लाग्रंगियन (क्षेत्र सिद्धांत): Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Application of Lagrangian mechanics to field theories}} | {{Short description|Application of Lagrangian mechanics to field theories}} | ||
लाग्रंगियन क्षेत्र सिद्धांत [[शास्त्रीय क्षेत्र सिद्धांत]] में औपचारिकता है। यह [[Lagrangian यांत्रिकी|लाग्रंगियन यांत्रिकी]] का क्षेत्र-सैद्धांतिक अनुरूप है। लाग्रंगियन यांत्रिकी का उपयोग [[स्वतंत्रता की डिग्री (भौतिकी और रसायन विज्ञान)]] की सीमित संख्या के साथ असतत कणों की प्रणाली की गति का विश्लेषण करने के लिए किया जाता है। लाग्रंगियन क्षेत्र सिद्धांत निरंतरता और क्षेत्रों पर लागू होता है, जिसमें स्वतंत्रता की डिग्री की अनंत संख्या होती है। | |||
क्षेत्रों पर | क्षेत्रों पर लाग्रंगियन औपचारिकता के विकास के लिए प्रेरणा, और अधिक सामान्यतः, शास्त्रीय क्षेत्र सिद्धांत के लिए, [[क्वांटम क्षेत्र सिद्धांत]] के लिए स्वच्छ गणितीय आधार प्रदान करना है, जो औपचारिक कठिनाइयों से कुख्यात है जो इसे गणितीय सिद्धांत के रूप में अस्वीकार्य बनाता है। यहां प्रस्तुत लैग्रैंगियन उनके क्वांटम समकक्षों के समान हैं, लेकिन, क्षेत्रों को शास्त्रीय क्षेत्रों के रूप में मानने के अतिरिक्त, परिमाणित होने के अतिरिक्त, परिभाषाएं प्रदान कर सकते हैं और आंशिक अंतर समीकरणों के गणित के पारंपरिक औपचारिक दृष्टिकोण के साथ संगत गुणों के साथ समाधान प्राप्त कर सकते हैं। यह सोबोलेव रिक्त स्थान जैसे अच्छी तरह से चित्रित गुणों वाले रिक्त स्थान पर समाधान तैयार करने में सक्षम बनाता है। यह विभिन्न प्रमेयों को प्रदान करने में सक्षम बनाता है, अस्तित्व के प्रमाण से औपचारिक श्रृंखला के समान अभिसरण से लेकर [[संभावित सिद्धांत]] की सामान्य सेटिंग्स तक। इसके अलावा, [[रीमैनियन कई गुना]] और [[फाइबर बंडल]]ों के सामान्यीकरण द्वारा अंतर्दृष्टि और स्पष्टता प्राप्त की जाती है, जिससे ज्यामितीय संरचना को स्पष्ट रूप से समझा जा सकता है और गति के संबंधित समीकरणों से अलग किया जा सकता है। ज्यामितीय संरचना के स्पष्ट दृष्टिकोण ने बदले में ज्यामिति से अत्यधिक अमूर्त प्रमेयों को अंतर्दृष्टि प्राप्त करने के लिए उपयोग करने की अनुमति दी है, जिसमें चेर्न-गॉस-बोनट प्रमेय और रिमेंन-रोच प्रमेय से अतियाह-सिंगर इंडेक्स प्रमेय और चेर्न-साइमन्स सिद्धांत सम्मिलित हैं। . | ||
== सिंहावलोकन == | == सिंहावलोकन == | ||
Line 16: | Line 16: | ||
\{ s^\alpha \} \right) \, \mathrm{d}^n s },</math> | \{ s^\alpha \} \right) \, \mathrm{d}^n s },</math> | ||
जहां कोष्ठक निरूपित करते हैं <math>\{\cdot~\forall\alpha\}</math>; | जहां कोष्ठक निरूपित करते हैं <math>\{\cdot~\forall\alpha\}</math>; | ||
और एस = {एस<sup>α</sup>} समय चर सहित प्रणालीके n [[स्वतंत्र चर]] के [[सेट (गणित)]] को दर्शाता है, और इसे α = 1, 2, 3, ..., n द्वारा अनुक्रमित किया जाता है। सुलेख टाइपफेस, <math>\mathcal{L}</math>, कई गुना पर घनत्व को निरूपित करने के लिए प्रयोग किया जाता है, और <math>\mathrm{d}^n s</math> फ़ील्ड फ़ंक्शन का वॉल्यूम रूप है, | और एस = {एस<sup>α</sup>} समय चर सहित प्रणालीके n [[स्वतंत्र चर]] के [[सेट (गणित)]] को दर्शाता है, और इसे α = 1, 2, 3, ..., n द्वारा अनुक्रमित किया जाता है। सुलेख टाइपफेस, <math>\mathcal{L}</math>, कई गुना पर घनत्व को निरूपित करने के लिए प्रयोग किया जाता है, और <math>\mathrm{d}^n s</math> फ़ील्ड फ़ंक्शन का वॉल्यूम रूप है, अर्थात फ़ील्ड फ़ंक्शन के डोमेन का माप। | ||
गणितीय योगों में, फाइबर बंडल पर फ़ंक्शन के रूप में लैग्रैन्जियन को व्यक्त करना आम है, जिसमें फाइबर बंडल पर [[ geodesic ]]्स को निर्दिष्ट करने के रूप में यूलर-लग्रेंज समीकरणों की व्याख्या की जा सकती है। अब्राहम और मार्सडेन की पाठ्यपुस्तक<ref>Ralph Abraham and Jerrold E. Marsden, (1967) "Foundations of Mechanics"</ref> आधुनिक ज्यामितीय विचारों के संदर्भ में [[शास्त्रीय यांत्रिकी]] का पहला व्यापक विवरण प्रदान किया, | गणितीय योगों में, फाइबर बंडल पर फ़ंक्शन के रूप में लैग्रैन्जियन को व्यक्त करना आम है, जिसमें फाइबर बंडल पर [[ geodesic ]]्स को निर्दिष्ट करने के रूप में यूलर-लग्रेंज समीकरणों की व्याख्या की जा सकती है। अब्राहम और मार्सडेन की पाठ्यपुस्तक<ref>Ralph Abraham and Jerrold E. Marsden, (1967) "Foundations of Mechanics"</ref> आधुनिक ज्यामितीय विचारों के संदर्भ में [[शास्त्रीय यांत्रिकी]] का पहला व्यापक विवरण प्रदान किया, अर्थात [[स्पर्शरेखा कई गुना]], सहानुभूतिपूर्ण कई गुना और [[संपर्क ज्यामिति]] के संदर्भ में। बिलीकर की पाठ्यपुस्तक<ref name="Bleecker">David Bleecker, (1981) "Gauge Theory and Variational Principles" Addison-Wesley</ref> गेज अपरिवर्तनीय फाइबर बंडलों के संदर्भ में भौतिकी में क्षेत्र सिद्धांतों की व्यापक प्रस्तुति प्रदान की। इस तरह के फॉर्मूलेशन बहुत पहले ज्ञात या संदिग्ध थे। जोस्ट<ref name="jost">Jurgen Jost, (1995) "Riemannian Geometry and Geometric Analysis", Springer</ref> ज्यामितीय प्रस्तुति के साथ जारी है, हैमिल्टनियन और लैग्रैंगियन रूपों के मध्य संबंध को स्पष्ट करते हुए, पहले सिद्धांतों से [[स्पिन कई गुना]] का वर्णन करते हुए, आदि। वर्तमान शोध [[कठोरता (गणित)]] पर केंद्रित है। [[टेंसर बीजगणित]] द्वारा वेक्टर रिक्त स्थान। यह शोध [[क्वांटम समूह]]ों की अफिन लाइ बीजगणित के रूप में सफलता की समझ से प्रेरित है ([[झूठ समूह]] अर्थ में कठोर हैं, क्योंकि वे अपने झूठ बीजगणित द्वारा निर्धारित किए जाते हैं। जब टेन्सर बीजगणित पर सुधार किया जाता है, तो वे फ्लॉपी हो जाते हैं, स्वतंत्रता की अनंत डिग्री होती है ; उदाहरण के लिए वीरासोरो बीजगणित देखें।) | ||
== परिभाषाएँ == | == परिभाषाएँ == | ||
लाग्रंगियन क्षेत्र सिद्धांत में, [[सामान्यीकृत निर्देशांक]] के समारोह के रूप में लाग्रंगियन को लाग्रंगियन घनत्व द्वारा प्रतिस्थापित किया जाता है, प्रणाली में क्षेत्रों का कार्य और उनके डेरिवेटिव, और संभवतः अंतरिक्ष और समय खुद को निर्देशित करता है। क्षेत्रसिद्धांत में, स्वतंत्र चर टी को स्पेसटाइम में घटना से बदल दिया जाता है {{math|(''x'', ''y'', ''z'', ''t'')}} या इससे भी अधिक सामान्यतः कई गुना पर बिंदु एस द्वारा। | |||
प्रायः, | प्रायः, लाग्रंगियन घनत्व को केवल लाग्रंगियन के रूप में संदर्भित किया जाता है। | ||
=== अदिश क्षेत्र === | === अदिश क्षेत्र === | ||
अदिश क्षेत्र के लिए <math>\varphi</math>, | अदिश क्षेत्र के लिए <math>\varphi</math>, लाग्रंगियन घनत्व रूप लेगा:<ref group="nb">It is a standard abuse of notation to abbreviate all the derivatives and coordinates in the Lagrangian density as follows: | ||
<math display="block">\mathcal{L} (\varphi, \partial_\mu \varphi, x_\mu)</math> | <math display="block">\mathcal{L} (\varphi, \partial_\mu \varphi, x_\mu)</math> | ||
