लाग्रंगियन (क्षेत्र सिद्धांत): Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
लाग्रंगियन क्षेत्र सिद्धांत [[शास्त्रीय क्षेत्र सिद्धांत]] की औपचारिकता है। यह [[Lagrangian यांत्रिकी|लाग्रंगियन यांत्रिकी]] का क्षेत्र-सैद्धांतिक अनुरूप है। लाग्रंगियन यांत्रिकी का उपयोग [[स्वतंत्रता की डिग्री (भौतिकी और रसायन विज्ञान)|स्वतंत्रता की डिग्री]] की सीमित संख्या के साथ असतत कणों की प्रणाली की गति का विश्लेषण करने के लिए किया जाता है। लाग्रंगियन क्षेत्र सिद्धांत निरंतरता और क्षेत्रों पर प्रस्तावित होता है, जिसमें स्वतंत्रता डिग्री की अनंत संख्या होती है। | लाग्रंगियन क्षेत्र सिद्धांत [[शास्त्रीय क्षेत्र सिद्धांत]] की औपचारिकता है। यह [[Lagrangian यांत्रिकी|लाग्रंगियन यांत्रिकी]] का क्षेत्र-सैद्धांतिक अनुरूप है। लाग्रंगियन यांत्रिकी का उपयोग [[स्वतंत्रता की डिग्री (भौतिकी और रसायन विज्ञान)|स्वतंत्रता की डिग्री]] की सीमित संख्या के साथ असतत कणों की प्रणाली की गति का विश्लेषण करने के लिए किया जाता है। लाग्रंगियन क्षेत्र सिद्धांत निरंतरता और क्षेत्रों पर प्रस्तावित होता है, जिसमें स्वतंत्रता डिग्री की अनंत संख्या होती है। | ||
क्षेत्रों पर लाग्रंगियन औपचारिकता के विकास के लिए प्रेरणा, सामान्यतः शास्त्रीय क्षेत्र सिद्धांत और [[क्वांटम क्षेत्र सिद्धांत]] के लिए | क्षेत्रों पर लाग्रंगियन औपचारिकता के विकास के लिए प्रेरणा, सामान्यतः शास्त्रीय क्षेत्र सिद्धांत और [[क्वांटम क्षेत्र सिद्धांत]] के लिए उचित गणितीय आधार प्रदान करता है, जो औपचारिक कठिनाइयों से कुख्यात है जो इसे गणितीय सिद्धांत के रूप में अस्वीकार्य बनाता है। यहां प्रस्तुत लाग्रंगियन उनके क्वांटम समकक्षों के समान हैं, किन्तु, क्षेत्रों को शास्त्रीय क्षेत्रों के रूप में मानने और प्रमाणित होने के अतिरिक्त, परिभाषाएं प्रदान कर सकते हैं और आंशिक अंतर समीकरणों के पारंपरिक औपचारिक दृष्टिकोण के संगत गुणों के साथ समाधान प्राप्त कर सकते हैं। यह सोबोलेव रिक्त स्थान जैसे उचित प्रकार से चित्रित गुणों वाले रिक्त स्थान पर समाधान तत्पर करने में सक्षम बनाता है। यह विभिन्न प्रमेयों को प्रदान करने में सक्षम बनाता है, अस्तित्व के प्रमाण से औपचारिक श्रृंखला के समान अभिसरण से लेकर [[संभावित सिद्धांत]] की सामान्य व्यवस्था होती है। इसके अतिरिक्त, [[रीमैनियन कई गुना]] और [[फाइबर बंडल|फाइबर बंडलों]] के सामान्यीकरण द्वारा अंतर्दृष्टि और स्पष्टता प्राप्त की जाती है, जिससे ज्यामितीय संरचना का स्पष्ट रूप से अध्ययन किया जा सकता है और गति के संबंधित समीकरणों से भिन्न किया जा सकता है। ज्यामितीय संरचना के स्पष्ट दृष्टिकोण ने विपरीत में ज्यामिति से अत्यधिक अमूर्त प्रमेयों को अंतर्दृष्टि प्राप्त करने के लिए उपयोग करने की अनुमति दी है, जिसमें चेर्न-गॉस-बोनट प्रमेय और रिमेंन-रोच प्रमेय से अतियाह-सिंगर इंडेक्स प्रमेय और चेर्न-साइमन्स सिद्धांत सम्मिलित हैं। | ||
== अवलोकन == | == अवलोकन == | ||
Line 17: | Line 17: | ||
जहां कोष्ठक <math>\{\cdot~\forall\alpha\}</math> निरूपित करते हैं; और ''s'' = {''s''<sup>α</sup>} प्रणाली के n [[स्वतंत्र चर]] के [[सेट (गणित)|समुच्चय]] को दर्शाता है, जिसमें समय चर भी सम्मिलित है, और इसे α = 1, 2, 3, ..., n द्वारा अनुक्रमित किया जाता है। सुलेख टाइपफेस, <math>\mathcal{L}</math>, कई गुना पर घनत्व को निरूपित करने के लिए प्रयोग किया जाता है, और <math>\mathrm{d}^n s</math> क्षेत्र फलन का वॉल्यूम रूप है, अर्थात क्षेत्र फलन के डोमेन का माप है। | जहां कोष्ठक <math>\{\cdot~\forall\alpha\}</math> निरूपित करते हैं; और ''s'' = {''s''<sup>α</sup>} प्रणाली के n [[स्वतंत्र चर]] के [[सेट (गणित)|समुच्चय]] को दर्शाता है, जिसमें समय चर भी सम्मिलित है, और इसे α = 1, 2, 3, ..., n द्वारा अनुक्रमित किया जाता है। सुलेख टाइपफेस, <math>\mathcal{L}</math>, कई गुना पर घनत्व को निरूपित करने के लिए प्रयोग किया जाता है, और <math>\mathrm{d}^n s</math> क्षेत्र फलन का वॉल्यूम रूप है, अर्थात क्षेत्र फलन के डोमेन का माप है। | ||
गणितीय योगों में, फाइबर बंडल पर फलन के रूप में लाग्रंगियन को व्यक्त करना सामान्य है, जिसमें फाइबर बंडल पर [[ geodesic |जियोडेसिक्स]] को निर्दिष्ट करने के रूप में यूलर-लग्रेंज समीकरणों की व्याख्या की जा सकती है। अब्राहम और मार्सडेन की पाठ्यपुस्तक<ref>Ralph Abraham and Jerrold E. Marsden, (1967) "Foundations of Mechanics"</ref> ने आधुनिक ज्यामितीय विचारों के संदर्भ में [[शास्त्रीय यांत्रिकी]] का प्रथम व्यापक विवरण प्रदान किया, अर्थात, [[स्पर्शरेखा कई गुना]], सहानुभूतिपूर्ण कई गुना और [[संपर्क ज्यामिति]] के संदर्भ में होता है। बिलीकर की पाठ्यपुस्तक<ref name="Bleecker">David Bleecker, (1981) "Gauge Theory and Variational Principles" Addison-Wesley</ref> ने गेज अपरिवर्तनीय फाइबर बंडलों के संदर्भ में भौतिकी में क्षेत्र सिद्धांतों की व्यापक प्रस्तुति प्रदान की। इस प्रकार के फॉर्मूलेशन पूर्व ज्ञात या संदिग्ध थे। जोस्ट<ref name="jost">Jurgen Jost, (1995) "Riemannian Geometry and Geometric Analysis", Springer</ref> ज्यामितीय प्रस्तुति के साथ निरंतर है, हैमिल्टनियन और लाग्रंगियन रूपों के मध्य संबंध को स्पष्ट करते हुए, पूर्व सिद्धांतों से [[स्पिन कई गुना]] का वर्णन करते हुए, आदि। वर्तमान शोध [[कठोरता (गणित)| | गणितीय योगों में, फाइबर बंडल पर फलन के रूप में लाग्रंगियन को व्यक्त करना सामान्य है, जिसमें फाइबर बंडल पर [[ geodesic |जियोडेसिक्स]] को निर्दिष्ट करने के रूप में यूलर-लग्रेंज समीकरणों की व्याख्या की जा सकती है। अब्राहम और मार्सडेन की पाठ्यपुस्तक<ref>Ralph Abraham and Jerrold E. Marsden, (1967) "Foundations of Mechanics"</ref> ने