एक अपचायक समूह की मूल मूल आधार बनाती हैं, एक सधारण भिन्नता।[11] अपचायक समूह G के वेइल समूह का अर्थ है टोरस द्वारा अधिकतम टोरस के प्रसामान्यक का भागफल समूह, W = nG(T) / T। वेइल समूह वस्तुतः परावर्तनों द्वारा उत्पन्न परिमित समूह है। उदाहरण के लिए, समूह GL(n) (या SL(n)) के लिए, वेइल समूह सममित समूह Sn है।

एक दिए गए अधिकतम टोरस वाले बहुत से बोरेल उपसमूह हैं, और वे वेइल समूह (संयुग्मन द्वारा अभिनय) द्वारा केवल सकर्मक रूप से अनुमत हैं।[12] बोरेल उपसमूह का एक विकल्प धनात्मक मूलों का एक सम्मुचय निर्धारित करता है+ ⊂ Φ, इस गुण के साथ कि Φ Φ+ और −Φ+ का असंयुक्त सम्मिलन है। स्पष्ट रूप से, B का लाई बीजगणित T के लाई बीजगणित और धनात्मक मूल स्थानों का प्रत्यक्ष योग है:

उदाहरण के लिए, यदि B, GL (n) में ऊपरी-त्रिकोणीय आव्यूहों का बोरेल उपसमूह है, तो यह में ऊपरी-त्रिकोणीय आव्यूहों के उप-समष्टि का स्पष्ट अपघटन है। 1 ≤ i <j ≤ n के लिए धनात्मक मूल Li - Lj हैं।

एक 'सरल मूल' का अर्थ एक धनात्मक मूल है जो दो अन्य धनात्मक मूलों का योग नहीं है। सरल मूलों के समुच्चय के लिए Δ लिखिए। सरल मूलों की संख्या R G के क्रमविनिमेयक उपसमूह के पद के बराबर है, जिसे G के 'अर्धसरल पद' कहा जाता है (जो कि G के अर्धसरल होने पर मात्र G का पद है)। उदाहरण के लिए, GL(n) (या SL(n)) के लिए सरल मूल 1 ≤ i ≤ n − 1 के लिए Li - Li+1 हैं।

मूल पद्धति को संबंधित डायनकिन आरेख द्वारा वर्गीकृत किया जाता है, जो एक परिमित आरेख (असतत गणित) है (कुछ किनारों को निर्देशित या एकाधिक के साथ)। डायनकिन आरेख के शीर्षों का समुच्चय सरल मूलों का समुच्चय है। संक्षेप में, डायनकिन आरेख भार जाली पर एक वेइल समूह-निश्‍चर आंतरिक उत्पाद के संबंध में सरल मूलों और उनकी सापेक्ष लंबाई के बीच के कोणों का वर्णन करता है। संयोजित डायकिन आरेख (सरल समूहों के अनुरूप) नीचे चित्रित किए गए हैं।

एक क्षेत्र k पर विभाजित अपचायक समूह G के लिए, एक महत्वपूर्ण बिंदु यह है कि एक मूल α न मात्र G के लाई बीजगणित के 1-विमीय उप-समष्टि को निर्धारित करता है, बल्कि दिए गए लाई बीजगणित के साथ G में योज्य समूह Ga की एक प्रति भी है, जिसे 'मूल उपसमूह' Uα कहा जाता है। मूल उपसमूह G में योज्य समूह की अद्वितीय प्रति है जो T द्वारा सामान्य है और जिसमें दिया गया बीजगणित है।[10] पूर्ण समूह G को T और मूल उपसमूहों द्वारा (एक बीजगणितीय समूह के रूप में) उत्पन्न किया जाता है, जबकि बोरेल उपसमूह B को T और धनात्मक मूल उपसमूहों द्वारा उत्पन्न किया जाता है। वस्तुतः, एक विभाजित अर्धसरल समूह G अकेले मूल उपसमूहों द्वारा उत्पन्न होता है।

परवलयिक उपसमूह

एक क्षेत्र k पर विभाजित अपचायक समूह G के लिए, G के समृणीकृत संयोजित उपसमूह जिनमें G का दिया गया बोरेल उपसमूह B होता है, सरल मूलों के सम्मुचय Δ के उपसम्मुचय के साथ एक-से-एक संगति में होते हैं (या समतुल्य, उपसम्मुचय) डायकिन आरेख के शीर्षों के सम्मुचय का)। मान लीजिए r Δ की कोटि है, जो G का अर्धसरल कोटि है। G का प्रत्येक 'परवलयिक उपसमूह' G(k) के किसी अवयव द्वारा B युक्त उपसमूह से संयुग्मित होता है। फलस्वरूप, k पर G में परवलयिक उपसमूहों के वस्तुतः 2r संयुग्मन वर्ग हैं।[13] स्पष्ट रूप से, Δ के दिए गए उपसमुच्चय S के संगत परवलयिक उपसमूह, S में α के लिए मूल उपसमूहों U−α के साथ मिलकर B द्वारा उत्पन्न समूह है। उदाहरण के लिए, एस में α के लिए। उदाहरण के लिए, GL (n) के परवलयिक उपसमूहों में उपरोक्त बोरेल उपसमूह B होते हैं, विकर्ण के साथ वर्गों के दिए गए सम्मुचय के नीचे शून्य प्रविष्टियों के साथ व्युत्क्रम आव्यूह के समूह होते हैं, जैसे:

परिभाषा के अनुसार, एक क्षेत्र k पर अपचायक समूह G का एक परवलयिक उपसमूह P एक समृणीकृत k-उपसमूह है, जैसे कि भागफल प्रकार G/P 'K' पर उचित पद्धति है, या 'K' पर समकक्ष प्रक्षेपी विविधता है। इस प्रकार परवलयिक उपसमूहों का वर्गीकरण 'G' के लिए सामान्यीकृत ध्वज विविधता के वर्गीकरण के बराबर है (समृणीकृत स्थिरक समूह के साथ; यह विशेषता शून्य के K के लिए कोई प्रतिबंध नहीं है)। GL(n) के लिए, ये ध्वज प्रकार हैं, दिए गए विमाओं a1,...,ai के रैखिक उप-स्थानों के प्राचलीकरण अनुक्रम विमा n:

के एक निश्चित सदिश समष्टि V में समाहित है

लंब कोणीय समूह या सममिती समूह के लिए, प्रक्षेप्य सजातीय प्रकारों का एक समान विवरण होता है, जो किसी दिए गए द्विघात रूप या सममिती रूप के संबंध में समानुवर्ती उप-समष्टि ध्वज की प्रकार के रूप में होता है। बोरेल उपसमूह B के साथ किसी भी अपचायक समूह G के लिए, G/B को 'ध्वज प्रकार' या 'ध्वज कई गुना' कहा जाता है।

विभाजित अपचायक समूह का वर्गीकरण

संयोजित डायनकिन आरेख

शेवाली ने 1958 में दिखाया कि किसी भी बीजगणितीय रूप से संवृत क्षेत्र पर अपचायक समूहों को मूल आंकड़ों द्वारा समरूपता तक वर्गीकृत किया जाता है।[14] विशेष रूप से, एक बीजगणितीय रूप से संवृत क्षेत्र पर अर्ध-सरल समूहों को उनके डायनकिन आरेख द्वारा केंद्रीय समरूपता तक वर्गीकृत किया जाता है, और सरल समूह संयोजित आरेखों के अनुरूप होते हैं। इस प्रकार An, Bn, Cn, Dn, E6, E7, E8, F4, G2 के सरल समूह हैं। यह परिणाम अनिवार्य रूप से 1880 और 1890 के दशक में विल्हेम किलिंग और एली कार्टन द्वारा संहत लाई समूहों या जटिल अर्ध-सरल लाई बीजगणित के वर्गीकरण के समान है। विशेष रूप से, साधारण बीजगणितीय समूहों के विमा, केंद्र और अन्य गुणों को सरल लाई समूहों की सूची से पढ़ा जा सकता है। यह उल्लेखनीय है कि अपचायक समूहों का वर्गीकरण विशेषता से स्वतंत्र है। तुलना के लिए, अभिलक्षणिक शून्य की तुलना में धनात्मक अभिलक्षण में बहुत अधिक सरल लाई बीजगणित हैं।

प्रकार G2 और E6 के असाधारण समूह G का निर्माण कम से कम सार समूह G (K) के रूप में लियोनार्ड यूजीन डिक्सन द्वारा किया गया था। उदाहरण के लिए, समूह G2 k पर एक अष्टकैक बीजगणित का स्वसमाकृतिकता समूह है। इसके विपरीत, धनात्मक विशेषताओं के क्षेत्र में F4, E7, E8 प्रकार के शेवाले समूह पूर्ण रूप से नवीन थे।

अधिक सामान्यतः, विभाजित अपचायक समूहों का वर्गीकरण किसी भी क्षेत्र में समान होता है।[15] एक क्षेत्र k पर एक अर्द्धसरल समूह G को ' पूर्णतः संयोजित' कहा जाता है, यदि अर्द्धसरल समूह से G तक प्रत्येक केंद्रीय समरूपता एक समरूपता है। (जटिल संख्याओं पर G अर्धसरल के लिए, इस अर्थ में पूर्णतः संयोजित G ('C') के बराबर है जो शास्त्रीय सांस्थिति में पूर्णतः संयोजित है।) चेवेली का वर्गीकरण देता है कि, किसी भी क्षेत्र पर, एक दिए गए डायनकिन आरेख के साथ एक अद्वितीय सरलता से संयोजित विभाजित अर्धसरल समूह G है, जिसमें संयोजित आरेखों के अनुरूप सरल समूह हैं। दूसरे परम पर, एक अर्धसरल समूह 'संलग्न प्रकार' का होता है यदि इसका केंद्र नगण्य होता है। दिए गए डायनकिन आरेख के साथ k पर विभाजित अर्धसरल समूह वस्तुतः समूह G/A हैं, जहाँ G सरल रूप से संयोजित समूह है और A, G के केंद्र की एक k-उपसमूह पद्धति है।

उदाहरण के लिए, शास्त्रीय डायनकिन आरेखों के संगत क्षेत्र k पर सरलता से संयोजित विभाजित सरल समूह इस प्रकार हैं:

  • An: SL(n+1) पर K;
  • Bn: चक्रण समूह चक्रण (2n+1) विट अनुक्रमणिका n के साथ विमा 2n+1 पर k के द्विघात रूप से संयोजित है, उदाहरण के लिए रूप
  • Cn: सममिती समूह Sp(2n) k पर ;
  • Dn: चक्रण समूह चक्रण (2n) विट अनुक्रमणिका n के साथ विमा 2n पर k के द्विघात रूप से सम्बद्ध है, जिसे इस प्रकार लिखा जा सकता है:

एक क्षेत्र k पर विभाजित अपचायक समूह G का बाहरी स्वसमाकृतिकता समूह, G के मूल आधार के स्वसमाकृतिकता समूह के लिए समरूपी है। इसके अतिरिक्त , G का स्वसमाकृतिकता समूह एक अर्ध-प्रत्यक्ष उत्पाद के रूप में विभाजित होता है:

जहाँ Z, G का केंद्र है।[16] एक विभाजित अर्ध-सरल के लिए एक क्षेत्र पर पूर्णतः संयोजित समूह G के लिए, G के बाहरी स्वसमाकृतिकता समूह का एक सरल विवरण है: यह G के डायनकिन आरेख का स्वसमाकृतिकता समूह है।