see [[four-gradient]]. The {{math|''μ''}} is an index which takes values 0 (for the time coordinate), and 1, 2, 3 (for the spatial coordinates), so strictly only one derivative or coordinate would be present. In general, all the spatial and time derivatives will appear in the Lagrangian density, for example in Cartesian coordinates, the Lagrangian density has the full form: | see [[four-gradient]]. The {{math|''μ''}} is an index which takes values 0 (for the time coordinate), and 1, 2, 3 (for the spatial coordinates), so strictly only one derivative or coordinate would be present. In general, all the spatial and time derivatives will appear in the Lagrangian density, for example in Cartesian coordinates, the Lagrangian density has the full form: | ||
Line 46: | Line 46: | ||
=== क्रिया === | === क्रिया === | ||
लाग्रंगियन के [[समय अभिन्न]] को क्रिया (भौतिकी) कहा जाता है जिसे निरूपित किया जाता है {{math|''S''}}. क्षेत्र सिद्धांत में लैग्रैंगियन के मध्य कभी-कभी अंतर किया जाता है {{math|''L''}}, जिसका समय अभिन्न क्रिया है | |||
<math display="block">\mathcal{S} = \int L \, \mathrm{d}t \,,</math> | <math display="block">\mathcal{S} = \int L \, \mathrm{d}t \,,</math> | ||
और | और लाग्रंगियन घनत्व <math>\mathcal{L}</math>, जो क्रिया प्राप्त करने के लिए सभी स्पेसटाइम को एकीकृत करता है: | ||
<math display="block">\mathcal{S} [\varphi] = \int \mathcal{L} (\varphi,\boldsymbol{\nabla}\varphi,\partial\varphi/\partial t , \mathbf{x},t) \, \mathrm{d}^3 \mathbf{x} \, \mathrm{d}t .</math> | <math display="block">\mathcal{S} [\varphi] = \int \mathcal{L} (\varphi,\boldsymbol{\nabla}\varphi,\partial\varphi/\partial t , \mathbf{x},t) \, \mathrm{d}^3 \mathbf{x} \, \mathrm{d}t .</math> | ||
लाग्रंगियन घनत्व का स्थानिक आयतन अभिन्न अंग लाग्रंगियन है; 3डी में, | |||
<math display="block">L = \int \mathcal{L} \, \mathrm{d}^3 \mathbf{x} \,.</math> | <math display="block">L = \int \mathcal{L} \, \mathrm{d}^3 \mathbf{x} \,.</math> | ||
क्रिया को प्रायः कार्य कार्यात्मक (गणित) के रूप में संदर्भित किया जाता है, जिसमें यह फ़ील्ड (और उनके डेरिवेटिव) का कार्य है। | क्रिया को प्रायः कार्य कार्यात्मक (गणित) के रूप में संदर्भित किया जाता है, जिसमें यह फ़ील्ड (और उनके डेरिवेटिव) का कार्य है। | ||
Line 57: | Line 57: | ||
गुरुत्वाकर्षण की उपस्थिति में या सामान्य घुमावदार निर्देशांक का उपयोग करते समय, लैग्रैंगियन घनत्व <math>\mathcal{L}</math> का कारक सम्मिलित होगा <math display="inline">\sqrt{g}</math>. यह सुनिश्चित करता है कि क्रिया सामान्य समन्वय परिवर्तनों के तहत अपरिवर्तनीय है। गणितीय साहित्य में, स्पेसटाइम को रीमैनियन मैनिफोल्ड के रूप में लिया जाता है <math>M</math> और अभिन्न तब मात्रा रूप बन जाता है | गुरुत्वाकर्षण की उपस्थिति में या सामान्य घुमावदार निर्देशांक का उपयोग करते समय, लैग्रैंगियन घनत्व <math>\mathcal{L}</math> का कारक सम्मिलित होगा <math display="inline">\sqrt{g}</math>. यह सुनिश्चित करता है कि क्रिया सामान्य समन्वय परिवर्तनों के तहत अपरिवर्तनीय है। गणितीय साहित्य में, स्पेसटाइम को रीमैनियन मैनिफोल्ड के रूप में लिया जाता है <math>M</math> और अभिन्न तब मात्रा रूप बन जाता है | ||
<math display="block">\mathcal{S}=\int_M \sqrt{|g|} dx^1\wedge\cdots\wedge dx^m \mathcal{L}</math> | <math display="block">\mathcal{S}=\int_M \sqrt{|g|} dx^1\wedge\cdots\wedge dx^m \mathcal{L}</math> | ||
यहां ही <math>\wedge</math> [[कील उत्पाद]] है और <math display="inline">\sqrt{|g|}</math> निर्धारक का वर्गमूल है <math>|g|</math> [[मीट्रिक टेंसर]] का <math>g</math> पर <math>M</math>. फ्लैट स्पेसटाइम (उदाहरण के लिए, [[मिन्कोव्स्की स्पेसटाइम]]) के लिए, यूनिट वॉल्यूम है, | यहां ही <math>\wedge</math> [[कील उत्पाद]] है और <math display="inline">\sqrt{|g|}</math> निर्धारक का वर्गमूल है <math>|g|</math> [[मीट्रिक टेंसर]] का <math>g</math> पर <math>M</math>. फ्लैट स्पेसटाइम (उदाहरण के लिए, [[मिन्कोव्स्की स्पेसटाइम]]) के लिए, यूनिट वॉल्यूम है, अर्थात । <math display="inline">\sqrt{|g|}=1</math> और इसलिए फ्लैट स्पेसटाइम में क्षेत्र सिद्धांत पर चर्चा करते समय इसे सामान्यतःछोड़ दिया जाता है। इसी तरह, कील-उत्पाद प्रतीकों का उपयोग बहुभिन्नरूपी कलन में आयतन की सामान्य अवधारणा पर कोई अतिरिक्त अंतर्दृष्टि प्रदान नहीं करता है, और इसलिए इन्हें इसी तरह हटा दिया जाता है। कुछ पुरानी पाठ्यपुस्तकें, उदाहरण के लिए, लांडौ और लाइफशिट्ज लिखती हैं <math display="inline">\sqrt{-g}</math> वॉल्यूम फॉर्म के लिए, चूंकि हस्ताक्षर (+−−−) या (−+++) के साथ मीट्रिक टेन्सर के लिए माइनस साइन उपयुक्त है (चूंकि निर्धारक नकारात्मक है, किसी भी मामले में)। सामान्य रीमैनियन मैनिफोल्ड्स पर क्षेत्र सिद्धांत पर चर्चा करते समय, वॉल्यूम फॉर्म सामान्यतः संक्षिप्त संकेतन में लिखा जाता है <math>*(1)</math> कहाँ <math>*</math> [[हॉज स्टार]] है। वह है, | ||
<math display="block">*(1) = \sqrt{|g|} dx^1\wedge\cdots\wedge dx^m</math> | <math display="block">*(1) = \sqrt{|g|} dx^1\wedge\cdots\wedge dx^m</math> | ||
इसलिए | इसलिए | ||
<math display="block">\mathcal{S} = \int_M *(1) \mathcal{L}</math> | <math display="block">\mathcal{S} = \int_M *(1) \mathcal{L}</math> | ||
बार-बार नहीं, उपरोक्त संकेतन को | बार-बार नहीं, उपरोक्त संकेतन को प्रत्येक प्रकार से अनावश्यक माना जाता है, और | ||
<math display="block">\mathcal{S} = \int_M \mathcal{L}</math> | <math display="block">\mathcal{S} = \int_M \mathcal{L}</math> | ||
प्रायः देखा जाता है। भ्रमित न हों: आयतन रूप उपरोक्त अभिन्न में निहित रूप से | प्रायः देखा जाता है। भ्रमित न हों: आयतन रूप उपरोक्त अभिन्न में निहित रूप से उपस्थित है, भले ही वह स्पष्ट रूप से न लिखा गया हो। | ||
===यूलर–लैग्रेंज समीकरण=== | ===यूलर–लैग्रेंज समीकरण=== | ||
Line 73: | Line 73: | ||
\left(\frac{\partial\mathcal{L}}{\partial(\partial_\mu\varphi)}\right) .</math> | \left(\frac{\partial\mathcal{L}}{\partial(\partial_\mu\varphi)}\right) .</math> | ||
== उदाहरण == | == उदाहरण == | ||
लैग्रैंजियन्स के संदर्भ में खेतों पर बड़ी संख्या में भौतिक प्रणालियां तैयार की गई हैं। नीचे | लैग्रैंजियन्स के संदर्भ में खेतों पर बड़ी संख्या में भौतिक प्रणालियां तैयार की गई हैं। नीचे क्षेत्र सिद्धांत पर भौतिकी की पाठ्यपुस्तकों में पाए जाने वाले कुछ सबसे सामान्य नमूने हैं। | ||