आधुनिक ज्यामितीय विचारों के संदर्भ में [[शास्त्रीय यांत्रिकी]] का प्रथम व्यापक विवरण प्रदान किया, अर्थात, [[स्पर्शरेखा कई गुना]], सहानुभूतिपूर्ण कई गुना और [[संपर्क ज्यामिति]] के संदर्भ में होता है। बिलीकर की पाठ्यपुस्तक<ref name="Bleecker">David Bleecker, (1981) "Gauge Theory and Variational Principles" Addison-Wesley</ref> ने गेज अपरिवर्तनीय फाइबर बंडलों के संदर्भ में भौतिकी में क्षेत्र सिद्धांतों की व्यापक प्रस्तुति प्रदान की। इस प्रकार के फॉर्मूलेशन पूर्व ज्ञात या संदिग्ध थे। जोस्ट<ref name="jost">Jurgen Jost, (1995) "Riemannian Geometry and Geometric Analysis", Springer</ref> ज्यामितीय प्रस्तुति के साथ निरंतर है, हैमिल्टनियन और लाग्रंगियन रूपों के मध्य संबंध को स्पष्ट करते हुए, पूर्व सिद्धांतों से [[स्पिन कई गुना]] का वर्णन करते हुए, आदि। वर्तमान शोध [[कठोरता (गणित)|अन्य-कठोर]] संबंध संरचनाओं पर केंद्रित है, (कभी-कभी "क्वांटम संरचनाएं" कहा जाता है) जिसमें घटना का स्थान लेता है। [[टेंसर बीजगणित]] द्वारा सदिश रिक्त स्थान होता है। यह शोध [[क्वांटम समूह|क्वांटम समूहों]] की एफाइन लाइ बीजगणित के रूप में सफलता की समझ से प्रेरित है ([[झूठ समूह|लाइ समूह]] अर्थ में कठोर हैं, क्योंकि वे अपने लाइ बीजगणित द्वारा निर्धारित किए जाते हैं। जब टेन्सर बीजगणित पर सुधार किया जाता है, तो वे फ्लॉपी हो जाते हैं, स्वतंत्रता की अनंत डिग्री होती है ; उदाहरण के लिए वीरासोरो बीजगणित देखें।) | ||
== परिभाषाएँ == | == परिभाषाएँ == | ||
Line 56: | Line 56: | ||
गुरुत्वाकर्षण की उपस्थिति में या सामान्य घूर्णन निर्देशांक का उपयोग करते समय, लाग्रंगियन घनत्व <math>\mathcal{L}</math> का कारक <math display="inline">\sqrt{g}</math> सम्मिलित होगा, यह सुनिश्चित करता है कि क्रिया सामान्य समन्वय परिवर्तनों के अंतर्गत अपरिवर्तनीय है। गणितीय साहित्य में, अंतरिक्ष समय को रीमैनियन मैनिफोल्ड <math>M</math> के रूप में लिया जाता है, और तब अभिन्न मात्रा रूप बन जाता है: | गुरुत्वाकर्षण की उपस्थिति में या सामान्य घूर्णन निर्देशांक का उपयोग करते समय, लाग्रंगियन घनत्व <math>\mathcal{L}</math> का कारक <math display="inline">\sqrt{g}</math> सम्मिलित होगा, यह सुनिश्चित करता है कि क्रिया सामान्य समन्वय परिवर्तनों के अंतर्गत अपरिवर्तनीय है। गणितीय साहित्य में, अंतरिक्ष समय को रीमैनियन मैनिफोल्ड <math>M</math> के रूप में लिया जाता है, और तब अभिन्न मात्रा रूप बन जाता है: | ||
<math display="block">\mathcal{S}=\int_M \sqrt{|g|} dx^1\wedge\cdots\wedge dx^m \mathcal{L}</math> | <math display="block">\mathcal{S}=\int_M \sqrt{|g|} dx^1\wedge\cdots\wedge dx^m \mathcal{L}</math> | ||
यहां ही <math>\wedge</math> [[कील उत्पाद]] है और <math display="inline">\sqrt{|g|}</math> निर्धारक का वर्गमूल है <math>|g|</math> [[मीट्रिक टेंसर]] का <math>g</math> पर <math>M</math> | यहां ही <math>\wedge</math> [[कील उत्पाद]] है और <math display="inline">\sqrt{|g|}</math> निर्धारक का वर्गमूल है <math>|g|</math> [[मीट्रिक टेंसर|मापीय टेंसर]] का <math>g</math> पर <math>M</math> समतल अंतरिक्ष समय(उदाहरण के लिए, [[मिन्कोव्स्की स्पेसटाइम]]) के लिए, यूनिट वॉल्यूम है, अर्थात, <math display="inline">\sqrt{|g|}=1</math> और इसलिए समतल अंतरिक्ष समय में क्षेत्र सिद्धांत पर वर्णन करते समय इसे सामान्यतः त्याग दिया जाता है। इसी प्रकार, कील-उत्पाद प्रतीकों का उपयोग बहुभिन्नरूपी कलन में आयतन की सामान्य अवधारणा पर कोई अतिरिक्त अंतर्दृष्टि प्रदान नहीं करता है, और इसलिए इन्हें इसी प्रकार विस्थापित कर दिया जाता है। कुछ प्राचीन पाठ्यपुस्तकें, उदाहरण के लिए, लांडौ और लाइफशिट्ज लिखती हैं <math display="inline">\sqrt{-g}</math> वॉल्यूम फॉर्म के लिए, चूंकि हस्ताक्षर (+−−−) या (−+++) के साथ मापीय टेन्सर के लिए माइनस साइन उपयुक्त है (चूंकि निर्धारक नकारात्मक है, किसी भी स्थिति में)। सामान्य रीमैनियन मैनिफोल्ड्स पर क्षेत्र सिद्धांत पर वर्णन करते समय, वॉल्यूम फॉर्म सामान्यतः संक्षिप्त संकेतन में लिखा जाता है <math>*(1)</math> जहाँ <math>*</math> [[हॉज स्टार]] है। वह है, | ||
<math display="block">*(1) = \sqrt{|g|} dx^1\wedge\cdots\wedge dx^m</math> | <math display="block">*(1) = \sqrt{|g|} dx^1\wedge\cdots\wedge dx^m</math> | ||
इसलिए | इसलिए | ||
Line 104: | Line 104: | ||
{{main|सिग्मा प्रारूप }} | {{main|सिग्मा प्रारूप }} | ||
[[सिग्मा मॉडल|सिग्मा]] प्रारूप अदिश बिंदु कण की गति का वर्णन करता है जो रिमेंनियन मैनिफोल्ड पर जाने के लिए विवश है, जैसे कि वृत्त या गोला में होता है। यह अदिश और सदिश क्षेत्र की स्थिति को सामान्यीकृत करता है, अर्थात, | [[सिग्मा मॉडल|सिग्मा]] प्रारूप अदिश बिंदु कण की गति का वर्णन करता है जो रिमेंनियन मैनिफोल्ड पर जाने के लिए विवश है, जैसे कि वृत्त या गोला में होता है। यह अदिश और सदिश क्षेत्र की स्थिति को सामान्यीकृत करता है, अर्थात, समतल मैनिफोल्ड पर जाने के लिए विवश क्षेत्र होता है। लाग्रंगियन सामान्यतः तीन समकक्ष रूपों में लिखा जाता है: | ||
<math display="block">\mathcal{L} = \frac{1}{2} \mathrm{d}\phi \wedge {*\mathrm{d}\phi}</math> | <math display="block">\mathcal{L} = \frac{1}{2} \mathrm{d}\phi \wedge {*\mathrm{d}\phi}</math> | ||
जहां <math>\mathrm{d}</math> [[पुशफॉरवर्ड (अंतर)|अंतर]] है। समानार्थी अभिव्यक्ति इस प्रकार है: | जहां <math>\mathrm{d}</math> [[पुशफॉरवर्ड (अंतर)|अंतर]] है। समानार्थी अभिव्यक्ति इस प्रकार है: | ||
Line 135: | Line 135: | ||
हम जिस पद का शोध कर रहे हैं, वह इस प्रकार है: | हम जिस पद का शोध कर रहे हैं, वह इस प्रकार है: | ||