अपचायक समूह पद्धति

एक पद्धति S पर एक समूह पद्धति G को 'अपचायक' कहा जाता है यदि आकारिकी G → S समृणीकृत आकारिकी और संकरण है, और प्रत्येक ज्यामितीय तन्तु अपचायक है। (S में एक बिंदु p के लिए, संबंधित ज्यामितीय तन्तु का अर्थ है बीजगणितीय संवृत करने के लिए G का आधार परिवर्तन p के अवशेष क्षेत्र का।) चेवेली के काम का विस्तार करते हुए, मिशेल डेमाज़र और ग्रोथेंडिक ने दिखाया कि किसी भी गैर-रिक्त पद्धति S पर विभाजित अपचायक समूह पद्धतिओं को मूल आंकड़ों द्वारा वर्गीकृत किया गया है।[17] इस कथन में Z से अधिक समूह पद्धतिओं के रूप में चेवेली समूहों का अस्तित्व सम्मिलित है, और यह कहता है कि एक पद्धति 'S' पर प्रत्येक विभाजित अपचायक समूह Z से 'S' तक एक चेवली समूह के आधार परिवर्तन के लिए समरूपी है।

वास्तविक अपचायक समूह

बीजगणितीय समूहों के अतिरिक्त लाई समूहों के संदर्भ में, एक वास्तविक अपचायक समूह एक लाई समूह G है, जैसे कि R पर एक रैखिक बीजीय समूह L है जिसका तत्समक घटक (जरिस्की सांस्थिति में) अपचायक है , और एक समरूपता GL(R) जिसका आधार परिमित है और जिसका प्रतिरूप L(R) (शास्त्रीय सांस्थिति में) में विवृत है। यह मानने के लिए भी मानक है कि आसन्न निरूपण Ad(G) का प्रतिरूप Int(gC = Ad (L0(C)) में निहित है (जो G संयोजित के लिए स्वचालित है)।[18]

विशेष रूप से, प्रत्येक संयोजित अर्ध-सरल लाई समूह (जिसका अर्थ है कि इसका लाई बीजगणित अर्ध-सरल है) अपचायक है। इसके अतिरिक्त , लाई समूह R इस अर्थ में अपचायक है, क्योंकि इसे GL (1, R) ≅ R * के तत्समक घटक के रूप में देखा जा सकता है। वास्तविक अपचायक समूहों को वर्गीकृत करने की समस्या व्यापक रूप से साधारण लाई समूहों को वर्गीकृत करने के लिए कम हो जाती है। इन्हें उनके सैटेक आरेख द्वारा वर्गीकृत किया गया है; या कोई साधारण लाई समूहों (परिमित आवरण तक) की सूची का उल्लेख कर सकता है।

इस व्यापकता में वास्तविक अपचायक समूहों के लिए स्वीकार्य निरूपण और एकात्मक निरूपण के उपयोगी सिद्धांत विकसित किए गए हैं। इस परिभाषा और एक अपचायक बीजगणितीय समूह की परिभाषा के बीच मुख्य अंतर इस तथ्य के साथ है कि एक बीजगणितीय समूह G R पर एक बीजगणितीय समूह के रूप में सम्बद्ध हो सकता है जबकि लाई समूह G(R) सम्बद्ध नहीं है, और इसी प्रकार मात्र संयोजित समूहों के लिए।

उदाहरण के लिए, प्रक्षेपी रैखिक समूह PGL(2) किसी भी क्षेत्र पर एक बीजगणितीय समूह के रूप में संयोजित है, परन्तु इसके वास्तविक बिंदुओं के समूह PGL(2,R) में दो संयोजित घटक हैं। PGL(2,R) (कभी-कभी PSL(2,R) कहा जाता है) का तत्समक घटक एक वास्तविक अपचायक समूह है जिसे बीजगणितीय समूह के रूप में नहीं देखा जा सकता है। इसी प्रकार, SL(2) किसी भी क्षेत्र पर एक बीजगणितीय समूह के रूप में पूर्णतः संयोजित है, परन्तु लाई समूह SL(2,R) में पूर्णांक Z के लिए मूलभूत समूह समरूपी है, और इसलिए SL' '(2, R) में असतहीय समष्टि को आच्छादित करना हैं। परिभाषा के अनुसार, SL(2,R) के सभी परिमित आवरण (जैसे कि मेटाप्लेक्टिक समूह) वास्तविक अपचायक समूह हैं। दूसरी ओर, SL(2,R) का सार्वभौमिक आवरण एक वास्तविक अपचायक समूह नहीं है, यद्यपि इसका लाई बीजगणित अपचायक लाई बीजगणित है, जो कि अर्द्धसरल लाई बीजगणित और एक एबेलियन लाई बीजगणित का उत्पाद है।

एक संयोजित वास्तविक अपचायक समूह G के लिए, अधिकतम संहत उपसमूह K द्वारा G का भागफल कई गुना G/K गैर-संहत प्रकार का एक सममित समष्टि है। वस्तुतः, गैर-संहत प्रकार का प्रत्येक सममित समष्टि इस प्रकार से उत्पन्न होता है। ये गैर-धनात्मक अनुभागीय वक्रता के साथ कई गुना के रीमैनियन ज्यामिति में केंद्रीय उदाहरण हैं। उदाहरण के लिए, SL(2,R)/SO(2) अतिपरवलयिक तल है, और SL(2,C)/SU(2) अतिपरवलयिक 3-समष्टि है।