=== न्यूटोनियन गुरुत्वाकर्षण === | === न्यूटोनियन गुरुत्वाकर्षण === | ||
न्यूटोनियन गुरुत्वाकर्षण के लिए | न्यूटोनियन गुरुत्वाकर्षण के लिए लाग्रंगियन घनत्व है: | ||
<math display="block">\mathcal{L}(\mathbf{x},t)= - {1 \over 8 \pi G} (\nabla \Phi (\mathbf{x},t))^2 - \rho (\mathbf{x},t) \Phi (\mathbf{x},t) </math> | <math display="block">\mathcal{L}(\mathbf{x},t)= - {1 \over 8 \pi G} (\nabla \Phi (\mathbf{x},t))^2 - \rho (\mathbf{x},t) \Phi (\mathbf{x},t) </math> | ||
कहाँ {{math|Φ}} [[गुरुत्वाकर्षण क्षमता]] है, {{mvar|ρ}} द्रव्यमान घनत्व है, और {{math|''G''}एम में<sup>3</sup>·किग्रा<sup>−1</sup>·से<sup>−2</sup> गुरुत्वीय स्थिरांक है। घनत्व <math>\mathcal{L}</math> J·m की इकाइयाँ हैं<sup>−3</sup>. यहाँ परस्पर क्रिया शब्द में निरंतर द्रव्यमान घनत्व ρ किलोग्राम·मी में सम्मिलित है<sup>−3</sup>. यह आवश्यक है क्योंकि किसी क्षेत्र के लिए बिंदु स्रोत का उपयोग करने से गणितीय कठिनाइयाँ उत्पन्न होंगी। | कहाँ {{math|Φ}} [[गुरुत्वाकर्षण क्षमता]] है, {{mvar|ρ}} द्रव्यमान घनत्व है, और {{math|''G''}एम में<sup>3</sup>·किग्रा<sup>−1</sup>·से<sup>−2</sup> गुरुत्वीय स्थिरांक है। घनत्व <math>\mathcal{L}</math> J·m की इकाइयाँ हैं<sup>−3</sup>. यहाँ परस्पर क्रिया शब्द में निरंतर द्रव्यमान घनत्व ρ किलोग्राम·मी में सम्मिलित है<sup>−3</sup>. यह आवश्यक है क्योंकि किसी क्षेत्र के लिए बिंदु स्रोत का उपयोग करने से गणितीय कठिनाइयाँ उत्पन्न होंगी। | ||
इस | इस लाग्रंगियन को इस रूप में लिखा जा सकता है <math>\mathcal{L} = T - V</math>, साथ <math>T = -(\nabla \Phi)^2 / 8\pi G</math> गतिज शब्द प्रदान करना, और अंतःक्रिया <math>V=\rho \Phi</math> संभावित शब्द। समय के साथ परिवर्तनों से निपटने के लिए इसे कैसे संशोधित किया जा सकता है, इसके लिए नॉर्डस्ट्रॉम के गुरुत्वाकर्षण के सिद्धांत को भी देखें। स्केलर क्षेत्र सिद्धांत के अगले उदाहरण में इस फॉर्म को दोहराया गया है। | ||
के संबंध में अभिन्न की भिन्नता {{math|Φ}} है: | के संबंध में अभिन्न की भिन्नता {{math|Φ}} है: | ||
Line 92: | Line 92: | ||
=== अदिश क्षेत्र सिद्धांत === | === अदिश क्षेत्र सिद्धांत === | ||
{{main| | {{main|अदिश क्षेत्र सिद्धांत}} | ||
क्षमता में गतिमान अदिश क्षेत्र के लिए | क्षमता में गतिमान अदिश क्षेत्र के लिए लाग्रंगियन <math>V(\phi)</math> रूप में लिखा जा सकता है | ||
<math display="block"> | <math display="block"> | ||
\mathcal{L} = \frac{1}{2}\partial^\mu\phi\partial_\mu\phi - V(\phi) | \mathcal{L} = \frac{1}{2}\partial^\mu\phi\partial_\mu\phi - V(\phi) | ||
Line 100: | Line 100: | ||
\frac{1}{2}m^2\phi^2 - \sum_{n=3}^\infty \frac{1}{n!} g_n\phi^n | \frac{1}{2}m^2\phi^2 - \sum_{n=3}^\infty \frac{1}{n!} g_n\phi^n | ||
</math> | </math> | ||
यह कोई दुर्घटना नहीं है कि स्केलर सिद्धांत अंडरग्रेजुएट टेक्स्टबुक | यह कोई दुर्घटना नहीं है कि स्केलर सिद्धांत अंडरग्रेजुएट टेक्स्टबुक लाग्रंगियन जैसा दिखता है <math>L=T-V</math> मुक्त बिंदु कण के गतिज शब्द के रूप में लिखा गया है <math>T=mv^2/2</math>. स्केलर सिद्धांत क्षमता में गतिमान कण का क्षेत्र-सिद्धांत सामान्यीकरण है। जब <math>V(\phi)</math> [[मैक्सिकन टोपी क्षमता]] है, परिणामी क्षेत्रों को [[हिग्स फील्ड|हिग्स]] क्षेत्रकहा जाता है। | ||
===सिग्मा मॉडल Lagrangian=== | ===सिग्मा मॉडल Lagrangian=== | ||
{{main| | {{main|सिग्मा मॉडल}} | ||
[[सिग्मा मॉडल]] स्केलर बिंदु कण की गति का वर्णन करता है जो रिमेंनियन मैनिफोल्ड पर जाने के लिए विवश है, जैसे कि वृत्त या गोला। यह स्केलर और वेक्टर फ़ील्ड्स के मामले को सामान्यीकृत करता है, अर्थात, फ्लैट मैनिफोल्ड पर जाने के लिए विवश फ़ील्ड्स। | [[सिग्मा मॉडल]] स्केलर बिंदु कण की गति का वर्णन करता है जो रिमेंनियन मैनिफोल्ड पर जाने के लिए विवश है, जैसे कि वृत्त या गोला। यह स्केलर और वेक्टर फ़ील्ड्स के मामले को सामान्यीकृत करता है, अर्थात, फ्लैट मैनिफोल्ड पर जाने के लिए विवश फ़ील्ड्स। लाग्रंगियन सामान्यतःतीन समकक्ष रूपों में से में लिखा जाता है: | ||
<math display="block">\mathcal{L} = \frac{1}{2} \mathrm{d}\phi \wedge {*\mathrm{d}\phi}</math> | <math display="block">\mathcal{L} = \frac{1}{2} \mathrm{d}\phi \wedge {*\mathrm{d}\phi}</math> | ||
जहां <math>\mathrm{d}</math> [[पुशफॉरवर्ड (अंतर)]] है। समानार्थी अभिव्यक्ति है | जहां <math>\mathrm{d}</math> [[पुशफॉरवर्ड (अंतर)]] है। समानार्थी अभिव्यक्ति है | ||
<math display="block">\mathcal{L} = \frac{1}{2}\sum_{i=1}^n \sum_{j=1}^n g_{ij}(\phi) \; \partial^\mu \phi_i \partial_\mu \phi_j</math> | <math display="block">\mathcal{L} = \frac{1}{2}\sum_{i=1}^n \sum_{j=1}^n g_{ij}(\phi) \; \partial^\mu \phi_i \partial_\mu \phi_j</math> | ||
साथ <math>g_{ij}</math> क्षेत्र के कई गुना पर [[रिमेंनियन मीट्रिक]]; | साथ <math>g_{ij}</math> क्षेत्र के कई गुना पर [[रिमेंनियन मीट्रिक]]; अर्थात खेतों <math>\phi_i</math> कई गुना के समन्वय चार्ट पर केवल [[स्थानीय निर्देशांक]] हैं। तीसरा सामान्य रूप है | ||
<math display="block">\mathcal{L}=\frac{1}{2}\mathrm{tr}\left(L_\mu L^\mu\right)</math> | <math display="block">\mathcal{L}=\frac{1}{2}\mathrm{tr}\left(L_\mu L^\mu\right)</math> | ||
साथ | साथ | ||
<math display="block">L_\mu=U^{-1}\partial_\mu U </math> | <math display="block">L_\mu=U^{-1}\partial_\mu U </math> | ||
और <math>U \in \mathrm{SU}(N)</math>, झूठ समूह एसयू (एन)। इस समूह को किसी भी लाइ समूह द्वारा प्रतिस्थापित किया जा सकता है, या अधिक सामान्य रूप से, [[सममित स्थान]] द्वारा। निशान छुपाने में बस हत्या का रूप है; [[ मारक रूप ]] कई गुना क्षेत्र पर द्विघात रूप प्रदान करता है, लैग्रैंगियन तब इस फॉर्म का पुलबैक है। वैकल्पिक रूप से, | और <math>U \in \mathrm{SU}(N)</math>, झूठ समूह एसयू (एन)। इस समूह को किसी भी लाइ समूह द्वारा प्रतिस्थापित किया जा सकता है, या अधिक सामान्य रूप से, [[सममित स्थान]] द्वारा। निशान छुपाने में बस हत्या का रूप है; [[ मारक रूप ]] कई गुना क्षेत्र पर द्विघात रूप प्रदान करता है, लैग्रैंगियन तब इस फॉर्म का पुलबैक है। वैकल्पिक रूप से, लाग्रंगियन को मौरर-कार्टन फॉर्म के आधार स्पेसटाइम के पुलबैक के रूप में भी देखा जा सकता है। | ||
सामान्यतः, सिग्मा मॉडल सामयिक सॉलिटॉन समाधान प्रदर्शित करते हैं। इनमें से सबसे प्रसिद्ध और अच्छी तरह से अध्ययन किया गया [[स्किर्मियन]] है, जो समय की कसौटी पर खरा उतरने वाले [[न्यूक्लियॉन]] के मॉडल के रूप में कार्य करता है। | सामान्यतः, सिग्मा मॉडल सामयिक सॉलिटॉन समाधान प्रदर्शित करते हैं। इनमें से सबसे प्रसिद्ध और अच्छी तरह से अध्ययन किया गया [[स्किर्मियन]] है, जो समय की कसौटी पर खरा उतरने वाले [[न्यूक्लियॉन]] के मॉडल के रूप में कार्य करता है। | ||