<math display="block"> {\epsilon_0 \over 2} {E}^2 - {1 \over {2 \mu_0}} {B}^2 = -\frac{1}{4\mu_0} F_{\mu\nu}F^{\mu\nu}= -\frac{1}{4\mu_0} F_{\mu\nu} F_{\rho\sigma}\eta^{\mu\rho}\eta^{\nu\sigma}</math> | <math display="block"> {\epsilon_0 \over 2} {E}^2 - {1 \over {2 \mu_0}} {B}^2 = -\frac{1}{4\mu_0} F_{\mu\nu}F^{\mu\nu}= -\frac{1}{4\mu_0} F_{\mu\nu} F_{\rho\sigma}\eta^{\mu\rho}\eta^{\nu\sigma}</math> | ||
हमने ईएमएफ टेंसर पर सूचकांक बढ़ाने के लिए [[मिन्कोव्स्की मीट्रिक]] का उपयोग किया है। इस अंकन में मैक्सवेल के समीकरण हैं: | हमने ईएमएफ टेंसर पर सूचकांक बढ़ाने के लिए [[मिन्कोव्स्की मीट्रिक|मिन्कोव्स्की]] मापीय का उपयोग किया है। इस अंकन में मैक्सवेल के समीकरण हैं: | ||
<math display="block"> \partial_\mu F^{\mu\nu}=-\mu_0 j^\nu\quad\text{and}\quad \epsilon^{\mu\nu\lambda\sigma}\partial_\nu F_{\lambda\sigma}=0 </math> | <math display="block"> \partial_\mu F^{\mu\nu}=-\mu_0 j^\nu\quad\text{and}\quad \epsilon^{\mu\nu\lambda\sigma}\partial_\nu F_{\lambda\sigma}=0 </math> | ||
जहां ε [[लेवी-Civita टेंसर|लेवी-सिविटा टेंसर]] है। तो विशेष आपेक्षिकता में विद्युत चुम्बकत्व के लिए लैग्रेंज घनत्व लोरेंत्ज़ सदिशों और टेंसरों के संदर्भ में लिखा गया है: | जहां ε [[लेवी-Civita टेंसर|लेवी-सिविटा टेंसर]] है। तो विशेष आपेक्षिकता में विद्युत चुम्बकत्व के लिए लैग्रेंज घनत्व लोरेंत्ज़ सदिशों और टेंसरों के संदर्भ में लिखा गया है: | ||
Line 161: | Line 161: | ||
गिन्ज़बर्ग-लैंडौ सिद्धांत के लिए लाग्रंगियन घनत्व अदिश क्षेत्र सिद्धांत के लिए लाग्रंगियन को यांग-मिल्स क्रिया के लिए लाग्रंगियन के साथ जोड़ता है। इसे इस प्रकार लिखा जा सकता है:<ref>{{cite book |first=Jürgen |last=Jost |author-link=Jürgen Jost |title=रीमानियन ज्यामिति और ज्यामितीय विश्लेषण|url=https://archive.org/details/riemanniangeomet00jost_070 |url-access=limited |year=2002 |publisher=Springer-Verlag |isbn=3-540-42627-2 |edition=Third |pages=[https://archive.org/details/riemanniangeomet00jost_070/page/n377 373]–381 |chapter=The Ginzburg–Landau Functional }}</ref> | गिन्ज़बर्ग-लैंडौ सिद्धांत के लिए लाग्रंगियन घनत्व अदिश क्षेत्र सिद्धांत के लिए लाग्रंगियन को यांग-मिल्स क्रिया के लिए लाग्रंगियन के साथ जोड़ता है। इसे इस प्रकार लिखा जा सकता है:<ref>{{cite book |first=Jürgen |last=Jost |author-link=Jürgen Jost |title=रीमानियन ज्यामिति और ज्यामितीय विश्लेषण|url=https://archive.org/details/riemanniangeomet00jost_070 |url-access=limited |year=2002 |publisher=Springer-Verlag |isbn=3-540-42627-2 |edition=Third |pages=[https://archive.org/details/riemanniangeomet00jost_070/page/n377 373]–381 |chapter=The Ginzburg–Landau Functional }}</ref> | ||
<math display="block">\mathcal{L}(\psi, A)=\vert F \vert^2 + \vert D \psi\vert^2 + \frac{1}{4} \left( \sigma-\vert\psi\vert^2\right)^2</math> | <math display="block">\mathcal{L}(\psi, A)=\vert F \vert^2 + \vert D \psi\vert^2 + \frac{1}{4} \left( \sigma-\vert\psi\vert^2\right)^2</math> | ||
जहाँ <math>\psi</math> [[खंड (फाइबर बंडल)|फाइबर]] के साथ <math>\Complex^n</math> [[वेक्टर बंडल|सदिश बंडल]] का भाग है, <math>\psi</math> h> [[सुपरकंडक्टर|अतिचालक]] में ऑर्डर पैरामीटर से युग्मित होता है; समान रूप से, यह हिग्स क्षेत्र से युग्मित होता है, यह ध्यान देने के पश्चात कि दूसरा पद प्रसिद्ध "सोम्ब्रेरो हैट" क्षमता है। क्षेत्र <math>A</math> ( | जहाँ <math>\psi</math> [[खंड (फाइबर बंडल)|फाइबर]] के साथ <math>\Complex^n</math> [[वेक्टर बंडल|सदिश बंडल]] का भाग है, <math>\psi</math> h> [[सुपरकंडक्टर|अतिचालक]] में ऑर्डर पैरामीटर से युग्मित होता है; समान रूप से, यह हिग्स क्षेत्र से युग्मित होता है, यह ध्यान देने के पश्चात कि दूसरा पद प्रसिद्ध "सोम्ब्रेरो हैट" क्षमता है। क्षेत्र <math>A</math> (अन्य-एबेलियन) गेज क्षेत्र है, अर्थात यांग-मिल्स क्षेत्र और <math>F</math> इसकी क्षेत्र-शक्ति है। गिन्ज़बर्ग-लैंडौ कार्यात्मक के लिए यूलर-लग्रेंज समीकरण यांग-मिल्स समीकरण हैं। | ||
<math display="block">D {\star} D\psi = \frac{1}{2}\left(\sigma - \vert\psi\vert^2\right)\psi</math> | <math display="block">D {\star} D\psi = \frac{1}{2}\left(\sigma - \vert\psi\vert^2\right)\psi</math> | ||
और | और | ||
Line 171: | Line 171: | ||
डिराक क्षेत्र के लिए लाग्रंगियन घनत्व है:<ref>Itzykson-Zuber, eq. 3-152</ref> | डिराक क्षेत्र के लिए लाग्रंगियन घनत्व है:<ref>Itzykson-Zuber, eq. 3-152</ref> | ||
<math display="block">\mathcal{L} = \bar \psi ( i \hbar c {\partial}\!\!\!/\ - mc^2) \psi</math> | <math display="block">\mathcal{L} = \bar \psi ( i \hbar c {\partial}\!\!\!/\ - mc^2) \psi</math> | ||