एक क्षेत्र k पर अपचायक समूह G के लिए जो असतत मूल्यांकन (जैसे p-एडिक संख्या Qp) के संबंध में पूर्ण है, G का सजातीय निर्माण X सममित स्थान की भूमिका निभाता है। अर्थात, X G(k) की क्रिया के साथ एक साधारण परिसर है, और G(k) गैर-धनात्मक वक्रता वाले मापीय का रेखीय सजातीय 'X' पर CAT(0) मापीय को संरक्षित करता है। सजातीय निर्माण की विमा G का के-पद है। उदाहरण के लिए, SL (2, क्यूp) एक पेड़ (आरेख सिद्धांत) है।

अपचायक समूहों का निरूपण

एक क्षेत्र k पर एक विभाजित अपचायक समूह G के लिए, G (बीजगणितीय समूह के रूप में) के अलघुकरणीय निरूपण को प्रमुख भार द्वारा पैरामीट्रिज किया जाता है, जिसे भार जालक X(T) ≅ 'Z' के प्रतिच्छेदन के रूप में परिभाषित किया जाता है।n 'R' में एक उत्तल शंकु (एक वेइल कक्ष) के साथn। विशेष रूप से, यह पैरामीट्रिजेशन k की विशेषता से स्वतंत्र है। अधिक विस्तार से, एक विभाजित अधिकतम टोरस और एक बोरेल उपसमूह, टी ⊂ बी ⊂ G को ठीक करें। फिर बी एक समृणीकृत संयोजित एकांगी उपसमूह यू के साथ टी का सेमीडायरेक्ट उत्पाद है। G पर के निरूपण वी में 'उच्चतम भार सदिश' परिभाषित करें k एक गैर-शून्य सदिश v होना चाहिए जैसे कि B स्वयं में v द्वारा फैलाई गई रेखा को मैप करता है। फिर बी उस रेखा पर अपने भागफल समूह टी के माध्यम से भार जालक एक्स (टी) के कुछ अवयव λ द्वारा कार्य करता है। शेवाली ने दिखाया कि G के प्रत्येक इर्रिडिएबल निरूपण में स्केलर तक एक अद्वितीय उच्चतम भार सदिश होता है; संबंधित उच्चतम भार λ प्रमुख है; और प्रत्येक प्रमुख भार λ, समरूपता तक G के एक अद्वितीय इरेड्यूसबल निरूपण L(λ) का उच्चतम भार है।[19] दिए गए उच्चतम भार के साथ अलघुकरणीय निरूपण का वर्णन करने की समस्या बनी हुई है। विशेषता शून्य के k के लिए, अनिवार्य रूप से पूर्ण उत्तर हैं। एक प्रमुख भार λ के लिए, 'शूर मॉड्यूल' को परिभाषित करें ∇(λ) जी-इक्विवेरिएंट व्युत्क्रम शीफ के वर्गों के के-सदिश समष्टि के रूप में फ्लैग कई गुना जी/बी पर λ से संयोजित है; यह G का एक निरूपण है। विशेषता शून्य के k के लिए, बोरेल-वील प्रमेय का कहना है कि अलघुकरणीय निरूपण L(λ) शूर मॉड्यूल ∇(λ) के लिए आइसोमॉर्फिक है। इसके अतिरिक्त , वेइल चरित्र सूत्र इस निरूपण के चरित्र सिद्धांत (और विशेष रूप से विमा) देता है।

धनात्मक विशेषता के क्षेत्र k पर विभाजित अपचायक समूह G के लिए, स्थिति कहीं अधिक सूक्ष्म है, क्योंकि G का निरूपण सामान्यतः अखंडनीय्स का प्रत्यक्ष योग नहीं है। एक प्रमुख भार λ के लिए, अखंडनीय निरूपण L (λ) शूर मॉड्यूल ∇ (λ) का अद्वितीय सरल सबमॉड्यूल (सोकल (गणित)) है, परन्तु यह शूर मॉड्यूल के बराबर नहीं होना चाहिए। शूर मॉड्यूल का विमा और चरित्र जॉर्ज केम्फ द्वारा वेइल वर्ण सूत्र (विशेषता शून्य के रूप में) द्वारा दिया गया है।[20] अलघुकरणीय अभ्यावेदन L(λ) के विमा और लक्षण सामान्य रूप से अज्ञात हैं, यद्यपि इन निरूपणों का विश्लेषण करने के लिए सिद्धांत का एक बड़ा निकाय विकसित किया गया है। एक महत्वपूर्ण परिणाम यह है कि L (λ) के विमा और चरित्र को तब जाना जाता है जब हेनिंग हाहर एंडरसन, जेन्स कार्स्टन जैंटजेन, और वोल्फगैंग सॉर्जेल द्वारा G के कॉक्सम्मुचयर संख्या की तुलना में के की विशेषता पी बहुत बड़ी है (जॉर्ज लुसिग के अनुमान को साबित करना) उस मामले में)। पी लार्ज के लिए उनका वर्ण सूत्र कज़्दान-लुज़्ज़टिग बहुपदों पर आधारित है, जो मिश्रित रूप से जटिल हैं।[21] किसी भी प्राइम पी के लिए, साइमन रिचे और जिओर्डी विलियमसन ने पी-कज़्दान-लुज़्ज़टिग बहुपदों के संदर्भ में एक अपचायक समूह के इरेड्यूसबल वर्णों का अनुमान लगाया, जो कि और भी जटिल हैं, परन्तु कम से कम संगणनीय हैं।[22]


गैर-विभाजित अपचायक समूह

जैसा कि ऊपर चर्चा की गई है, विभाजित अपचायक समूहों का वर्गीकरण किसी भी क्षेत्र में समान है। इसके विपरीत, आधार क्षेत्र के आधार पर स्वेच्छ अपचायक समूहों का वर्गीकरण जटिल हो सकता है। शास्त्रीय समूहों में से कुछ उदाहरण हैं:

  • एक क्षेत्र k पर प्रत्येक अविकृत द्विघात रूप q एक अपचायक समूह G = SO(q) निर्धारित करता है। यहाँ G सरल है यदि q का विमा n कम से कम 3 है, क्योंकि एक बीजगणितीय संवृत होने पर SO(n) के लिए समरूपी है । G का के-पद क्यू के 'विट अनुक्रमणिका' के बराबर है (के पर एक आइसोटोपिक सबसमष्टि का अधिकतम विमा)।[23] तो साधारण समूह G को k पर विभाजित किया जाता है यदि और मात्र यदि q में अधिकतम संभव विट अनुक्रमणिका है,
  • प्रत्येक केंद्रीय सरल बीजगणित ए पर के एक अपचायक समूह G = SL (1, ए) निर्धारित करता है, यूनिट ए * के समूह पर कम मानदंड का आधार (के से अधिक बीजगणितीय समूह के रूप में)। ए की 'डिग्री' का अर्थ ए के विमा के वर्ग मूल को के-सदिश समष्टि के रूप में दर्शाता है। यहाँ G सरल है यदि A के निकट डिग्री n कम से कम 2 है, क्योंकि SL(n) पर के लिए तुल्याकारी है । यदि ए में अनुक्रमणिका R है (जिसका अर्थ है कि ए आव्यूहों बीजगणित एम के लिए समरूपी हैn/r(डी) डिग्री R पर के के विभाजन बीजगणित डी के लिए), तो G का के-पद (n / R) - 1 है।[24] तो साधारण समूह G को k पर विभाजित किया जाता है यदि और मात्र यदि A, k पर एक आव्यूहों बीजगणित है।

परिणामस्वरूप, k पर अपचायक समूहों को वर्गीकृत करने की समस्या में अनिवार्य रूप से k पर सभी द्विघात रूपों को वर्गीकृत करने की समस्या या k पर सभी केंद्रीय सरल बीजगणित सम्मिलित हैं। बीजगणितीय रूप से संवृत k के लिए ये समस्याएँ आसान हैं, और उन्हें कुछ अन्य क्षेत्रों जैसे संख्या क्षेत्रों के लिए समझा जाता है, परन्तु स्वेच्छ क्षेत्रों के लिए कई खुले प्रश्न हैं।

किसी क्षेत्र k पर एक अपचायक समूह को ' समानुवर्ती' कहा जाता है, यदि इसमें k-पद 0 से अधिक होता है (अर्थात, यदि इसमें एक असतहीय विभाजित टोरस होता है), और अन्यथा 'अनिसोट्रोपिक'। क्षेत्र k पर अर्धसरल समूह G के लिए, निम्न स्थितियाँ समतुल्य हैं:

  • जी समानुवर्ती है (अर्थात, G में गुणक समूह G की एक प्रति हैm पर के);
  • G में k पर एक परवलयिक उपसमूह है जो G के बराबर नहीं है;
  • जी में योगात्मक समूह G की एक प्रति हैa कश्मीर से अधिक

के परिपूर्ण के लिए, यह कहने के बराबर भी है कि G (के) में 1 के अतिरिक्त एक रैखिक बीजगणितीय समूह#सेमिसिम्पल और एकांगी अवयव अवयव सम्मिलित हैं।[25] विशेषता शून्य (जैसे वास्तविक संख्या) के एक स्थानीय क्षेत्र k पर संयोजित रैखिक बीजगणितीय समूह G के लिए, समूह G(k) शास्त्रीय सांस्थिति में संहत जगह है (k की सांस्थिति पर आधारित) यदि और मात्र यदि G है अपचायक और अनिसोट्रोपिक।[26] उदाहरण: लंब कोणीय समूह अनिश्चितकालीन लंब कोणीय समूह | SO(p,q) पर 'R' का वास्तविक पद min(p,q) है, और इसलिए यह अनिसोट्रोपिक है यदि और मात्र यदि p या q शून्य है।[23]

एक क्षेत्र k पर अपचायक समूह G को 'क्वैसी-विभाजित' कहा जाता है, यदि इसमें k पर एक बोरेल उपसमूह होता है। एक विभाजित अपचायक समूह क्वासी-विभाजित है। यदि G कश्मीर पर अर्ध-विभाजित है, तो G के किसी भी दो बोरेल उपसमूह G (के) के कुछ अवयव से संयुग्मित होते हैं।[27] उदाहरण: लांबिक समूह SO(p,q) पर 'R' विभाजित है यदि और मात्र यदि |p−q| ≤ 1, और यह अर्ध-विभाजित है यदि और मात्र यदि |p−q| ≤ 2।[23]


अमूर्त समूहों के रूप में अर्धसरल समूहों की संरचना

क्षेत्र k पर सरल रूप से संयोजित विभाजित अर्धसरल समूह G के लिए, रॉबर्ट स्टाइनबर्ग ने अमूर्त समूह G(k) के एक समूह की एक स्पष्ट प्रस्तुति दी।[28] यह G के डायनकिन आरेख द्वारा निर्धारित संबंधों के साथ G (मूल उपसमूह) की मूलों द्वारा अनुक्रमित के योगात्मक समूह की प्रतियों द्वारा उत्पन्न होता है।