=== विशेष सापेक्षता में विद्युत चुंबकत्व === | === विशेष सापेक्षता में विद्युत चुंबकत्व === | ||
{{main| | {{main|शास्त्रीय विद्युत चुंबकत्व का सहपरिवर्ती सूत्रीकरण}} | ||
बिंदु कण, आवेशित कण पर विचार करें, जो [[विद्युत चुम्बकीय]] क्षेत्र के साथ परस्पर क्रिया करता है। बातचीत की शर्तें | बिंदु कण, आवेशित कण पर विचार करें, जो [[विद्युत चुम्बकीय]] क्षेत्र के साथ परस्पर क्रिया करता है। बातचीत की शर्तें | ||
<math display="block">- q \phi (\mathbf{x}(t),t) + q \dot{\mathbf{x}}(t) \cdot \mathbf{A} (\mathbf{x}(t),t)</math> | <math display="block">- q \phi (\mathbf{x}(t),t) + q \dot{\mathbf{x}}(t) \cdot \mathbf{A} (\mathbf{x}(t),t)</math> | ||
A·s·m में सतत चार्ज घनत्व ρ वाले शब्दों द्वारा प्रतिस्थापित किया जाता है<sup>-3</sup> और करंट डेंसिटी <math>\mathbf{j}</math> में हूँ<sup>-2</सुप>. विद्युत चुम्बकीय क्षेत्र के लिए परिणामी | A·s·m में सतत चार्ज घनत्व ρ वाले शब्दों द्वारा प्रतिस्थापित किया जाता है<sup>-3</sup> और करंट डेंसिटी <math>\mathbf{j}</math> में हूँ<sup>-2</सुप>. विद्युत चुम्बकीय क्षेत्र के लिए परिणामी लाग्रंगियन घनत्व है: | ||
<math display="block">\mathcal{L}(\mathbf{x},t) = - \rho (\mathbf{x},t) \phi (\mathbf{x},t) + \mathbf{j} (\mathbf{x},t) \cdot \mathbf{A} (\mathbf{x},t) + {\epsilon_0 \over 2} {E}^2 (\mathbf{x},t) - {1 \over {2 \mu_0}} {B}^2 (\mathbf{x},t) .</math> | <math display="block">\mathcal{L}(\mathbf{x},t) = - \rho (\mathbf{x},t) \phi (\mathbf{x},t) + \mathbf{j} (\mathbf{x},t) \cdot \mathbf{A} (\mathbf{x},t) + {\epsilon_0 \over 2} {E}^2 (\mathbf{x},t) - {1 \over {2 \mu_0}} {B}^2 (\mathbf{x},t) .</math> | ||
इसे लेकर अलग-अलग {{math|ϕ}}, हम पाते हैं | इसे लेकर अलग-अलग {{math|ϕ}}, हम पाते हैं | ||
Line 151: | Line 151: | ||
[[विभेदक रूप]]ों का उपयोग करते हुए, (छद्म-) रीमैनियन मैनिफोल्ड पर वैक्यूम में इलेक्ट्रोमैग्नेटिक एक्शन एस <math>\mathcal M</math> लिखा जा सकता है (प्राकृतिक इकाइयों का उपयोग करके, {{math|1=''c'' = ''ε''<sub>0</sub> = 1}}) जैसा | [[विभेदक रूप]]ों का उपयोग करते हुए, (छद्म-) रीमैनियन मैनिफोल्ड पर वैक्यूम में इलेक्ट्रोमैग्नेटिक एक्शन एस <math>\mathcal M</math> लिखा जा सकता है (प्राकृतिक इकाइयों का उपयोग करके, {{math|1=''c'' = ''ε''<sub>0</sub> = 1}}) जैसा | ||
<math display="block">\mathcal S[\mathbf{A}] = -\int_{\mathcal{M}} \left(\frac{1}{2}\,\mathbf{F} \wedge \ast\mathbf{F} - \mathbf{A} \wedge\ast \mathbf{J}\right) .</math> | <math display="block">\mathcal S[\mathbf{A}] = -\int_{\mathcal{M}} \left(\frac{1}{2}\,\mathbf{F} \wedge \ast\mathbf{F} - \mathbf{A} \wedge\ast \mathbf{J}\right) .</math> | ||
यहाँ, A विद्युत चुम्बकीय क्षमता 1-रूप के लिए है, J वर्तमान 1-रूप है, {{math|'''F'''}} | यहाँ, A विद्युत चुम्बकीय क्षमता 1-रूप के लिए है, J वर्तमान 1-रूप है, {{math|'''F'''}} क्षेत्रस्ट्रेंथ 2-फॉर्म है और स्टार हॉज स्टार ऑपरेटर को दर्शाता है। यह ठीक वैसा ही लाग्रंगियन है जैसा ऊपर के खंड में है, सिवाय इसके कि यहाँ उपचार समन्वय-मुक्त है; इंटीग्रैंड को आधार में विस्तारित करने से समान, लंबी अभिव्यक्ति प्राप्त होती है। ध्यान दें कि रूपों के साथ, अतिरिक्त एकीकरण उपाय आवश्यक नहीं है क्योंकि प्रपत्रों में अंतर्निहित अंतरों का समन्वय होता है। | ||
<math display="block">\mathrm{d} {\ast}\mathbf{F} = {\ast}\mathbf{J} .</math> | <math display="block">\mathrm{d} {\ast}\mathbf{F} = {\ast}\mathbf{J} .</math> | ||
ये विद्युत चुम्बकीय क्षमता के लिए मैक्सवेल के समीकरण हैं। स्थानापन्न {{math|1='''F''' = d'''A'''}} तुरंत खेतों के लिए समीकरण देता है, | ये विद्युत चुम्बकीय क्षमता के लिए मैक्सवेल के समीकरण हैं। स्थानापन्न {{math|1='''F''' = d'''A'''}} तुरंत खेतों के लिए समीकरण देता है, | ||
Line 157: | Line 157: | ||
क्योंकि {{math|'''F'''}} [[सटीक रूप]] है। | क्योंकि {{math|'''F'''}} [[सटीक रूप]] है। | ||
A फ़ील्ड को [[U(1)]]-फाइबर बंडल पर [[affine कनेक्शन]] के रूप में समझा जा सकता है। अर्थात्, क्लासिकल विद्युतगतिकी, इसके सभी प्रभाव और समीकरण, मिन्कोवस्की स्पेसटाइम पर वृत्त बंडल के रूप में '' | A फ़ील्ड को [[U(1)]]-फाइबर बंडल पर [[affine कनेक्शन]] के रूप में समझा जा सकता है। अर्थात्, क्लासिकल विद्युतगतिकी, इसके सभी प्रभाव और समीकरण, मिन्कोवस्की स्पेसटाइम पर वृत्त बंडल के रूप में ''प्रत्येक प्रकार से'' समझे जा सकते हैं। | ||
यांग-मिल्स समीकरणों को ठीक उसी रूप में लिखा जा सकता है जैसा ऊपर दिया गया है, विद्युत चुंबकत्व के लाई समूह यू (1) को मनमाने ढंग से लाई समूह द्वारा प्रतिस्थापित करके। [[मानक मॉडल]] में, इसे पारंपरिक रूप से लिया जाता है <math>\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)</math> हालांकि सामान्य मामला सामान्य हित का है। सभी मामलों में, किसी भी मात्रा का प्रदर्शन करने की कोई आवश्यकता नहीं है। यद्यपि यांग-मिल्स समीकरण ऐतिहासिक रूप से क्वांटम क्षेत्र सिद्धांत में निहित हैं, उपरोक्त समीकरण विशुद्ध रूप से शास्त्रीय हैं।<ref name="Bleecker"/><ref name= "jost"/> | यांग-मिल्स समीकरणों को ठीक उसी रूप में लिखा जा सकता है जैसा ऊपर दिया गया है, विद्युत चुंबकत्व के लाई समूह यू (1) को मनमाने ढंग से लाई समूह द्वारा प्रतिस्थापित करके। [[मानक मॉडल]] में, इसे पारंपरिक रूप से लिया जाता है <math>\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)</math> हालांकि सामान्य मामला सामान्य हित का है। सभी मामलों में, किसी भी मात्रा का प्रदर्शन करने की कोई आवश्यकता नहीं है। यद्यपि यांग-मिल्स समीकरण ऐतिहासिक रूप से क्वांटम क्षेत्र सिद्धांत में निहित हैं, उपरोक्त समीकरण विशुद्ध रूप से शास्त्रीय हैं।<ref name="Bleecker"/><ref name= "jost"/> | ||
Line 168: | Line 168: | ||
=== गिंज़बर्ग-लैंडौ लग्रांगियन === | === गिंज़बर्ग-लैंडौ लग्रांगियन === | ||
{{main| | {{main|गिन्ज़बर्ग-लैंडौ सिद्धांत}} | ||