जहाँ <math>\psi </math> [[डिराक स्पिनर]] है, <math>\bar \psi = \psi^\dagger \gamma^0</math> इसका डिराक आसन्न है, और <math>{\partial}\!\!\!/</math> के लिए [[फेनमैन स्लैश नोटेशन]] <math>\gamma^\sigma \partial_\sigma</math> है, शास्त्रीय सिद्धांत में डिराक स्पिनरों पर ध्यान केंद्रित करने की कोई विशेष आवश्यकता नहीं है। [[वेइल स्पिनर]] अधिक सामान्य आधार प्रदान करते हैं; वे अंतरिक्ष समयके [[क्लिफर्ड बीजगणित]] से सीधे निर्मित किए जा सकते हैं; निर्माण किसी भी आयाम में कार्य करता है,<ref name="jost"/>और डिराक स्पिनर विशेष स्थिति के रूप में दिखाई देते हैं। वेइल स्पिनरों के निकट अतिरिक्त लाभ है कि वे रिमेंनियन मैनिफोल्ड पर | जहाँ <math>\psi </math> [[डिराक स्पिनर]] है, <math>\bar \psi = \psi^\dagger \gamma^0</math> इसका डिराक आसन्न है, और <math>{\partial}\!\!\!/</math> के लिए [[फेनमैन स्लैश नोटेशन]] <math>\gamma^\sigma \partial_\sigma</math> है, शास्त्रीय सिद्धांत में डिराक स्पिनरों पर ध्यान केंद्रित करने की कोई विशेष आवश्यकता नहीं है। [[वेइल स्पिनर]] अधिक सामान्य आधार प्रदान करते हैं; वे अंतरिक्ष समयके [[क्लिफर्ड बीजगणित]] से सीधे निर्मित किए जा सकते हैं; निर्माण किसी भी आयाम में कार्य करता है,<ref name="jost"/>और डिराक स्पिनर विशेष स्थिति के रूप में दिखाई देते हैं। वेइल स्पिनरों के निकट अतिरिक्त लाभ है कि वे रिमेंनियन मैनिफोल्ड पर मापीय के लिए विएलबीन में उपयोग किए जा सकते हैं; यह [[स्पिन संरचना]] की अवधारणा को सक्षम बनाता है, जो सामान्यतः बोल रहा है, घूर्णन अंतरिक्ष समय में निरंतर स्पिनरों को प्रस्तुत करने का प्रकार है। | ||
=== क्वांटम इलेक्ट्रोडायनामिक लाग्रंगियन === | === क्वांटम इलेक्ट्रोडायनामिक लाग्रंगियन === | ||
Line 182: | Line 182: | ||
[[क्वांटम क्रोमोडायनामिक्स]] के लिए लाग्रंगियन घनत्व या अधिक बड़े स्तर पर डिराक स्पिनरों के लिए लाग्रंगियन को यांग-मिल्स एक्शन के लिए लाग्रंगियन के साथ जोड़ता है, जो गेज क्षेत्र की गतिशीलता का वर्णन करता है; संयुक्त लाग्रंगियन गेज अपरिवर्तनीय है। इसे इस प्रकार लिखा जा सकता है:<ref>Claude Itykson and Jean-Bernard Zuber, (1980) "Quantum Field Theory"</ref> | [[क्वांटम क्रोमोडायनामिक्स]] के लिए लाग्रंगियन घनत्व या अधिक बड़े स्तर पर डिराक स्पिनरों के लिए लाग्रंगियन को यांग-मिल्स एक्शन के लिए लाग्रंगियन के साथ जोड़ता है, जो गेज क्षेत्र की गतिशीलता का वर्णन करता है; संयुक्त लाग्रंगियन गेज अपरिवर्तनीय है। इसे इस प्रकार लिखा जा सकता है:<ref>Claude Itykson and Jean-Bernard Zuber, (1980) "Quantum Field Theory"</ref> | ||
<math display="block">\mathcal{L}_{\mathrm{QCD}} = \sum_n \bar\psi_n \left( i\hbar c{D}\!\!\!\!/\ - m_n c^2 \right) \psi_n - {1\over 4} G^\alpha {}_{\mu\nu} G_\alpha {}^{\mu\nu}</math> | <math display="block">\mathcal{L}_{\mathrm{QCD}} = \sum_n \bar\psi_n \left( i\hbar c{D}\!\!\!\!/\ - m_n c^2 \right) \psi_n - {1\over 4} G^\alpha {}_{\mu\nu} G_\alpha {}^{\mu\nu}</math> | ||
जहाँ D, QCD गेज सहपरिवर्ती व्युत्पन्न है, n = 1, 2, ...6 [[क्वार्क]] प्रकार की गणना करता है, और <math>G^\alpha {}_{\mu\nu}\!</math> [[ग्लूऑन फील्ड स्ट्रेंथ टेंसर|ग्लूऑन क्षेत्र स्ट्रेंथ टेंसर]] है। उपरोक्त इलेक्ट्रोडायनामिक्स स्थिति के लिए, उपरोक्त शब्द क्वांटम की उपस्थिति केवल इसके ऐतिहासिक विकास को स्वीकार करती है। लाग्रंगियन और इसके गेज इनवेरियन को प्रत्येक प्रकार से शास्त्रीय | जहाँ D, QCD गेज सहपरिवर्ती व्युत्पन्न है, n = 1, 2, ...6 [[क्वार्क]] प्रकार की गणना करता है, और <math>G^\alpha {}_{\mu\nu}\!</math> [[ग्लूऑन फील्ड स्ट्रेंथ टेंसर|ग्लूऑन क्षेत्र स्ट्रेंथ टेंसर]] है। उपरोक्त इलेक्ट्रोडायनामिक्स स्थिति के लिए, उपरोक्त शब्द क्वांटम की उपस्थिति केवल इसके ऐतिहासिक विकास को स्वीकार करती है। लाग्रंगियन और इसके गेज इनवेरियन को प्रत्येक प्रकार से शास्त्रीय व्यवहार में तत्पर और प्रक्रिया किया जा सकता है।<ref name="Bleecker"/><ref name="jost"/> | ||
=== आइंस्टीन गुरुत्वाकर्षण === | === आइंस्टीन गुरुत्वाकर्षण === | ||
{{further|आइंस्टीन-हिल्बर्ट क्रिया}} | {{further|आइंस्टीन-हिल्बर्ट क्रिया}} | ||
पदार्थ क्षेत्रों की उपस्थिति में सामान्य सापेक्षता के लिए लैग्रेंज घनत्व है: | पदार्थ क्षेत्रों की उपस्थिति में सामान्य सापेक्षता के लिए लैग्रेंज घनत्व है: | ||
<math display="block">\mathcal{L}_\text{GR} = \mathcal{L}_\text{EH}+\mathcal{L}_\text{matter} = \frac{c^4}{16\pi G} \left(R-2\Lambda\right) + \mathcal{L}_\text{matter}</math> | <math display="block">\mathcal{L}_\text{GR} = \mathcal{L}_\text{EH}+\mathcal{L}_\text{matter} = \frac{c^4}{16\pi G} \left(R-2\Lambda\right) + \mathcal{L}_\text{matter}</math> | ||
जहाँ <math>\Lambda</math> [[ब्रह्माण्ड संबंधी स्थिरांक]] है, <math>R</math> [[वक्रता अदिश]] है, जो | जहाँ <math>\Lambda</math> [[ब्रह्माण्ड संबंधी स्थिरांक]] है, <math>R</math> [[वक्रता अदिश]] है, जो मापीय टेन्सर के साथ अनुबंधित [[रिक्की टेंसर]] है, और रिक्की टेन्सर [[क्रोनकर डेल्टा]] के साथ अनुबंधित [[रीमैन टेंसर]] का अभिन्न अंग <math> \mathcal{L}_\text{EH}</math> आइंस्टीन-हिल्बर्ट क्रिया के रूप में जाना जाता है। रीमैन टेंसर [[ज्वारीय बल]] टेंसर है, और क्रिस्टोफेल प्रतीकों और उसके डेरिवेटिव्स से बना है, जो अंतरिक्ष समय पर [[मीट्रिक कनेक्शन|मापीय कनेक्शन]] को परिभाषित करता है। गुरुत्वाकर्षण क्षेत्र को ऐतिहासिक रूप से मापीय टेन्सर के रूप में वर्णित किया गया था; आधुनिक दृष्टिकोण यह है कि संबंध अधिक मौलिक है। यह इस समझ के कारण है कि कोई अन्य-शून्य मरोड़ वाले टेंसर के साथ कनेक्शन लिख सकता है। ये ज्यामिति में परिवर्तन किए बिना मापीय को परिवर्तित कर देते हैं। जहां तक गुरुत्वाकर्षण की वास्तविक दिशा का सवाल है (उदाहरण के लिए पृथ्वी की सतह पर, यह नीचे की ओर संकेत करता है), यह रीमैन टेन्सर से आता है: यह वह चीज है जो गुरुत्वाकर्षण बल क्षेत्र का वर्णन करती है जो गतिमान पिंड अनुभूत करते हैं और प्रतिक्रिया करते हैं। (यह अंतिम कथन योग्य होना चाहिए: कोई बल क्षेत्र नहीं है; गतिमान पिंड कनेक्शन द्वारा वर्णित कई गुना पर [[ geodesics |जियोडेसिक्स]] का अनुसरण करते हैं। वे [[समानांतर परिवहन|"सीधी रेखा"]] में चलते हैं।) | ||