एक पूर्ण क्षेत्र k पर सरल रूप से संयोजित विभाजित अर्धसरल समूह G के लिए, स्टाइनबर्ग ने अमूर्त समूह G(k) के स्वसमाकृतिकता समूह का भी निर्धारण किया। प्रत्येक स्वसमाकृतिकता एक आंतरिक स्वसमाकृतिकता का उत्पाद है, एक विकर्ण स्वसमाकृतिकता (अर्थात् एक उपयुक्त द्वारा संयुग्मन -एक अधिकतम टोरस का बिंदु), एक आरेख स्वसमाकृतिकता (डाइनकिन आरेख के एक स्वसमाकृतिकता के अनुरूप), और एक क्षेत्र स्वसमाकृतिकता (क्षेत्र के एक स्वसमाकृतिकता से आ रहा है)।[29] एक के-सरल बीजगणितीय समूह G के लिए, 'स्तन की सरलता प्रमेय' कहती है कि सार समूह G (के) सरल होने के करीब है, हल्के अनुमानों के अंतर्गत। अर्थात्, मान लीजिए कि G, k पर समदैशिक है, और मान लीजिए कि क्षेत्र k में कम से कम 4 अवयव हैं। चलो G (के)+ योगात्मक समूह G की प्रतियों के k-बिंदुओं द्वारा उत्पन्न अमूर्त समूह G(k) का उपसमूह होa G में समाहित k से अधिक। (यह मानकर कि G k पर समदैशिक है, समूह G(k)+ असतहीय है, और यदि k अनंत है तो G में ज़रिस्की सघन भी है।) फिर G(k) का भागफल समूह+ इसके केंद्र द्वारा सरल है (एक सार समूह के रूप में)।[30] सबूत जैक्स स्तन की बीn-जोड़े की मशीनरी का उपयोग करता है।

क्रम 2 या 3 के क्षेत्रों के अपवादों को ठीक रूप से समझा गया है। के = 'एफ' के लिए2, स्तन की सरलता प्रमेय मान्य रहता है सिवाय इसके कि जब G प्रकार A का विभाजन हो1, बी2, या जी2, या नॉन-विभाजित (अर्थात एकात्मक) प्रकार ए2। के = 'एफ' के लिए3, प्रमेय प्रकार A के G को छोड़कर धारण करता है1[31] एक के-सरल समूह G के लिए, पूर्ण समूह G (के) को समझने के लिए, कोई 'व्हाइटहेड समूह' डब्ल्यू (के, जी) = G (के)/जी (के) पर विचार कर सकता है।+। G के लिए पूर्णतः संयोजित है और अर्ध-विभाजित है, व्हाइटहेड समूह छोटा है, और इसलिए पूरा समूह G (के) सरल मोडुलो इसका केंद्र है।[32] अधिक सामान्यतः, केनेसर-टीट्स समस्या पूछती है कि व्हाइटहेड समूह कौन सा आइसोटोपिक के-सरल समूह नगण्य है। सभी ज्ञात उदाहरणों में, W(k, G) आबेली है।

अनिसोट्रोपिक के-सरल समूह G के लिए, अमूर्त समूह G (के) सरल से बहुत दूर हो सकता है। उदाहरण के लिए, मान लीजिए कि D एक विभाजन बीजगणित है जिसका केंद्र a p-एडिक क्षेत्र k है। मान लीजिए कि k पर D का विमा परिमित है और 1 से अधिक है। फिर G = SL(1,D) एक अनिसोट्रोपिक k-सरल समूह है। जैसा ऊपर बताया गया है, G (के) शास्त्रीय सांस्थिति में संहत है। चूंकि यह पूर्ण रूप से डिस्कनेक्ट भी है, G (के) एक असीमित समूह है (परन्तु सीमित नहीं है)। फलस्वरूप, G (के) में उपसमूह के परिमित सूचकांक के असीम रूप से कई सामान्य उपसमूह होते हैं।[33]


जाली और अंकगणितीय समूह

मान लीजिए G परिमेय संख्याओं 'Q' पर एक रैखिक बीजगणितीय समूह है। फिर G को 'जेड' पर एक सजातीय समूह पद्धति G तक बढ़ाया जा सकता है, और यह एक अमूर्त समूह G ('जेड') निर्धारित करता है। एक 'अंकगणितीय समूह' का अर्थ G('Q') का कोई भी उपसमूह है जो G('Z') के साथ समानता (समूह सिद्धांत) है। (G('Q') के एक उपसमूह की अंकगणितीयता 'Z'-संरचना की पसंद से स्वतंत्र है।) उदाहरण के लिए, SL(n,'Z') SL(n,'Q') का एक अंकगणितीय उपसमूह है।

एक लाई समूह G के लिए, G में एक 'जाली (असतत उपसमूह)' का अर्थ है G का एक असतत उपसमूह Γ जैसे कि कई गुना G/Γ में परिमित आयतन (G-invariant माप के संबंध में) है। उदाहरण के लिए, एक असतत उपसमूह Γ एक जाली है यदि G/Γ संहत है। अंकगणित समूह # मार्गुलिस अंकगणितीय प्रमेय विशेष रूप से कहता है: कम से कम 2 वास्तविक पद के एक साधारण लाई समूह G के लिए, G में प्रत्येक जाली एक अंकगणितीय समूह है।

डाइनकिन डायग्राम पर गैलोज क्रिया

अपचायक समूहों को वर्गीकृत करने की मांग में, जिन्हें विभाजित करने की आवश्यकता नहीं है, एक कदम स्तन सूचकांक है, जो अनिसोट्रोपिक समूहों के मामले में समस्या को कम करता है। यह कमी बीजगणित में कई मूलभूत प्रमेयों का सामान्यीकरण करती है। उदाहरण के लिए, विट के अपघटन प्रमेय का कहना है कि एक क्षेत्र पर एक गैर-अपघटित द्विघात रूप को इसके अनिसोट्रोपिक आधार के साथ मिलकर इसके विट अनुक्रमणिका द्वारा समरूपता तक निर्धारित किया जाता है। इसी प्रकार, आर्टिन-वेडरबर्न प्रमेय विभाजन बीजगणित के मामले में एक क्षेत्र पर केंद्रीय सरल बीजगणित के वर्गीकरण को कम करता है। इन परिणामों को सामान्य करते हुए, टिट्स ने दिखाया कि क्षेत्र k पर एक अपचायक समूह समरूपता तक इसके टिट्स अनुक्रमणिका द्वारा इसके अनिसोट्रोपिक आधार, एक संबद्ध अनिसोट्रोपिक अर्द्धसरल k-समूह के साथ निर्धारित किया जाता है।