गिन्ज़बर्ग-लैंडौ सिद्धांत के लिए लैग्रैन्जियन घनत्व स्केलर क्षेत्र सिद्धांत के लिए लैग्रैंगियन को यांग-मिल्स क्रिया के लिए लैग्रैन्जियन के साथ जोड़ता है। इसे इस प्रकार लिखा जा सकता है:<ref>{{cite book |first=Jürgen |last=Jost |author-link=Jürgen Jost |title=रीमानियन ज्यामिति और ज्यामितीय विश्लेषण|url=https://archive.org/details/riemanniangeomet00jost_070 |url-access=limited |year=2002 |publisher=Springer-Verlag |isbn=3-540-42627-2 |edition=Third |pages=[https://archive.org/details/riemanniangeomet00jost_070/page/n377 373]–381 |chapter=The Ginzburg–Landau Functional }}</ref> | गिन्ज़बर्ग-लैंडौ सिद्धांत के लिए लैग्रैन्जियन घनत्व स्केलर क्षेत्र सिद्धांत के लिए लैग्रैंगियन को यांग-मिल्स क्रिया के लिए लैग्रैन्जियन के साथ जोड़ता है। इसे इस प्रकार लिखा जा सकता है:<ref>{{cite book |first=Jürgen |last=Jost |author-link=Jürgen Jost |title=रीमानियन ज्यामिति और ज्यामितीय विश्लेषण|url=https://archive.org/details/riemanniangeomet00jost_070 |url-access=limited |year=2002 |publisher=Springer-Verlag |isbn=3-540-42627-2 |edition=Third |pages=[https://archive.org/details/riemanniangeomet00jost_070/page/n377 373]–381 |chapter=The Ginzburg–Landau Functional }}</ref> | ||
<math display="block">\mathcal{L}(\psi, A)=\vert F \vert^2 + \vert D \psi\vert^2 + \frac{1}{4} \left( \sigma-\vert\psi\vert^2\right)^2</math> | <math display="block">\mathcal{L}(\psi, A)=\vert F \vert^2 + \vert D \psi\vert^2 + \frac{1}{4} \left( \sigma-\vert\psi\vert^2\right)^2</math> | ||
कहाँ <math>\psi</math> फाइबर के साथ [[वेक्टर बंडल]] का [[खंड (फाइबर बंडल)]] है <math>\Complex^n</math>. <math>\psi</math> h> [[सुपरकंडक्टर]] में ऑर्डर पैरामीटर से मेल खाता है; समान रूप से, यह हिग्स | कहाँ <math>\psi</math> फाइबर के साथ [[वेक्टर बंडल]] का [[खंड (फाइबर बंडल)]] है <math>\Complex^n</math>. <math>\psi</math> h> [[सुपरकंडक्टर]] में ऑर्डर पैरामीटर से मेल खाता है; समान रूप से, यह हिग्स क्षेत्रसे मेल खाता है, यह ध्यान देने के बाद कि दूसरा शब्द प्रसिद्ध मैक्सिकन हैट पोटेंशिअल है सोम्ब्रेरो टोपी क्षमता। क्षेत्र<math>A</math> (गैर-एबेलियन) गेज क्षेत्रहै, अर्थात यांग-मिल्स क्षेत्रऔर <math>F</math> इसकी क्षेत्र-शक्ति है। गिन्ज़बर्ग-लैंडौ कार्यात्मक के लिए यूलर-लग्रेंज समीकरण यांग-मिल्स समीकरण हैं | ||
<math display="block">D {\star} D\psi = \frac{1}{2}\left(\sigma - \vert\psi\vert^2\right)\psi</math> | <math display="block">D {\star} D\psi = \frac{1}{2}\left(\sigma - \vert\psi\vert^2\right)\psi</math> | ||
और | और | ||
<math display="block">D {\star} F=-\operatorname{Re}\langle D\psi, \psi\rangle</math> | <math display="block">D {\star} F=-\operatorname{Re}\langle D\psi, \psi\rangle</math> | ||
कहाँ <math>{\star}</math> [[हॉज स्टार ऑपरेटर]] है, | कहाँ <math>{\star}</math> [[हॉज स्टार ऑपरेटर]] है, अर्थात प्रत्येक प्रकार से एंटीसिमेट्रिक टेंसर। ये समीकरण यांग-मिल्स-हिग्स समीकरणों से निकटता से संबंधित हैं। और निकट से संबंधित लाग्रंगियन Seiberg-Witten सिद्धांत में पाया जाता है। | ||
=== डिराक Lagrangian === | === डिराक Lagrangian === | ||
{{main| | {{main|डायराक समीकरण}} | ||
डायराक क्षेत्र के लिए लैग्रैन्जियन घनत्व है:<ref>Itzykson-Zuber, eq. 3-152</ref> | डायराक क्षेत्र के लिए लैग्रैन्जियन घनत्व है:<ref>Itzykson-Zuber, eq. 3-152</ref> | ||
<math display="block">\mathcal{L} = \bar \psi ( i \hbar c {\partial}\!\!\!/\ - mc^2) \psi</math> | <math display="block">\mathcal{L} = \bar \psi ( i \hbar c {\partial}\!\!\!/\ - mc^2) \psi</math> | ||
Line 184: | Line 184: | ||
=== क्वांटम इलेक्ट्रोडायनामिक लैग्रेंजियन === | === क्वांटम इलेक्ट्रोडायनामिक लैग्रेंजियन === | ||
{{main| | {{main|क्वांटम इलेक्ट्रोडायनामिक्स}} | ||
[[क्वांटम इलेक्ट्रोडायनामिक्स]] के लिए लैग्रैन्जियन घनत्व डायराक क्षेत्र के लिए लैग्रैन्जियन को गेज-इनवेरिएंट तरीके से इलेक्ट्रोडायनामिक्स के लिए लैग्रैन्जियन के साथ जोड़ता है। यह है: | [[क्वांटम इलेक्ट्रोडायनामिक्स]] के लिए लैग्रैन्जियन घनत्व डायराक क्षेत्र के लिए लैग्रैन्जियन को गेज-इनवेरिएंट तरीके से इलेक्ट्रोडायनामिक्स के लिए लैग्रैन्जियन के साथ जोड़ता है। यह है: | ||
<math display="block">\mathcal{L}_{\mathrm{QED}} = \bar \psi (i\hbar c {D}\!\!\!\!/\ - mc^2) \psi - {1 \over 4\mu_0} F_{\mu \nu} F^{\mu \nu}</math> | <math display="block">\mathcal{L}_{\mathrm{QED}} = \bar \psi (i\hbar c {D}\!\!\!\!/\ - mc^2) \psi - {1 \over 4\mu_0} F_{\mu \nu} F^{\mu \nu}</math> | ||
Line 191: | Line 191: | ||
===क्वांटम क्रोमोडायनामिक लैग्रेंजियन === | ===क्वांटम क्रोमोडायनामिक लैग्रेंजियन === | ||
{{main| | {{main|क्वांटम क्रोमोडायनामिक्स}} | ||
[[क्वांटम क्रोमोडायनामिक्स]] के लिए लैग्रैजियन घनत्व या से अधिक बड़े पैमाने पर डायराक स्पिनरों के लिए लैग्रैन्जियन को यांग-मिल्स एक्शन के लिए लैग्रैन्जियन के साथ जोड़ता है, जो गेज क्षेत्र की गतिशीलता का वर्णन करता है; संयुक्त | [[क्वांटम क्रोमोडायनामिक्स]] के लिए लैग्रैजियन घनत्व या से अधिक बड़े पैमाने पर डायराक स्पिनरों के लिए लैग्रैन्जियन को यांग-मिल्स एक्शन के लिए लैग्रैन्जियन के साथ जोड़ता है, जो गेज क्षेत्र की गतिशीलता का वर्णन करता है; संयुक्त लाग्रंगियन गेज अपरिवर्तनीय है। इसे इस प्रकार लिखा जा सकता है:<ref>Claude Itykson and Jean-Bernard Zuber, (1980) "Quantum Field Theory"</ref> | ||
<math display="block">\mathcal{L}_{\mathrm{QCD}} = \sum_n \bar\psi_n \left( i\hbar c{D}\!\!\!\!/\ - m_n c^2 \right) \psi_n - {1\over 4} G^\alpha {}_{\mu\nu} G_\alpha {}^{\mu\nu}</math> | <math display="block">\mathcal{L}_{\mathrm{QCD}} = \sum_n \bar\psi_n \left( i\hbar c{D}\!\!\!\!/\ - m_n c^2 \right) \psi_n - {1\over 4} G^\alpha {}_{\mu\nu} G_\alpha {}^{\mu\nu}</math> | ||
जहाँ D, QCD गेज सहपरिवर्ती व्युत्पन्न#क्वांटम क्रोमोडायनामिक्स है, n = 1, 2, ...6 [[क्वार्क]] प्रकार की गणना करता है, और <math>G^\alpha {}_{\mu\nu}\!</math> [[ग्लूऑन फील्ड स्ट्रेंथ टेंसर]] है। उपरोक्त इलेक्ट्रोडायनामिक्स मामले के लिए, उपरोक्त शब्द क्वांटम की उपस्थिति केवल इसके ऐतिहासिक विकास को स्वीकार करती है। | जहाँ D, QCD गेज सहपरिवर्ती व्युत्पन्न#क्वांटम क्रोमोडायनामिक्स है, n = 1, 2, ...6 [[क्वार्क]] प्रकार की गणना करता है, और <math>G^\alpha {}_{\mu\nu}\!</math> [[ग्लूऑन फील्ड स्ट्रेंथ टेंसर|ग्लूऑन क्षेत्रस्ट्रेंथ टेंसर]] है। उपरोक्त इलेक्ट्रोडायनामिक्स मामले के लिए, उपरोक्त शब्द क्वांटम की उपस्थिति केवल इसके ऐतिहासिक विकास को स्वीकार करती है। लाग्रंगियन और इसके गेज इनवेरियन को प्रत्येक प्रकार शास्त्रीय फैशन में तैयार और इलाज किया जा सकता है।<ref name="Bleecker"/><ref name="jost"/> | ||
=== आइंस्टीन गुरुत्वाकर्षण === | === आइंस्टीन गुरुत्वाकर्षण === | ||
{{further| | {{further|आइंस्टीन-हिल्बर्ट क्रिया}} | ||
पदार्थ क्षेत्रों की उपस्थिति में सामान्य सापेक्षता के लिए लैग्रेंज घनत्व है | पदार्थ क्षेत्रों की उपस्थिति में सामान्य सापेक्षता के लिए लैग्रेंज घनत्व है | ||