सामान्य सापेक्षता के लिए लाग्रंगियन को ऐसे रूप में भी लिखा जा सकता है जो इसे स्पष्ट रूप से यांग-मिल्स समीकरणों के समान बनाता है। इसे आइंस्टीन-यांग-मिल्स क्रिया सिद्धांत कहा जाता है। यह इस विषय पर ध्यान देकर किया जाता है कि अधिकांश डिफरेंशियल ज्योमेट्री बंडलों पर एफ़िन कनेक्शन और इच्छानुसार रूप से लेट ग्रुप के साथ बंडलों पर उचित कार्य करती है। फिर, उस समरूपता समूह के लिए SO(3,1) में प्लगिंग, अर्थात [[फ्रेम क्षेत्र]] के लिए, उपरोक्त समीकरण प्राप्त करता है।<ref name="Bleecker"/><ref name="jost"/> | सामान्य सापेक्षता के लिए लाग्रंगियन को ऐसे रूप में भी लिखा जा सकता है जो इसे स्पष्ट रूप से यांग-मिल्स समीकरणों के समान बनाता है। इसे आइंस्टीन-यांग-मिल्स क्रिया सिद्धांत कहा जाता है। यह इस विषय पर ध्यान देकर किया जाता है कि अधिकांश डिफरेंशियल ज्योमेट्री बंडलों पर एफ़िन कनेक्शन और इच्छानुसार रूप से लेट ग्रुप के साथ बंडलों पर उचित कार्य करती है। फिर, उस समरूपता समूह के लिए SO(3,1) में प्लगिंग, अर्थात [[फ्रेम क्षेत्र]] के लिए, उपरोक्त समीकरण प्राप्त करता है।<ref name="Bleecker"/><ref name="jost"/> | ||
Line 195: | Line 195: | ||
<math>T_{\mu\nu}</math> ऊर्जा संवेग टेन्सर है और इसके द्वारा परिभाषित किया गया है: | <math>T_{\mu\nu}</math> ऊर्जा संवेग टेन्सर है और इसके द्वारा परिभाषित किया गया है: | ||
<math display="block">T_{\mu\nu} \equiv \frac{-2}{\sqrt{-g}}\frac{\delta (\mathcal{L}_{\mathrm{matter}} \sqrt{-g}) }{\delta g^{\mu\nu}} = -2 \frac{\delta \mathcal{L}_\mathrm{matter}}{\delta g^{\mu\nu}} + g_{\mu\nu} \mathcal{L}_\mathrm{matter}\,.</math> | <math display="block">T_{\mu\nu} \equiv \frac{-2}{\sqrt{-g}}\frac{\delta (\mathcal{L}_{\mathrm{matter}} \sqrt{-g}) }{\delta g^{\mu\nu}} = -2 \frac{\delta \mathcal{L}_\mathrm{matter}}{\delta g^{\mu\nu}} + g_{\mu\nu} \mathcal{L}_\mathrm{matter}\,.</math> | ||
जहाँ <math>g</math> आव्यूह के रूप में माने जाने पर | जहाँ <math>g</math> आव्यूह के रूप में माने जाने पर मापीय टेंसर का निर्धारक होता है। सामान्यतः, सामान्य सापेक्षता में लैग्रेंज घनत्व की क्रिया का समाकलन माप <math display="inline">\sqrt{-g}\,d^4x </math> है, यह अभिन्न समन्वय को स्वतंत्र बनाता है, क्योंकि मापीय निर्धारक की जड़ [[जैकबियन निर्धारक]] के समान होती है। माइनस साइन मेट्रिक सिग्नेचर का परिणाम है (निर्धारक अपने आप में नेगेटिव है)।<ref name="zee">{{cite book|last1=Zee|first1=Anthony |title=संक्षेप में आइंस्टीन गुरुत्वाकर्षण|url=https://archive.org/details/einsteingravityn00zeea|url-access=limited|date=2013 |publisher=Princeton University Press|location=Princeton|isbn=9780691145587|pages=[https://archive.org/details/einsteingravityn00zeea/page/n366 344]–390}}</ref> यह पूर्व वर्णन किए गए वॉल्यूम फॉर्म का उदाहरण है, जो नॉन-समतल अंतरिक्ष समय में प्रकट होता है। | ||
=== सामान्य सापेक्षता में विद्युत चुंबकत्व === | === सामान्य सापेक्षता में विद्युत चुंबकत्व === | ||
Line 205: | Line 205: | ||
&= \mathcal{L}_\text{Maxwell} + \mathcal{L}_\text{Einstein–Hilbert}. | &= \mathcal{L}_\text{Maxwell} + \mathcal{L}_\text{Einstein–Hilbert}. | ||
\end{align}</math> | \end{align}</math> | ||
यह लाग्रंगियन उपरोक्त | यह लाग्रंगियन उपरोक्त समतल लाग्रंगियन में मिंकोवस्की मापीय को अधिक सामान्य (संभवतः घूर्णन) मापीय के साथ परिवर्तित करके <math> g_{\mu\nu}(x)</math> प्राप्त किया जाता है, हम इस लाग्रंगियन का उपयोग करके ईएम क्षेत्र की उपस्थिति में आइंस्टीन क्षेत्र समीकरण उत्पन्न कर सकते हैं। ऊर्जा-संवेग टेंसर है: | ||
<math display="block"> T^{\mu\nu}(x) = \frac{2}{\sqrt{-g(x)}}\frac{\delta}{\delta g_{\mu\nu}(x)}\mathcal{S}_\text{Maxwell}=\frac{1}{\mu_{0}}\left(F^{\mu}_{\text{ }\lambda}(x)F^{\nu\lambda}(x)-\frac{1}{4}g^{\mu\nu}(x)F_{\rho\sigma}(x)F^{\rho\sigma}(x)\right) </math> | <math display="block"> T^{\mu\nu}(x) = \frac{2}{\sqrt{-g(x)}}\frac{\delta}{\delta g_{\mu\nu}(x)}\mathcal{S}_\text{Maxwell}=\frac{1}{\mu_{0}}\left(F^{\mu}_{\text{ }\lambda}(x)F^{\nu\lambda}(x)-\frac{1}{4}g^{\mu\nu}(x)F_{\rho\sigma}(x)F^{\rho\sigma}(x)\right) </math> | ||
यह दिखाया जा सकता है कि यह ऊर्जा संवेग टेंसर ट्रेसलेस है, अर्थात | यह दिखाया जा सकता है कि यह ऊर्जा संवेग टेंसर ट्रेसलेस है, अर्थात | ||
Line 211: | Line 211: | ||
यदि हम आइंस्टीन क्षेत्र समीकरणों के दोनों पक्षों को ज्ञात करते हैं, तो हम प्राप्त करते हैं: | यदि हम आइंस्टीन क्षेत्र समीकरणों के दोनों पक्षों को ज्ञात करते हैं, तो हम प्राप्त करते हैं: | ||
<math display="block"> R = -\frac{8\pi G}{c^4}T </math> | <math display="block"> R = -\frac{8\pi G}{c^4}T </math> | ||
तो ऊर्जा संवेग टेन्सर की ट्रेसलेसनेस का अर्थ है कि विद्युत चुम्बकीय क्षेत्र में वक्रता | तो ऊर्जा संवेग टेन्सर की ट्रेसलेसनेस का अर्थ है कि विद्युत चुम्बकीय क्षेत्र में वक्रता अदिश विलुप्त हो जाता है। आइंस्टीन समीकरण तब हैं: | ||
<math display="block"> R^{\mu\nu} = \frac{8\pi G}{c^4}\frac{1}{\mu_0}\left({F^{\mu}}_{\lambda}(x)F^{\nu\lambda}(x) - \frac{1}{4} g^{\mu\nu}(x)F_{\rho\sigma}(x)F^{\rho\sigma}(x)\right) </math> | <math display="block"> R^{\mu\nu} = \frac{8\pi G}{c^4}\frac{1}{\mu_0}\left({F^{\mu}}_{\lambda}(x)F^{\nu\lambda}(x) - \frac{1}{4} g^{\mu\nu}(x)F_{\rho\sigma}(x)F^{\rho\sigma}(x)\right) </math> | ||
इसके अतिरिक्त, मैक्सवेल के समीकरण हैं: | इसके अतिरिक्त, मैक्सवेल के समीकरण हैं: | ||
Line 217: | Line 217: | ||