एक क्षेत्र k पर अपचायक समूह G के लिए, पूर्ण गैलोज़ समूह Gal(ks/k) G के पूर्ण डायनकिन आरेख पर (निरंतर) कार्य करता है, अर्थात, एक वियोज्य क्लोजर k पर G का डायनकिन आरेखs (जो एक बीजगणितीय संवृत होने पर G का डायकिन आरेख भी है )। G के ब्रेस्ट अनुक्रमणिका में G का मूल आधार होता हैks, इसके डायनकिन डायग्राम पर गैलोज़ एक्शन, और डाइकिन डायग्राम के शीर्षों का एक गैलोज़-निश्‍चर उपसमुच्चय। परंपरागत रूप से, दिए गए उपसमुच्चय में गैलोज़ कक्षाओं के चक्कर लगाकर टिट्स अनुक्रमणिका तैयार किया जाता है।

इन शर्तों में अर्ध-विभाजित समूहों का पूर्ण वर्गीकरण है। अर्थात्, डायनकिन आरेख पर एक क्षेत्र k के निरपेक्ष गैलोज़ समूह की प्रत्येक क्रिया के लिए, दिए गए क्रिया के साथ एक अद्वितीय अर्ध-विभाजित अर्ध-विभाजित समूह H पर k है। (अर्ध-विभाजित समूह के लिए, डायनकिन आरेख में प्रत्येक गैलोज़ कक्षा परिक्रमा की जाती है।) इसके अतिरिक्त , दी गई क्रिया के साथ कोई अन्य सरल रूप से संयोजित अर्ध-सरल समूह G, अर्ध-विभाजित समूह H का एक आंतरिक रूप है, जिसका अर्थ है कि G है गैलोइस कोहोलॉजी सम्मुचय एच के एक अवयव से सम्बद्ध समूह1(k,H/Z), जहां Z, H का केंद्र है। दूसरे शब्दों में, G कुछ H/Z-torsor पर k से सम्बद्ध H का ट्विस्ट है, जैसा कि अगले भाग में चर्चा की गई है।

उदाहरण: मान लीजिए कि n ≥ 5 के साथ 2 नहीं विशेषता वाले क्षेत्र k पर सम विमा 2n का गैर-डीजेनरेट द्विघात रूप है। (इन प्रतिबंधों से बचा जा सकता है।) G को k पर साधारण समूह SO(q) होने दें। G का पूर्ण डायनकिन आरेख प्रकार डी का हैn, और इसलिए इसका स्वसमाकृतिकता समूह क्रम 2 का है, डी के दो पैरों को बदल रहा हैn आरेख। डायनकिन आरेख पर के के पूर्ण गैलोज़ समूह की कार्रवाई मामूली है यदि और मात्र यदि क्यू में क्यू के द्विघात रूप डी के हस्ताक्षर किए गए भेदभाव के */(के *)2 नगण्य है। यदि d असतहीय है, तो यह डायनकिन आरेख पर गाल्वा क्रिया में n्कोड किया गया है: तत्समक के रूप में कार्य करने वाले गाल्वा समूह का सूचकांक -2 उपसमूह है । समूह G को विभाजित किया जाता है यदि और मात्र यदि q का विट सूचकांक n है, जो अधिकतम संभव है, और G अर्ध-विभाजित है यदि और मात्र यदि q का विट सूचकांक कम से कम n − 1 है।[23]


धड़ ्स और हस्से सिद्धांत

एक क्षेत्र k पर एक सजातीय समूह पद्धति G के लिए एक टॉर्सर का अर्थ है k पर एक सजातीय पद्धति X G की एक समूह कार्रवाई (गणित) के साथ जैसे कि के लिए समरूपी है की क्रिया के साथ बाएँ अनुवाद द्वारा स्वयं पर। एक टॉर्सर को k पर fppf सांस्थिति के संबंध में k पर एक प्रमुख G-बंडल के रूप में भी देखा जा सकता है, या étale सांस्थिति यदि G k पर समृणीकृत है। K पर G-torsors के समरूपता वर्गों के नुकीले सम्मुचय को H कहा जाता है1(k,G), गाल्वा कोहोलॉजी की भाषा में।

जब भी कोई दिए गए बीजगणितीय वस्तु Y के 'रूपों' को एक क्षेत्र k पर वर्गीकृत करने का प्रयास करता है, तो टॉर्स उत्पन्न होते हैं, जिसका अर्थ है कि x से अधिक k पर वस्तुएँ जो k के बीजगणितीय संवृत होने पर Y के लिए समरूपी बन जाती हैं। अर्थात्, इस प्रकार के रूप (समरूपता तक) सम्मुचय एच के साथ एक-से-एक संगति में हैं1(के, ऑट (वाई))। उदाहरण के लिए, (nondegenerate) k पर विमा n के द्विघात रूपों को H द्वारा वर्गीकृत किया गया है1(k,O(n)), और डिग्री n से अधिक k के केंद्रीय सरल बीजगणित को H द्वारा वर्गीकृत किया गया है1(के,PGL(n))। साथ ही, दिए गए बीजगणितीय समूह G के k-रूपों (जिन्हें कभी-कभी G का घुमाव कहा जाता है) को H द्वारा वर्गीकृत किया जाता है1(के, ऑट (जी))। ये समस्याएँ G-torsors के व्यवस्थित अध्ययन को प्रेरित करती हैं, विशेष रूप से अपचायक समूह G के लिए।