<math display="block">\mathcal{L}_\text{GR} = \mathcal{L}_\text{EH}+\mathcal{L}_\text{matter} = \frac{c^4}{16\pi G} \left(R-2\Lambda\right) + \mathcal{L}_\text{matter}</math> | <math display="block">\mathcal{L}_\text{GR} = \mathcal{L}_\text{EH}+\mathcal{L}_\text{matter} = \frac{c^4}{16\pi G} \left(R-2\Lambda\right) + \mathcal{L}_\text{matter}</math> | ||
कहाँ <math>\Lambda</math> [[ब्रह्माण्ड संबंधी स्थिरांक]] है, <math>R</math> [[वक्रता अदिश]] राशि है, जो मीट्रिक टेन्सर के साथ अनुबंधित [[रिक्की टेंसर]] है, और रिक्की टेन्सर [[क्रोनकर डेल्टा]] के साथ अनुबंधित [[रीमैन टेंसर]] है। का अभिन्न अंग <math> \mathcal{L}_\text{EH}</math> आइंस्टीन-हिल्बर्ट क्रिया के रूप में जाना जाता है। रीमैन टेंसर [[ज्वारीय बल]] टेंसर है, और क्रिस्टोफेल प्रतीकों और क्रिस्टोफेल प्रतीकों के डेरिवेटिव्स से बना है, जो स्पेसटाइम पर [[मीट्रिक कनेक्शन]] को परिभाषित करता है। गुरुत्वाकर्षण क्षेत्र को ऐतिहासिक रूप से मीट्रिक टेन्सर के रूप में वर्णित किया गया था; आधुनिक दृष्टिकोण यह है कि संबंध अधिक मौलिक है। यह इस समझ के कारण है कि कोई गैर-शून्य मरोड़ वाले टेंसर के साथ कनेक्शन लिख सकता है। ये ज्यामिति में सा बदलाव किए बिना मीट्रिक को बदल देते हैं। जहां तक गुरुत्वाकर्षण की वास्तविक दिशा का सवाल है (उदाहरण के लिए पृथ्वी की सतह पर, यह नीचे की ओर इशारा करता है), यह रीमैन टेन्सर से आता है: यह वह चीज है जो गुरुत्वाकर्षण बल क्षेत्र का वर्णन करती है जो गतिमान पिंड महसूस करते हैं और प्रतिक्रिया करते हैं। (यह अंतिम कथन योग्य होना चाहिए: कोई बल क्षेत्र नहीं है; गतिमान पिंड कनेक्शन द्वारा वर्णित कई गुना पर [[ geodesics ]] का अनुसरण करते हैं। वे [[समानांतर परिवहन]] में चलते हैं।) | कहाँ <math>\Lambda</math> [[ब्रह्माण्ड संबंधी स्थिरांक]] है, <math>R</math> [[वक्रता अदिश]] राशि है, जो मीट्रिक टेन्सर के साथ अनुबंधित [[रिक्की टेंसर]] है, और रिक्की टेन्सर [[क्रोनकर डेल्टा]] के साथ अनुबंधित [[रीमैन टेंसर]] है। का अभिन्न अंग <math> \mathcal{L}_\text{EH}</math> आइंस्टीन-हिल्बर्ट क्रिया के रूप में जाना जाता है। रीमैन टेंसर [[ज्वारीय बल]] टेंसर है, और क्रिस्टोफेल प्रतीकों और क्रिस्टोफेल प्रतीकों के डेरिवेटिव्स से बना है, जो स्पेसटाइम पर [[मीट्रिक कनेक्शन]] को परिभाषित करता है। गुरुत्वाकर्षण क्षेत्र को ऐतिहासिक रूप से मीट्रिक टेन्सर के रूप में वर्णित किया गया था; आधुनिक दृष्टिकोण यह है कि संबंध अधिक मौलिक है। यह इस समझ के कारण है कि कोई गैर-शून्य मरोड़ वाले टेंसर के साथ कनेक्शन लिख सकता है। ये ज्यामिति में सा बदलाव किए बिना मीट्रिक को बदल देते हैं। जहां तक गुरुत्वाकर्षण की वास्तविक दिशा का सवाल है (उदाहरण के लिए पृथ्वी की सतह पर, यह नीचे की ओर इशारा करता है), यह रीमैन टेन्सर से आता है: यह वह चीज है जो गुरुत्वाकर्षण बल क्षेत्र का वर्णन करती है जो गतिमान पिंड महसूस करते हैं और प्रतिक्रिया करते हैं। (यह अंतिम कथन योग्य होना चाहिए: कोई बल क्षेत्र नहीं है; गतिमान पिंड कनेक्शन द्वारा वर्णित कई गुना पर [[ geodesics ]] का अनुसरण करते हैं। वे [[समानांतर परिवहन]] में चलते हैं।) | ||
सामान्य सापेक्षता के लिए | सामान्य सापेक्षता के लिए लाग्रंगियन को ऐसे रूप में भी लिखा जा सकता है जो इसे स्पष्ट रूप से यांग-मिल्स समीकरणों के समान बनाता है। इसे आइंस्टीन-यांग-मिल्स क्रिया सिद्धांत कहा जाता है। यह इस बात पर ध्यान देकर किया जाता है कि अधिकांश डिफरेंशियल ज्योमेट्री बंडलों पर एफ़िन कनेक्शन और मनमाने ढंग से लेट ग्रुप के साथ ठीक काम करती है। फिर, उस समरूपता समूह के लिए SO(3,1) में प्लगिंग, अर्थात [[फ्रेम क्षेत्र]] के लिए, उपरोक्त समीकरण प्राप्त करता है।<ref name="Bleecker"/><ref name="jost"/> | ||
इस | इस लाग्रंगियन को Euler-Lagrange समीकरण में प्रतिस्थापित करना और मेट्रिक टेन्सर लेना <math> g_{\mu\nu}</math> क्षेत्र के रूप में, हम आइंस्टीन क्षेत्र समीकरण प्राप्त करते हैं | ||
<math display="block"> R_{\mu\nu}-\frac{1}{2}Rg_{\mu\nu}+g_{\mu\nu}\Lambda=\frac{8\pi G}{c^4}T_{\mu\nu}\,. </math> | <math display="block"> R_{\mu\nu}-\frac{1}{2}Rg_{\mu\nu}+g_{\mu\nu}\Lambda=\frac{8\pi G}{c^4}T_{\mu\nu}\,. </math> | ||
<math>T_{\mu\nu}</math> ऊर्जा संवेग टेन्सर है और इसके द्वारा परिभाषित किया गया है | <math>T_{\mu\nu}</math> ऊर्जा संवेग टेन्सर है और इसके द्वारा परिभाषित किया गया है | ||
Line 212: | Line 212: | ||
=== सामान्य सापेक्षता में विद्युत चुंबकत्व === | === सामान्य सापेक्षता में विद्युत चुंबकत्व === | ||
{{main| | {{main|वक्र स्पेसटाइम में मैक्सवेल के समीकरण}} | ||
सामान्य सापेक्षता में विद्युत चुंबकत्व के लैग्रेंज घनत्व में ऊपर से आइंस्टीन-हिल्बर्ट क्रिया भी सम्मिलित है। शुद्ध विद्युत चुम्बकीय | |||
सामान्य सापेक्षता में विद्युत चुंबकत्व के लैग्रेंज घनत्व में ऊपर से आइंस्टीन-हिल्बर्ट क्रिया भी सम्मिलित है। शुद्ध विद्युत चुम्बकीय लाग्रंगियन वास्तव में लाग्रंगियन मामला है <math> \mathcal{L}_\text{matter}</math>. लाग्रंगियन है | |||
<math display="block">\begin{align} | <math display="block">\begin{align} | ||
\mathcal{L}(x) &= j^\mu (x) A_\mu (x) - {1 \over 4\mu_0} F_{\mu \nu}(x) F_{\rho\sigma}(x) g^{\mu\rho}(x) g^{\nu\sigma}(x) + \frac{c^4}{16\pi G}R(x)\\ | \mathcal{L}(x) &= j^\mu (x) A_\mu (x) - {1 \over 4\mu_0} F_{\mu \nu}(x) F_{\rho\sigma}(x) g^{\mu\rho}(x) g^{\nu\sigma}(x) + \frac{c^4}{16\pi G}R(x)\\ | ||
&= \mathcal{L}_\text{Maxwell} + \mathcal{L}_\text{Einstein–Hilbert}. | &= \mathcal{L}_\text{Maxwell} + \mathcal{L}_\text{Einstein–Hilbert}. | ||
\end{align}</math> | \end{align}</math> | ||
यह | यह लाग्रंगियन उपरोक्त फ्लैट लाग्रंगियन में Minkowski मीट्रिक को अधिक सामान्य (संभवतः घुमावदार) मीट्रिक के साथ बदलकर प्राप्त किया जाता है <math> g_{\mu\nu}(x)</math>. हम इस लाग्रंगियन का उपयोग करके EM फ़ील्ड की उपस्थिति में आइंस्टीन क्षेत्रसमीकरण उत्पन्न कर सकते हैं। ऊर्जा-संवेग टेंसर है | ||
<math display="block"> T^{\mu\nu}(x) = \frac{2}{\sqrt{-g(x)}}\frac{\delta}{\delta g_{\mu\nu}(x)}\mathcal{S}_\text{Maxwell}=\frac{1}{\mu_{0}}\left(F^{\mu}_{\text{ }\lambda}(x)F^{\nu\lambda}(x)-\frac{1}{4}g^{\mu\nu}(x)F_{\rho\sigma}(x)F^{\rho\sigma}(x)\right) </math> | <math display="block"> T^{\mu\nu}(x) = \frac{2}{\sqrt{-g(x)}}\frac{\delta}{\delta g_{\mu\nu}(x)}\mathcal{S}_\text{Maxwell}=\frac{1}{\mu_{0}}\left(F^{\mu}_{\text{ }\lambda}(x)F^{\nu\lambda}(x)-\frac{1}{4}g^{\mu\nu}(x)F_{\rho\sigma}(x)F^{\rho\sigma}(x)\right) </math> | ||
यह दिखाया जा सकता है कि यह ऊर्जा संवेग टेंसर ट्रेसलेस है, अर्थात | यह दिखाया जा सकता है कि यह ऊर्जा संवेग टेंसर ट्रेसलेस है, अर्थात | ||