जहाँ <math>D_\mu</math> [[सहपरिवर्ती व्युत्पन्न]] है। मुक्त स्थान के लिए, हम वर्तमान टेन्सर <math> j^\mu = 0 </math> को शून्य के समान व्यस्थापित कर सकते हैं, मुक्त स्थान में गोलाकार रूप से सममित द्रव्यमान वितरण के निकट आइंस्टीन और मैक्सवेल दोनों के समीकरणों का समाधान करने से रीस्नर-नॉर्डस्ट्रॉम चार्ज ब्लैक होल की ओर जाता है। जिसमें परिभाषित रेखा तत्व (प्राकृतिक इकाइयों में लिखा गया है और आवेश {{mvar|Q}} के साथ) है:<ref name="zee"/> | जहाँ <math>D_\mu</math> [[सहपरिवर्ती व्युत्पन्न]] है। मुक्त स्थान के लिए, हम वर्तमान टेन्सर <math> j^\mu = 0 </math> को शून्य के समान व्यस्थापित कर सकते हैं, मुक्त स्थान में गोलाकार रूप से सममित द्रव्यमान वितरण के निकट आइंस्टीन और मैक्सवेल दोनों के समीकरणों का समाधान करने से रीस्नर-नॉर्डस्ट्रॉम चार्ज ब्लैक होल की ओर जाता है। जिसमें परिभाषित रेखा तत्व (प्राकृतिक इकाइयों में लिखा गया है और आवेश {{mvar|Q}} के साथ) है:<ref name="zee"/> | ||
<math display="block"> \mathrm{d}s^2 = \left(1-\frac{2M}{r}+\frac{Q^2}{r^2}\right)\mathrm{d}t^2- \left(1-\frac{2M}{r}+\frac{Q^2}{r^2}\right)^{-1}\mathrm{d}r^2 -r^2\mathrm{d}\Omega^2</math> | <math display="block"> \mathrm{d}s^2 = \left(1-\frac{2M}{r}+\frac{Q^2}{r^2}\right)\mathrm{d}t^2- \left(1-\frac{2M}{r}+\frac{Q^2}{r^2}\right)^{-1}\mathrm{d}r^2 -r^2\mathrm{d}\Omega^2</math> | ||
कलुजा-क्लेन सिद्धांत द्वारा विद्युत चुम्बकीय और गुरुत्वाकर्षण लाग्रंगियन (पांचवें आयाम का उपयोग करके) को एकत्र करने का संभावित प्रकार दिया गया है।<ref name="Bleecker"/>प्रभावी रूप से, पूर्व में दिए गए यांग-मिल्स समीकरणों के समान | कलुजा-क्लेन सिद्धांत द्वारा विद्युत चुम्बकीय और गुरुत्वाकर्षण लाग्रंगियन (पांचवें आयाम का उपयोग करके) को एकत्र करने का संभावित प्रकार दिया गया है।<ref name="Bleecker"/> प्रभावी रूप से, पूर्व में दिए गए यांग-मिल्स समीकरणों के समान एफ़िन बंडल बनाता है, और फिर 4-आयामी और 1-आयामी भागों के भिन्न-भिन्न कार्यों पर विचार करता है। इस प्रकार के [[हॉफ फिब्रेशन|कारक]], जैसे तथ्य यह है कि 7-गोले को 4-गोले और 3-गोले के उत्पाद के रूप में लिखा जा सकता है, या 11-गोला 4-गोले और 7-गोले का उत्पाद है, प्रारंभिक उत्साह के लिए उत्तरदायी है कि प्रत्येक उत्पाद का सिद्धांत मिल गया था। दुर्भाग्य से, 7-गोला इतना बड़ा प्रमाणित नहीं हुआ कि सभी मानक प्रारूप को घेर सके, इन आशाओं को पराजित कर दिया। | ||
=== अतिरिक्त उदाहरण === | === अतिरिक्त उदाहरण === | ||
* बीएफ प्रारूप लाग्रंगियन, पृष्ठभूमि क्षेत्र के लिए संक्षिप्त है, | * बीएफ प्रारूप लाग्रंगियन, पृष्ठभूमि क्षेत्र के लिए संक्षिप्त है, समतल अंतरिक्ष समय मैनिफोल्ड पर लिखे जाने पर नगण्य गतिकी के साथ प्रणाली का वर्णन करता है। स्थैतिक रूप से अन्य-नगण्य अंतरिक्ष समय पर, प्रणाली में अन्य-नगण्य शास्त्रीय समाधान होंगे, जिन्हें [[सॉलिटन]] या[[ एक पल | इंस्टेंटन]] के रूप में व्याख्या किया जा सकता है। [[सामयिक क्वांटम क्षेत्र सिद्धांत|संस्थानिक क्षेत्र सिद्धांत]] के लिए नींव बनाने वाले विभिन्न प्रकार के विस्तार उपस्थित हैं। | ||
== यह भी देखें == | == यह भी देखें == |
Revision as of 09:41, 29 April 2023
लाग्रंगियन क्षेत्र सिद्धांत शास्त्रीय क्षेत्र सिद्धांत की औपचारिकता है। यह लाग्रंगियन यांत्रिकी का क्षेत्र-सैद्धांतिक अनुरूप है। लाग्रंगियन यांत्रिकी का उपयोग स्वतंत्रता की डिग्री की सीमित संख्या के साथ असतत कणों की प्रणाली की गति का विश्लेषण करने के लिए किया जाता है। लाग्रंगियन क्षेत्र सिद्धांत निरंतरता और क्षेत्रों पर प्रस्तावित होता है, जिसमें स्वतंत्रता डिग्री की अनंत संख्या होती है।
क्षेत्रों पर लाग्रंगियन औपचारिकता के विकास के लिए प्रेरणा, सामान्यतः शास्त्रीय क्षेत्र सिद्धांत और क्वांटम क्षेत्र सिद्धांत के लिए उचित गणितीय आधार प्रदान करता है, जो औपचारिक कठिनाइयों से कुख्यात है जो इसे गणितीय सिद्धांत के रूप में अस्वीकार्य बनाता है। यहां प्रस्तुत लाग्रंगियन उनके क्वांटम समकक्षों के समान हैं, किन्तु, क्षेत्रों को शास्त्रीय क्षेत्रों के रूप में मानने और प्रमाणित होने के अतिरिक्त, परिभाषाएं प्रदान कर सकते हैं और आंशिक अंतर समीकरणों के पारंपरिक औपचारिक दृष्टिकोण के संगत गुणों के साथ समाधान प्राप्त कर सकते हैं। यह सोबोलेव रिक्त स्थान जैसे उचित प्रकार से चित्रित गुणों वाले रिक्त स्थान पर समाधान तत्पर करने में सक्षम बनाता है। यह विभिन्न प्रमेयों को प्रदान करने में सक्षम बनाता है, अस्तित्व के प्रमाण से औपचारिक श्रृंखला के समान अभिसरण से लेकर संभावित सिद्धांत की सामान्य व्यवस्था होती है। इसके अतिरिक्त, रीमैनियन कई गुना और फाइबर बंडलों के सामान्यीकरण द्वारा अंतर्दृष्टि और स्पष्टता प्राप्त की जाती है, जिससे ज्यामितीय संरचना का स्पष्ट रूप से अध्ययन किया जा सकता है और गति के संबंधित समीकरणों से भिन्न किया जा सकता है। ज्यामितीय संरचना के स्पष्ट दृष्टिकोण ने विपरीत में ज्यामिति से अत्यधिक अमूर्त प्रमेयों को अंतर्दृष्टि प्राप्त करने के लिए उपयोग करने की अनुमति दी है, जिसमें चेर्न-गॉस-बोनट प्रमेय और रिमेंन-रोच प्रमेय से अतियाह-सिंगर इंडेक्स प्रमेय और चेर्न-साइमन्स सिद्धांत सम्मिलित हैं।
अवलोकन
क्षेत्र सिद्धांत में, स्वतंत्र चर को अंतरिक्ष समय (x, y, z, t) में घटना से परिवर्तित कर दिया जाता है, या सामान्यतः अभी भी रिमेंनियन मैनिफोल्ड पर बिंदु s द्वारा होता है। निर्भर चर को अंतरिक्ष समय में उस बिंदु पर क्षेत्र के मान से परिवर्तित कर दिया जाता है, जिससे कि गति की समीकरण क्रिया सिद्धांत के माध्यम से प्राप्त किए जा सकें, जिसे इस प्रकार लिखा गया है:
गणितीय योगों में, फाइबर बंडल पर फलन के रूप में लाग्रंगियन को व्यक्त करना सामान्य है, जिसमें फाइबर बंडल पर जियोडेसिक्स को निर्दिष्ट करने के रूप में यूलर-लग्रेंज समीकरणों की व्याख्या की जा सकती है। अब्राहम और मार्सडेन की पाठ्यपुस्तक[1] ने आधुनिक ज्यामितीय विचारों के संदर्भ में शास्त्रीय यांत्रिकी का प्रथम व्यापक विवरण प्रदान किया, अर्थात, स्पर्शरेखा कई गुना, सहानुभूतिपूर्ण कई गुना और संपर्क ज्यामिति के संदर्भ में होता है। बिलीकर की पाठ्यपुस्तक[2] ने गेज अपरिवर्तनीय फाइबर बंडलों के संदर्भ में भौतिकी में क्षेत्र सिद्धांतों की व्यापक प्रस्तुति प्रदान की। इस प्रकार के फॉर्मूलेशन पूर्व ज्ञात या संदिग्ध थे। जोस्ट[3] ज्यामितीय प्रस्तुति के साथ निरंतर है, हैमिल्टनियन और लाग्रंगियन रूपों के मध्य संबंध को स्पष्ट करते हुए, पूर्व सिद्धांतों से स्पिन कई गुना का वर्णन करते हुए, आदि। वर्तमान शोध अन्य-कठोर संबंध संरचनाओं पर केंद्रित है, (कभी-कभी "क्वांटम संरचनाएं" कहा जाता है) जिसमें घटना का स्थान लेता है। टेंसर बीजगणित द्वारा सदिश रिक्त स्थान होता है। यह शोध क्वांटम समूहों की एफाइन लाइ बीजगणित के रूप में सफलता की समझ से प्रेरित है (लाइ समूह अर्थ में कठोर हैं, क्योंकि वे अपने लाइ बीजगणित द्वारा निर्धारित किए जाते हैं। जब टेन्सर बीजगणित पर सुधार किया जाता है, तो वे फ्लॉपी हो जाते हैं, स्वतंत्रता की अनंत डिग्री होती है ; उदाहरण के लिए वीरासोरो बीजगणित देखें।)
परिभाषाएँ
लाग्रंगियन क्षेत्र सिद्धांत में, सामान्यीकृत निर्देशांक के समारोह के रूप में लाग्रंगियन को लाग्रंगियन घनत्व द्वारा प्रतिस्थापित किया जाता है, प्रणाली में क्षेत्रों का कार्य और उनके डेरिवेटिव, और संभवतः अंतरिक्ष और समय स्वयं को निर्देशित करता है। क्षेत्र सिद्धांत में, स्वतंत्र चर t को अंतरिक्ष समय में घटना (x, y, z, t) से परिवर्तित कर दिया जाता है, या इससे भी अधिक सामान्यतः कई गुना पर बिंदु s द्वारा प्रतिस्थापित किया जाता है।
प्रायः, लाग्रंगियन घनत्व को केवल लाग्रंगियन के रूप में संदर्भित किया जाता है।
अदिश क्षेत्र
अदिश क्षेत्र के लिए , लाग्रंगियन घनत्व रूप निम्न प्रकार है:[nb 1][4]
सदिश क्षेत्र, टेन्सर क्षेत्र, स्पिनर क्षेत्र
उपरोक्त को सदिश क्षेत्रों, टेंसर क्षेत्रों और स्पिनर क्षेत्रों के लिए सामान्यीकृत किया जा सकता है। भौतिकी में, फर्मियन का वर्णन स्पिनर क्षेत्र द्वारा किया जाता है। बोसॉन का वर्णन टेन्सर क्षेत्र द्वारा किया जाता है, जिसमें विशेष स्थितियों के रूप में अदिश और सदिश क्षेत्र सम्मिलित हैं।
उदाहरण के लिए, यदि वास्तविक संख्या-मूल्यवान अदिश क्षेत्र, हैं, तो क्षेत्र कई गुना है, यदि क्षेत्र वास्तविक सदिश क्षेत्र है, तो क्षेत्र मैनिफोल्ड समरूप है।
क्रिया
लाग्रंगियन के समय अभिन्न को S द्वारा निरूपित क्रिया कहा जाता है। क्षेत्र सिद्धांत में, लाग्रंगियन L के मध्य कभी-कभी अंतर किया जाता है, जिसमें से समय अभिन्न क्रिया है:
मात्रा रूप
गुरुत्वाकर्षण की उपस्थिति में या सामान्य घूर्णन निर्देशांक का उपयोग करते समय, लाग्रंगियन घनत्व का कारक सम्मिलित होगा, यह सुनिश्चित करता है कि क्रिया सामान्य समन्वय परिवर्तनों के अंतर्गत अपरिवर्तनीय है। गणितीय साहित्य में, अंतरिक्ष समय को रीमैनियन मैनिफोल्ड के रूप में लिया जाता है, और तब अभिन्न मात्रा रूप बन जाता है:
यूलर–लैग्रेंज समीकरण
यूलर-लैग्रेंज समीकरण क्षेत्र समय के कार्य के रूप में जियोडेसिक प्रवाह का वर्णन करते हैं। संबंध में कार्यात्मक व्युत्पन्न लेना प्राप्त करता है:
उदाहरण
लाग्रंगियन के संदर्भ में क्षेत्रों पर बड़ी संख्या में भौतिक प्रणालियां प्रस्तुत की गई हैं। नीचे क्षेत्र सिद्धांत पर भौतिकी की पाठ्यपुस्तकों में पाए जाने वाले कुछ सबसे सामान्य प्रारूप हैं।
न्यूटोनियन गुरुत्वाकर्षण
न्यूटोनियन गुरुत्वाकर्षण के लिए लाग्रंगियन घनत्व है:
इस लाग्रंगियन को इस रूप में लिखा जा सकता है , के साथ गतिज पद और अंतःक्रिया प्रदान करता है, संभावित पद है। समय के साथ परिवर्तनों से निवारण के लिए इसे कैसे संशोधित किया जा सकता है, इसके लिए नॉर्डस्ट्रॉम के गुरुत्वाकर्षण के सिद्धांत को भी देखें। अदिश क्षेत्र सिद्धांत के अगले उदाहरण में इस रूप को दोहराया गया है।
Φ के संबंध में अभिन्न की भिन्नता है:
अदिश क्षेत्र सिद्धांत
क्षमता में गतिमान अदिश क्षेत्र के लिए लाग्रंगियन रूप में लिखा जा सकता है:
सिग्मा प्रारूप लाग्रंगियन
सिग्मा प्रारूप अदिश बिंदु कण की गति का वर्णन करता है जो रिमेंनियन मैनिफोल्ड पर जाने के लिए विवश है, जैसे कि वृत्त या गोला में होता है। यह अदिश और सदिश क्षेत्र की स्थिति को सामान्यीकृत करता है, अर्थात, समतल मैनिफोल्ड पर जाने के लिए विवश क्षेत्र होता है। लाग्रंगियन सामान्यतः तीन समकक्ष रूपों में लिखा जाता है:
सामान्यतः, सिग्मा प्रारूप सामयिक सॉलिटॉन समाधान प्रदर्शित करते हैं। इनमें से सबसे प्रसिद्ध और उचित प्रकार से अध्ययन किया गया स्किर्मियन है, जो समय की परीक्षा पर उचित न्यूक्लियॉन के प्रारूप के रूप में कार्य करता है।
विशेष सापेक्षता में विद्युत चुंबकत्व
बिंदु कण, आवेशित कण पर विचार करें, जो विद्युत चुम्बकीय क्षेत्र के साथ परस्पर क्रिया करता है। सम्बन्ध के नियमानुसार है:
इसके अतिरिक्त के संबंध में भिन्न, हम प्राप्त करते हैं:
टेन्सर संकेतन का उपयोग करके, हम यह सब अधिक सघन रूप से लिख सकते हैं। पद वास्तव में दो चार-सदिशों का आंतरिक उत्पाद है। वास्तव में दो चार-सदिश का आंतरिक गुणनफल है। हम आवेश घनत्व को वर्तमान चार-सदिश में और क्षमता को संभावित 4-सदिश में पैकेज करते हैं। ये दो नए सदिश हैं:
विद्युत चुंबकत्व और यांग-मिल्स समीकरण
विभेदक रूपों का उपयोग करते हुए, (छद्म-) रीमैनियन मैनिफोल्ड पर वैक्यूम में विद्युत चुम्बकीय एक्शन S, लिखा जा सकता है (प्राकृतिक इकाइयों का उपयोग करके, c = ε0 = 1) जैसा