जब संभव हो, तो कोहोलॉजिकल निश्‍चर ्स का उपयोग करके जी-टॉर्सर्स को वर्गीकृत करने की उम्मीद है, जो एबेलियन गुणांक समूहों एम, एच के साथ गैलोइस कोहोलॉजी में मान लेने वाले अपरिवर्तनीय हैं।(के, एम)। इस दिशा में, स्टाइनबर्ग ने जीन पियरे सेरे के अनुमान I को सिद्ध किया: एक संयोजित रैखिक बीजीय समूह G के लिए अधिकतम 1, H क्षेत्र के कोहोलॉजिकल विमा के एक आदर्श क्षेत्र पर1(के, जी) = 1।[34] (परिमित क्षेत्र के मामले को पहले लैंग के प्रमेय के रूप में जाना जाता था।) उदाहरण के लिए, यह इस प्रकार है कि परिमित क्षेत्र पर प्रत्येक अपचायक समूह अर्ध-विभाजित है।

सेरे का अनुमान II (बीजगणित) | सेरे का अनुमान II भविष्यवाणी करता है कि अधिक से अधिक 2, एच पर कोहोलॉजिकल विमा के एक क्षेत्र पर पूर्णतः संयोजित अर्ध-सरल समूह G के लिए1(k,G) = 1। अनुमान पूर्ण रूप से काल्पनिक संख्या क्षेत्र के लिए जाना जाता है (जिसमें कोहोलॉजिकल विमा 2 है)। अधिक सामान्यतः, किसी भी संख्या क्षेत्र k के लिए, मार्टिन केनेसर, गुंटर हार्डर और व्लादिमीर चेरनौसोव (1989) ने हासे सिद्धांत को साबित किया: एक साधारण रूप से संयोजित अर्धसरल समूह G के लिए k, प्रतिचित्र

विशेषण है।[35] यहाँ v k, और k के सभी स्थानों (गणित) पर चलता हैv संबंधित स्थानीय क्षेत्र है (संभवतः R या सी)। इसके अतिरिक्त , नुकीला सम्मुचय H1(केv, G) प्रत्येक गैर-अर्चिमिडियन स्थानीय क्षेत्र k के लिए नगण्य हैv, और इसलिए मात्र k के वास्तविक समष्टि मायने रखते हैं। धनात्मक विशेषता के एक वैश्विक क्षेत्र k के लिए अनुरूप परिणाम पहले हार्डर (1975) द्वारा सिद्ध किया गया था: प्रत्येक सरलता से संयोजित अर्द्धसरल समूह G पर k, H के लिए1(k,G) नगण्य है (क्योंकि k का कोई वास्तविक समष्टि नहीं है)।[36] एक संख्या क्षेत्र k पर एक निकटवर्ती समूह G के थोड़े अलग मामले में, हासे सिद्धांत एक कमजोर रूप में है: प्राकृतिक प्रतिचित्र

इंजेक्शन है।[37] G = PGL (n) के लिए, यह अल्बर्ट-ब्रुएर-हस्से-नोथेर प्रमेय की मात्रा है, यह कहते हुए कि एक संख्या क्षेत्र पर एक केंद्रीय सरल बीजगणित अपने स्थानीय आक्रमणकारियों द्वारा निर्धारित किया जाता है।

हस्से सिद्धांत पर निर्माण, संख्या क्षेत्रों पर अर्ध-सरल समूहों का वर्गीकरण ठीक रूप से समझा जाता है। उदाहरण के लिए, असाधारण समूह E8 (गणित)|E के ठीक तीन 'Q'-रूप हैं8, ई के तीन वास्तविक रूपों के अनुरूप8

यह भी देखें

टिप्पणियाँ

  1. SGA 3 (2011), v. 3, Définition XIX.1.6.1.
  2. Milne (2017), Proposition 21.60.
  3. Milne. रैखिक बीजगणितीय समूह (PDF). pp. 381–394.
  4. Conrad (2014), after Proposition 5.1.17.
  5. Borel (1991), 18.2(i).
  6. Milne (2017), Theorem 22.42.
  7. Milne (2017), Corollary 22.43.
  8. Demazure & Gabriel (1970), Théorème IV.3.3.6.
  9. Milne (2017), Theorem 12.12.
  10. 10.0 10.1 Milne (2017), Theorem 21.11.
  11. Milne (2017), Corollary 21.12.
  12. Milne (2017), Proposition 17.53.
  13. Borel (1991), Proposition 21.12.
  14. Chevalley (2005); Springer (1998), 9.6.2 and 10.1.1.
  15. Milne (2017), Theorems 23.25 and 23.55.
  16. Milne (2017), Corollary 23.47.
  17. SGA 3 (2011), v. 3, Théorème XXV.1.1; Conrad (2014), Theorems 6.1.16 and 6.1.17.
  18. Springer (1979), section 5.1.
  19. Milne (2017), Theorem 22.2.
  20. Jantzen (2003), Proposition II.4.5 and Corollary II.5.11.
  21. Jantzen (2003), section II.8.22.
  22. Riche & Williamson (2018), section 1.8.
  23. 23.0 23.1 23.2 23.3 Borel (1991), section 23.4.
  24. Borel (1991), section 23.2.
  25. Borel & Tits (1971), Corollaire 3.8.
  26. Platonov & Rapinchuk (1994), Theorem 3.1.
  27. Borel (1991), Theorem 20.9(i).
  28. Steinberg (2016), Theorem 8.
  29. Steinberg (2016), Theorem 30.
  30. Tits (1964), Main Theorem; Gille (2009), Introduction.
  31. Tits (1964), section 1.2.
  32. Gille (2009), Théorème 6.1.
  33. Platonov & Rapinchuk (1994), section 9.1.
  34. Steinberg (1965), Theorem 1.9.
  35. Platonov & Rapinchuk (1994), Theorem 6.6.
  36. Platonov & Rapinchuk (1994), section 6.8.
  37. Platonov & Rapinchuk (1994), Theorem 6.4.


संदर्भ


बाहरी संबंध