<math display="block"> T = g_{\mu\nu}T^{\mu\nu} = 0 </math> | <math display="block"> T = g_{\mu\nu}T^{\mu\nu} = 0 </math> | ||
यदि हम आइंस्टीन | यदि हम आइंस्टीन क्षेत्रसमीकरणों के दोनों पक्षों का पता लगाते हैं, तो हम प्राप्त करते हैं | ||
<math display="block"> R = -\frac{8\pi G}{c^4}T </math> | <math display="block"> R = -\frac{8\pi G}{c^4}T </math> | ||
तो ऊर्जा संवेग टेन्सर की ट्रेसलेसनेस का अर्थ है कि विद्युत चुम्बकीय क्षेत्र में वक्रता स्केलर गायब हो जाता है। आइंस्टीन समीकरण तब हैं | तो ऊर्जा संवेग टेन्सर की ट्रेसलेसनेस का अर्थ है कि विद्युत चुम्बकीय क्षेत्र में वक्रता स्केलर गायब हो जाता है। आइंस्टीन समीकरण तब हैं | ||
Line 233: | Line 234: | ||
=== अतिरिक्त उदाहरण === | === अतिरिक्त उदाहरण === | ||
* BF मॉडल Lagrangian, पृष्ठभूमि क्षेत्र के लिए संक्षिप्त, फ्लैट स्पेसटाइम मैनिफोल्ड पर लिखे जाने पर तुच्छ गतिकी के साथ प्रणाली का वर्णन करता है। स्थैतिक रूप से गैर-तुच्छ स्पेसटाइम पर, प्रणालीमें गैर-तुच्छ शास्त्रीय समाधान होंगे, जिन्हें [[सॉलिटन]] या [[ एक पल | पल]] के रूप में व्याख्या किया जा सकता है। [[सामयिक क्वांटम क्षेत्र सिद्धांत]] के लिए नींव बनाने वाले कई प्रकार के एक्सटेंशन | * BF मॉडल Lagrangian, पृष्ठभूमि क्षेत्र के लिए संक्षिप्त, फ्लैट स्पेसटाइम मैनिफोल्ड पर लिखे जाने पर तुच्छ गतिकी के साथ प्रणाली का वर्णन करता है। स्थैतिक रूप से गैर-तुच्छ स्पेसटाइम पर, प्रणालीमें गैर-तुच्छ शास्त्रीय समाधान होंगे, जिन्हें [[सॉलिटन]] या [[ एक पल | पल]] के रूप में व्याख्या किया जा सकता है। [[सामयिक क्वांटम क्षेत्र सिद्धांत]] के लिए नींव बनाने वाले कई प्रकार के एक्सटेंशन उपस्थित हैं। | ||
== यह भी देखें == | == यह भी देखें == |
Revision as of 18:08, 14 April 2023
लाग्रंगियन क्षेत्र सिद्धांत शास्त्रीय क्षेत्र सिद्धांत में औपचारिकता है। यह लाग्रंगियन यांत्रिकी का क्षेत्र-सैद्धांतिक अनुरूप है। लाग्रंगियन यांत्रिकी का उपयोग स्वतंत्रता की डिग्री (भौतिकी और रसायन विज्ञान) की सीमित संख्या के साथ असतत कणों की प्रणाली की गति का विश्लेषण करने के लिए किया जाता है। लाग्रंगियन क्षेत्र सिद्धांत निरंतरता और क्षेत्रों पर लागू होता है, जिसमें स्वतंत्रता की डिग्री की अनंत संख्या होती है।
क्षेत्रों पर लाग्रंगियन औपचारिकता के विकास के लिए प्रेरणा, और अधिक सामान्यतः, शास्त्रीय क्षेत्र सिद्धांत के लिए, क्वांटम क्षेत्र सिद्धांत के लिए स्वच्छ गणितीय आधार प्रदान करना है, जो औपचारिक कठिनाइयों से कुख्यात है जो इसे गणितीय सिद्धांत के रूप में अस्वीकार्य बनाता है। यहां प्रस्तुत लैग्रैंगियन उनके क्वांटम समकक्षों के समान हैं, लेकिन, क्षेत्रों को शास्त्रीय क्षेत्रों के रूप में मानने के अतिरिक्त, परिमाणित होने के अतिरिक्त, परिभाषाएं प्रदान कर सकते हैं और आंशिक अंतर समीकरणों के गणित के पारंपरिक औपचारिक दृष्टिकोण के साथ संगत गुणों के साथ समाधान प्राप्त कर सकते हैं। यह सोबोलेव रिक्त स्थान जैसे अच्छी तरह से चित्रित गुणों वाले रिक्त स्थान पर समाधान तैयार करने में सक्षम बनाता है। यह विभिन्न प्रमेयों को प्रदान करने में सक्षम बनाता है, अस्तित्व के प्रमाण से औपचारिक श्रृंखला के समान अभिसरण से लेकर संभावित सिद्धांत की सामान्य सेटिंग्स तक। इसके अलावा, रीमैनियन कई गुना और फाइबर बंडलों के सामान्यीकरण द्वारा अंतर्दृष्टि और स्पष्टता प्राप्त की जाती है, जिससे ज्यामितीय संरचना को स्पष्ट रूप से समझा जा सकता है और गति के संबंधित समीकरणों से अलग किया जा सकता है। ज्यामितीय संरचना के स्पष्ट दृष्टिकोण ने बदले में ज्यामिति से अत्यधिक अमूर्त प्रमेयों को अंतर्दृष्टि प्राप्त करने के लिए उपयोग करने की अनुमति दी है, जिसमें चेर्न-गॉस-बोनट प्रमेय और रिमेंन-रोच प्रमेय से अतियाह-सिंगर इंडेक्स प्रमेय और चेर्न-साइमन्स सिद्धांत सम्मिलित हैं। .
सिंहावलोकन
क्षेत्र सिद्धांत में, स्वतंत्र चर को अंतरिक्ष समय में घटना से बदल दिया जाता है (x, y, z, t), या अधिक सामान्यतः अभी भी रिमेंनियन मैनिफोल्ड पर बिंदु एस द्वारा। निर्भर चर को स्पेसटाइम में उस बिंदु पर फ़ील्ड के मान से बदल दिया जाता है ताकि गति के समीकरण क्रिया (भौतिकी) सिद्धांत के माध्यम से प्राप्त किए जा सकें, जिसे इस प्रकार लिखा गया है:
गणितीय योगों में, फाइबर बंडल पर फ़ंक्शन के रूप में लैग्रैन्जियन को व्यक्त करना आम है, जिसमें फाइबर बंडल पर geodesic ्स को निर्दिष्ट करने के रूप में यूलर-लग्रेंज समीकरणों की व्याख्या की जा सकती है। अब्राहम और मार्सडेन की पाठ्यपुस्तक[1] आधुनिक ज्यामितीय विचारों के संदर्भ में शास्त्रीय यांत्रिकी का पहला व्यापक विवरण प्रदान किया, अर्थात स्पर्शरेखा कई गुना, सहानुभूतिपूर्ण कई गुना और संपर्क ज्यामिति के संदर्भ में। बिलीकर की पाठ्यपुस्तक[2] गेज अपरिवर्तनीय फाइबर बंडलों के संदर्भ में भौतिकी में क्षेत्र सिद्धांतों की व्यापक प्रस्तुति प्रदान की। इस तरह के फॉर्मूलेशन बहुत पहले ज्ञात या संदिग्ध थे। जोस्ट[3] ज्यामितीय प्रस्तुति के साथ जारी है, हैमिल्टनियन और लैग्रैंगियन रूपों के मध्य संबंध को स्पष्ट करते हुए, पहले सिद्धांतों से स्पिन कई गुना का वर्णन करते हुए, आदि। वर्तमान शोध कठोरता (गणित) पर केंद्रित है। टेंसर बीजगणित द्वारा वेक्टर रिक्त स्थान। यह शोध क्वांटम समूहों की अफिन लाइ बीजगणित के रूप में सफलता की समझ से प्रेरित है (झूठ समूह अर्थ में कठोर हैं, क्योंकि वे अपने झूठ बीजगणित द्वारा निर्धारित किए जाते हैं। जब टेन्सर बीजगणित पर सुधार किया जाता है, तो वे फ्लॉपी हो जाते हैं, स्वतंत्रता की अनंत डिग्री होती है ; उदाहरण के लिए वीरासोरो बीजगणित देखें।)
परिभाषाएँ
लाग्रंगियन क्षेत्र सिद्धांत में, सामान्यीकृत निर्देशांक के समारोह के रूप में लाग्रंगियन को लाग्रंगियन घनत्व द्वारा प्रतिस्थापित किया जाता है, प्रणाली में क्षेत्रों का कार्य और उनके डेरिवेटिव, और संभवतः अंतरिक्ष और समय खुद को निर्देशित करता है। क्षेत्रसिद्धांत में, स्वतंत्र चर टी को स्पेसटाइम में घटना से बदल दिया जाता है (x, y, z, t) या इससे भी अधिक सामान्यतः कई गुना पर बिंदु एस द्वारा।
प्रायः, लाग्रंगियन घनत्व को केवल लाग्रंगियन के रूप में संदर्भित किया जाता है।
अदिश क्षेत्र
अदिश क्षेत्र के लिए , लाग्रंगियन घनत्व रूप लेगा:[nb 1][4]
वेक्टर क्षेत्र्स, टेन्सर फ़ील्ड्स, स्पिनर फ़ील्ड्स
उपरोक्त को सदिश क्षेत्रों, टेंसर क्षेत्रों और स्पिनर क्षेत्रों के लिए सामान्यीकृत किया जा सकता है। भौतिकी में, फर्मियन का वर्णन स्पिनर फ़ील्ड्स द्वारा किया जाता है। बोसॉन का वर्णन टेन्सर फ़ील्ड द्वारा किया जाता है, जिसमें विशेष मामलों के रूप में स्केलर और वेक्टर फ़ील्ड सम्मिलित हैं।
उदाहरण के लिए, यदि हैं वास्तविक संख्या-मूल्यवान अदिश क्षेत्र, , तो क्षेत्र कई गुना है . यदि फ़ील्ड वास्तविक वेक्टर फ़ील्ड है, तो फ़ील्ड मैनिफोल्ड समरूप है .