A क्षेत्र को U(1)-फाइबर बंडल पर एफाइन कनेक्शन के रूप में समझा जा सकता है। अर्थात्, क्लासिकल विद्युतगतिकी, इसके सभी प्रभाव और समीकरण, मिन्कोवस्की अंतरिक्ष समय पर वृत्त बंडल के रूप में प्रत्येक प्रकार से अध्ययन किये जा सकते हैं।
यांग-मिल्स समीकरणों को उसी रूप में लिखा जा सकता है जैसा ऊपर दिया गया है, विद्युत चुंबकत्व के लाई समूह U(1) को इच्छानुसार रूप से लाई समूह द्वारा प्रतिस्थापित करके किया जाता है। मानक प्रारूप में, इसे पारंपरिक रूप से लिया जाता है। चूँकि सामान्य स्थिति रुचि की है। सभी स्थितियों में, किसी भी मात्रा का प्रदर्शन करने की कोई आवश्यकता नहीं है। यद्यपि यांग-मिल्स समीकरण ऐतिहासिक रूप से क्वांटम क्षेत्र सिद्धांत में निहित हैं, उपरोक्त समीकरण विशुद्ध रूप से शास्त्रीय हैं।[2][3]
चेर्न-सिमंस कार्यात्मक
उपरोक्त के समान ही, क्रिया को आयाम में अल्प माना जा सकता है, अर्थात संपर्क ज्यामिति सेटिंग में होता है। यह चेर्न-साइमन्स रूप देता है। चेर्न-साइमन्स कार्यात्मक के रूप में लिखा गया है:
गिंज़बर्ग-लैंडौ लग्रांगियन
गिन्ज़बर्ग-लैंडौ सिद्धांत के लिए लाग्रंगियन घनत्व अदिश क्षेत्र सिद्धांत के लिए लाग्रंगियन को यांग-मिल्स क्रिया के लिए लाग्रंगियन के साथ जोड़ता है। इसे इस प्रकार लिखा जा सकता है:[7]
डिराक लाग्रंगियन
डिराक क्षेत्र के लिए लाग्रंगियन घनत्व है:[8]
क्वांटम इलेक्ट्रोडायनामिक लाग्रंगियन
क्वांटम इलेक्ट्रोडायनामिक्स के लिए लाग्रंगियन घनत्व डिराक क्षेत्र के लिए लाग्रंगियन को गेज-इनवेरिएंट प्रकार से इलेक्ट्रोडायनामिक्स के लिए लाग्रंगियन के साथ जोड़ता है। यह है:
क्वांटम क्रोमोडायनामिक लाग्रंगियन
क्वांटम क्रोमोडायनामिक्स के लिए लाग्रंगियन घनत्व या अधिक बड़े स्तर पर डिराक स्पिनरों के लिए लाग्रंगियन को यांग-मिल्स एक्शन के लिए लाग्रंगियन के साथ जोड़ता है, जो गेज क्षेत्र की गतिशीलता का वर्णन करता है; संयुक्त लाग्रंगियन गेज अपरिवर्तनीय है। इसे इस प्रकार लिखा जा सकता है:[9]
आइंस्टीन गुरुत्वाकर्षण
पदार्थ क्षेत्रों की उपस्थिति में सामान्य सापेक्षता के लिए लैग्रेंज घनत्व है:
सामान्य सापेक्षता के लिए लाग्रंगियन को ऐसे रूप में भी लिखा जा सकता है जो इसे स्पष्ट रूप से यांग-मिल्स समीकरणों के समान बनाता है। इसे आइंस्टीन-यांग-मिल्स क्रिया सिद्धांत कहा जाता है। यह इस विषय पर ध्यान देकर किया जाता है कि अधिकांश डिफरेंशियल ज्योमेट्री बंडलों पर एफ़िन कनेक्शन और इच्छानुसार रूप से लेट ग्रुप के साथ बंडलों पर उचित कार्य करती है। फिर, उस समरूपता समूह के लिए SO(3,1) में प्लगिंग, अर्थात फ्रेम क्षेत्र के लिए, उपरोक्त समीकरण प्राप्त करता है।[2][3]
इस लाग्रंगियन को यूलर-लैग्रेंज समीकरण में प्रतिस्थापित करना और मेट्रिक टेन्सर लेना क्षेत्र के रूप में, हम आइंस्टीन क्षेत्र समीकरण प्राप्त करते हैं:
सामान्य सापेक्षता में विद्युत चुंबकत्व
सामान्य सापेक्षता में विद्युत चुंबकत्व के लैग्रेंज घनत्व में आइंस्टीन-हिल्बर्ट क्रिया भी सम्मिलित है। शुद्ध विद्युत चुम्बकीय लाग्रंगियन वास्तव में लाग्रंगियन स्थिति है:
अतिरिक्त उदाहरण
- बीएफ प्रारूप लाग्रंगियन, पृष्ठभूमि क्षेत्र के लिए संक्षिप्त है, समतल अंतरिक्ष समय मैनिफोल्ड पर लिखे जाने पर नगण्य गतिकी के साथ प्रणाली का वर्णन करता है। स्थैतिक रूप से अन्य-नगण्य अंतरिक्ष समय पर, प्रणाली में अन्य-नगण्य शास्त्रीय समाधान होंगे, जिन्हें सॉलिटन या इंस्टेंटन के रूप में व्याख्या किया जा सकता है। संस्थानिक क्षेत्र सिद्धांत के लिए नींव बनाने वाले विभिन्न प्रकार के विस्तार उपस्थित हैं।
यह भी देखें
- विविधताओं की गणना
- सहसंयोजक शास्त्रीय क्षेत्र सिद्धांत
- यूलर-लैग्रेंज समीकरण
- कार्यात्मक व्युत्पन्न
- कार्यात्मक अभिन्न
- सामान्यीकृत निर्देशांक
- हैमिल्टनियन यांत्रिकी
- हैमिल्टनियन क्षेत्र सिद्धांत
- काइनेटिक शब्द
- लाग्रंगियन और ऑयलेरियन निर्देशांक
- लाग्रंगियन यांत्रिकी
- लाग्रंगियन बिंदु
- लाग्रंगियन बिंदु
- नोथेर प्रमेय
- ऑनसेजर-मचलूप फलन
- न्यूनतम क्रिया का सिद्धांत
- अदिश क्षेत्र सिद्धांत
टिप्पणियाँ
- ↑ It is a standard abuse of notation to abbreviate all the derivatives and coordinates in the Lagrangian density as follows:
see four-gradient. The μ is an index which takes values 0 (for the time coordinate), and 1, 2, 3 (for the spatial coordinates), so strictly only one derivative or coordinate would be present. In general, all the spatial and time derivatives will appear in the Lagrangian density, for example in Cartesian coordinates, the Lagrangian density has the full form:Here we write the same thing, but using ∇ to abbreviate all spatial derivatives as a vector.
उद्धरण
- ↑ Ralph Abraham and Jerrold E. Marsden, (1967) "Foundations of Mechanics"
- ↑ 2.0 2.1 2.2 2.3 2.4 2.5 David Bleecker, (1981) "Gauge Theory and Variational Principles" Addison-Wesley
- ↑ 3.0 3.1 3.2 3.3 3.4 3.5 Jurgen Jost, (1995) "Riemannian Geometry and Geometric Analysis", Springer
- ↑ Mandl, F.; Shaw, G. (2010). "Lagrangian Field Theory". क्वांटम फील्ड थ्योरी (2nd ed.). Wiley. p. 25–38. ISBN 978-0-471-49684-7.
- ↑ 5.0 5.1 5.2 Zee, Anthony (2013). संक्षेप में आइंस्टीन गुरुत्वाकर्षण. Princeton: Princeton University Press. pp. 344–390. ISBN 9780691145587.
- ↑ Cahill, Kevin (2013). भौतिक गणित. Cambridge: Cambridge University Press. ISBN 9781107005211.
- ↑ Jost, Jürgen (2002). "The Ginzburg–Landau Functional". रीमानियन ज्यामिति और ज्यामितीय विश्लेषण (Third ed.). Springer-Verlag. pp. 373–381. ISBN 3-540-42627-2.
- ↑ Itzykson-Zuber, eq. 3-152
- ↑ Claude Itykson and Jean-Bernard Zuber, (1980) "Quantum Field Theory"