क्रिया
लाग्रंगियन के समय अभिन्न को क्रिया (भौतिकी) कहा जाता है जिसे निरूपित किया जाता है S. क्षेत्र सिद्धांत में लैग्रैंगियन के मध्य कभी-कभी अंतर किया जाता है L, जिसका समय अभिन्न क्रिया है
मात्रा रूप
गुरुत्वाकर्षण की उपस्थिति में या सामान्य घुमावदार निर्देशांक का उपयोग करते समय, लैग्रैंगियन घनत्व का कारक सम्मिलित होगा . यह सुनिश्चित करता है कि क्रिया सामान्य समन्वय परिवर्तनों के तहत अपरिवर्तनीय है। गणितीय साहित्य में, स्पेसटाइम को रीमैनियन मैनिफोल्ड के रूप में लिया जाता है और अभिन्न तब मात्रा रूप बन जाता है
यूलर–लैग्रेंज समीकरण
यूलर-लैग्रेंज समीकरण क्षेत्र के जियोडेसिक प्रवाह का वर्णन करते हैं समय के कार्य के रूप में। के संबंध में कार्यात्मक व्युत्पन्न लेना , प्राप्त करता है
उदाहरण
लैग्रैंजियन्स के संदर्भ में खेतों पर बड़ी संख्या में भौतिक प्रणालियां तैयार की गई हैं। नीचे क्षेत्र सिद्धांत पर भौतिकी की पाठ्यपुस्तकों में पाए जाने वाले कुछ सबसे सामान्य नमूने हैं।
न्यूटोनियन गुरुत्वाकर्षण
न्यूटोनियन गुरुत्वाकर्षण के लिए लाग्रंगियन घनत्व है:
इस लाग्रंगियन को इस रूप में लिखा जा सकता है , साथ गतिज शब्द प्रदान करना, और अंतःक्रिया संभावित शब्द। समय के साथ परिवर्तनों से निपटने के लिए इसे कैसे संशोधित किया जा सकता है, इसके लिए नॉर्डस्ट्रॉम के गुरुत्वाकर्षण के सिद्धांत को भी देखें। स्केलर क्षेत्र सिद्धांत के अगले उदाहरण में इस फॉर्म को दोहराया गया है।
के संबंध में अभिन्न की भिन्नता Φ है:
अदिश क्षेत्र सिद्धांत
क्षमता में गतिमान अदिश क्षेत्र के लिए लाग्रंगियन रूप में लिखा जा सकता है
सिग्मा मॉडल Lagrangian
सिग्मा मॉडल स्केलर बिंदु कण की गति का वर्णन करता है जो रिमेंनियन मैनिफोल्ड पर जाने के लिए विवश है, जैसे कि वृत्त या गोला। यह स्केलर और वेक्टर फ़ील्ड्स के मामले को सामान्यीकृत करता है, अर्थात, फ्लैट मैनिफोल्ड पर जाने के लिए विवश फ़ील्ड्स। लाग्रंगियन सामान्यतःतीन समकक्ष रूपों में से में लिखा जाता है:
सामान्यतः, सिग्मा मॉडल सामयिक सॉलिटॉन समाधान प्रदर्शित करते हैं। इनमें से सबसे प्रसिद्ध और अच्छी तरह से अध्ययन किया गया स्किर्मियन है, जो समय की कसौटी पर खरा उतरने वाले न्यूक्लियॉन के मॉडल के रूप में कार्य करता है।
विशेष सापेक्षता में विद्युत चुंबकत्व
बिंदु कण, आवेशित कण पर विचार करें, जो विद्युत चुम्बकीय क्षेत्र के साथ परस्पर क्रिया करता है। बातचीत की शर्तें
इसके अतिरिक्त के संबंध में भिन्न , हम पाते हैं
टेन्सर संकेतन का उपयोग करके, हम यह सब अधिक सघन रूप से लिख सकते हैं। शब्द वास्तव में दो चार-सदिशों का आंतरिक उत्पाद है। हम चार्ज घनत्व को वर्तमान चार-वेक्टर में और क्षमता को संभावित 4-वेक्टर में पैकेज करते हैं। ये दो नए वैक्टर हैं
विद्युत चुंबकत्व और यांग-मिल्स समीकरण
विभेदक रूपों का उपयोग करते हुए, (छद्म-) रीमैनियन मैनिफोल्ड पर वैक्यूम में इलेक्ट्रोमैग्नेटिक एक्शन एस लिखा जा सकता है (प्राकृतिक इकाइयों का उपयोग करके, c = ε0 = 1) जैसा
A फ़ील्ड को U(1)-फाइबर बंडल पर affine कनेक्शन के रूप में समझा जा सकता है। अर्थात्, क्लासिकल विद्युतगतिकी, इसके सभी प्रभाव और समीकरण, मिन्कोवस्की स्पेसटाइम पर वृत्त बंडल के रूप में प्रत्येक प्रकार से समझे जा सकते हैं।
यांग-मिल्स समीकरणों को ठीक उसी रूप में लिखा जा सकता है जैसा ऊपर दिया गया है, विद्युत चुंबकत्व के लाई समूह यू (1) को मनमाने ढंग से लाई समूह द्वारा प्रतिस्थापित करके। मानक मॉडल में, इसे पारंपरिक रूप से लिया जाता है हालांकि सामान्य मामला सामान्य हित का है। सभी मामलों में, किसी भी मात्रा का प्रदर्शन करने की कोई आवश्यकता नहीं है। यद्यपि यांग-मिल्स समीकरण ऐतिहासिक रूप से क्वांटम क्षेत्र सिद्धांत में निहित हैं, उपरोक्त समीकरण विशुद्ध रूप से शास्त्रीय हैं।[2][3]
चेर्न-सिमंस कार्यात्मक
उपरोक्त के समान ही, क्रिया को आयाम में कम माना जा सकता है, अर्थात संपर्क ज्यामिति सेटिंग में। यह चेर्न-साइमन्स फॉर्म देता है | चेर्न-साइमन्स कार्यात्मक। के रूप में लिखा गया है
गिंज़बर्ग-लैंडौ लग्रांगियन
गिन्ज़बर्ग-लैंडौ सिद्धांत के लिए लैग्रैन्जियन घनत्व स्केलर क्षेत्र सिद्धांत के लिए लैग्रैंगियन को यांग-मिल्स क्रिया के लिए लैग्रैन्जियन के साथ जोड़ता है। इसे इस प्रकार लिखा जा सकता है:[7]
डिराक Lagrangian
डायराक क्षेत्र के लिए लैग्रैन्जियन घनत्व है:[8]
क्वांटम इलेक्ट्रोडायनामिक लैग्रेंजियन
क्वांटम इलेक्ट्रोडायनामिक्स के लिए लैग्रैन्जियन घनत्व डायराक क्षेत्र के लिए लैग्रैन्जियन को गेज-इनवेरिएंट तरीके से इलेक्ट्रोडायनामिक्स के लिए लैग्रैन्जियन के साथ जोड़ता है। यह है:
क्वांटम क्रोमोडायनामिक लैग्रेंजियन
क्वांटम क्रोमोडायनामिक्स के लिए लैग्रैजियन घनत्व या से अधिक बड़े पैमाने पर डायराक स्पिनरों के लिए लैग्रैन्जियन को यांग-मिल्स एक्शन के लिए लैग्रैन्जियन के साथ जोड़ता है, जो गेज क्षेत्र की गतिशीलता का वर्णन करता है; संयुक्त लाग्रंगियन गेज अपरिवर्तनीय है। इसे इस प्रकार लिखा जा सकता है:[9]
आइंस्टीन गुरुत्वाकर्षण
पदार्थ क्षेत्रों की उपस्थिति में सामान्य सापेक्षता के लिए लैग्रेंज घनत्व है
सामान्य सापेक्षता के लिए लाग्रंगियन को ऐसे रूप में भी लिखा जा सकता है जो इसे स्पष्ट रूप से यांग-मिल्स समीकरणों के समान बनाता है। इसे आइंस्टीन-यांग-मिल्स क्रिया सिद्धांत कहा जाता है। यह इस बात पर ध्यान देकर किया जाता है कि अधिकांश डिफरेंशियल ज्योमेट्री बंडलों पर एफ़िन कनेक्शन और मनमाने ढंग से लेट ग्रुप के साथ ठीक काम करती है। फिर, उस समरूपता समूह के लिए SO(3,1) में प्लगिंग, अर्थात फ्रेम क्षेत्र के लिए, उपरोक्त समीकरण प्राप्त करता है।[2][3]
इस लाग्रंगियन को Euler-Lagrange समीकरण में प्रतिस्थापित करना और मेट्रिक टेन्सर लेना क्षेत्र के रूप में, हम आइंस्टीन क्षेत्र समीकरण प्राप्त करते हैं
सामान्य सापेक्षता में विद्युत चुंबकत्व
सामान्य सापेक्षता में विद्युत चुंबकत्व के लैग्रेंज घनत्व में ऊपर से आइंस्टीन-हिल्बर्ट क्रिया भी सम्मिलित है। शुद्ध विद्युत चुम्बकीय लाग्रंगियन वास्तव में लाग्रंगियन मामला है . लाग्रंगियन है
अतिरिक्त उदाहरण
- BF मॉडल Lagrangian, पृष्ठभूमि क्षेत्र के लिए संक्षिप्त, फ्लैट स्पेसटाइम मैनिफोल्ड पर लिखे जाने पर तुच्छ गतिकी के साथ प्रणाली का वर्णन करता है। स्थैतिक रूप से गैर-तुच्छ स्पेसटाइम पर, प्रणालीमें गैर-तुच्छ शास्त्रीय समाधान होंगे, जिन्हें सॉलिटन या पल के रूप में व्याख्या किया जा सकता है। सामयिक क्वांटम क्षेत्र सिद्धांत के लिए नींव बनाने वाले कई प्रकार के एक्सटेंशन उपस्थित हैं।
यह भी देखें
- विविधताओं की गणना
- सहसंयोजक शास्त्रीय क्षेत्र सिद्धांत
- यूलर-लैग्रेंज समीकरण
- कार्यात्मक व्युत्पन्न
- कार्यात्मक अभिन्न
- सामान्यीकृत निर्देशांक
- हैमिल्टनियन यांत्रिकी
- हैमिल्टनियन क्षेत्र सिद्धांत
- काइनेटिक शब्द
- लैग्रैंगियन और ऑयलेरियन निर्देशांक
- लैग्रैन्जियन यांत्रिकी
- लैग्रैन्जियन बिंदु
- Lagrangian बिंदु
- नोथेर प्रमेय
- ऑनसेजर-मचलूप फंक्शन
- न्यूनतम क्रिया का सिद्धांत
- स्केलर क्षेत्र सिद्धांत
टिप्पणियाँ
- ↑ It is a standard abuse of notation to abbreviate all the derivatives and coordinates in the Lagrangian density as follows:
see four-gradient. The μ is an index which takes values 0 (for the time coordinate), and 1, 2, 3 (for the spatial coordinates), so strictly only one derivative or coordinate would be present. In general, all the spatial and time derivatives will appear in the Lagrangian density, for example in Cartesian coordinates, the Lagrangian density has the full form:Here we write the same thing, but using ∇ to abbreviate all spatial derivatives as a vector.
उद्धरण
- ↑ Ralph Abraham and Jerrold E. Marsden, (1967) "Foundations of Mechanics"
- ↑ 2.0 2.1 2.2 2.3 2.4 2.5 David Bleecker, (1981) "Gauge Theory and Variational Principles" Addison-Wesley
- ↑ 3.0 3.1 3.2 3.3 3.4 3.5 Jurgen Jost, (1995) "Riemannian Geometry and Geometric Analysis", Springer
- ↑ Mandl, F.; Shaw, G. (2010). "Lagrangian Field Theory". क्वांटम फील्ड थ्योरी (2nd ed.). Wiley. p. 25–38. ISBN 978-0-471-49684-7.
- ↑ 5.0 5.1 5.2 Zee, Anthony (2013). संक्षेप में आइंस्टीन गुरुत्वाकर्षण. Princeton: Princeton University Press. pp. 344–390. ISBN 9780691145587.
- ↑ Cahill, Kevin (2013). भौतिक गणित. Cambridge: Cambridge University Press. ISBN 9781107005211.
- ↑ Jost, Jürgen (2002). "The Ginzburg–Landau Functional". रीमानियन ज्यामिति और ज्यामितीय विश्लेषण (Third ed.). Springer-Verlag. pp. 373–381. ISBN 3-540-42627-2.
- ↑ Itzykson-Zuber, eq. 3-152
- ↑ Claude Itykson and Jean-Bernard Zuber, (1980) "Quantum Field Theory"