असतत समूह: Difference between revisions
(Created page with "{{Group theory sidebar}} File:Number-line.svg|right|thumb|300px|उनके सामान्य टोपोलॉजी वाले पूर्णांक वास...") |
No edit summary |
||
(5 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
{{Group theory sidebar}} | {{Group theory sidebar}} | ||
[[File:Number-line.svg|right|thumb|300px|उनके सामान्य | [[File:Number-line.svg|right|thumb|300px|उनके सामान्य सांस्थितिक वाले पूर्णांक वास्तविक संख्याओं के असंतत उपसमूह हैं।]]गणित में, एक [[टोपोलॉजिकल समूह|सांस्थितिक समूह]] G को 'असंतत समूह' कहा जाता है यदि इसमें कोई [[सीमा बिंदु]] नहीं है (अर्थात, G में प्रत्येक अवयव के लिए, एक निकटवर्ती होता है जिसमें मात्र वह अवयव होता है)। समतुल्य रूप से, समूह G असंतत है यदि और मात्र यदि इसकी [[पहचान तत्व|तत्समक अवयव]] [[पृथक बिंदु]] है।{{sfn|Pontrjagin|1946|p=54}} | ||
सांस्थितिक समूह G का एक [[उपसमूह]] H 'असंतत उपसमूह' है यदि G से [[प्रेरित टोपोलॉजी|प्रेरित सांस्थितिक]] के साथ संपन्न होने पर H असंतत है। दूसरे शब्दों में G में तत्समक का निकटवर्ती है जिसमें H का कोई अन्य अवयव नहीं है। उदाहरण के लिए, [[पूर्णांक]], 'Z', [[वास्तविक संख्या]], 'R' (मानक [[मीट्रिक स्थान|मीटरी समष्टि]] के साथ) का असंतत उपसमूह बनाते हैं, परन्तु परिमेय संख्याएँ, 'Q', ऐसा नहीं करते हैं। | |||
किसी भी समूह को [[असतत टोपोलॉजी]] से संपन्न किया जा सकता है, जिससे यह | किसी भी समूह को [[असतत टोपोलॉजी|असंतत सांस्थितिक]] से संपन्न किया जा सकता है, जिससे यह असंतत सांस्थितिक समूह बन जाता है। चूंकि अलग समष्टि से प्रत्येक प्रतिचित्र [[निरंतर (टोपोलॉजी)|निरंतर (सांस्थितिक]]) है, असंतत समूहों के बीच सांस्थितिक समरूपता वस्तुतः अंतर्निहित समूहों के बीच समूह समरूपता हैं। इसलिए, [[समूहों की श्रेणी]] और असंतत समूहों की श्रेणी के बीच [[श्रेणियों की समरूपता]] है। असंतत समूहों को इसलिए उनके अंतर्निहित (गैर-सांस्थितिक) समूहों के साथ पहचाना जा सकता है। | ||
कुछ अवसर ऐसे होते हैं जब एक | कुछ अवसर ऐसे होते हैं जब एक सांस्थितिक समूह या [[झूठ समूह|लाइ समूह]] उपयोगी रूप से असंतत सांस्थितिक, 'प्रकृति के विरुद्ध' के साथ संपन्न होते है। यह उदाहरण के लिए [[बोह्र संघनन]] के सिद्धांत में होते है, और लाइ समूहों के [[समूह कोहोलॉजी|समूह सह समरूपता]] सिद्धांत में होते है। | ||
असंतत [[आइसोमेट्री समूह|समदूरीकता समूह]] एक समदूरीकता समूह है जैसे कि मीटरी समष्टि के प्रत्येक बिंदु के लिए समदूरीकता के अंतर्गत बिंदु के प्रतिचित्रों के समुच्चय [[असतत सेट|असंतत समुच्चय]] है। असंतत [[समरूपता समूह]] समरूपता समूह है जो असंतत समदूरीकता समूह है। | |||
== गुण == | == गुण == | ||
चूंकि | चूंकि सांस्थितिक समूह [[सजातीय स्थान|सजातीय समष्टि]] हैं, इसलिए यह निर्धारित करने के लिए कि सांस्थितिक समूह असंतत है, किसी को मात्र एक बिंदु पर देखने की आवश्यकता है। विशेष रूप से, सांस्थितिक समूह मात्र तभी असंतत होता है, जब तत्समक वाला [[सिंगलटन (गणित)|एकल (गणित]]) [[खुला सेट|विवृत समुच्चय]] हो। | ||
असंतत समूह एक शून्य-आयामी लाइ समूह के समान है ([[बेशुमार|अगणनीय]] असंतत समूह दूसरे-गणनीय नहीं हैं, इसलिए जिन लेखकों को इस स्वयंसिद्ध को संतुष्ट करने के लिए लाइ समूहों की आवश्यकता होती है, वे इन समूहों को लाइ समूह नहीं मानते हैं)। असंतत समूह का [[पहचान घटक|तत्समक घटक]] मात्र [[तुच्छ समूह|साधारण समूह]] है जबकि [[घटकों का समूह]] समूह के लिए ही समरूप है। | |||
चूंकि परिमित | चूंकि परिमित समुच्चय पर एकमात्र [[हॉसडॉर्फ टोपोलॉजी|हॉसडॉर्फ़ सांस्थितिक]] असंतत है, परिमित हॉसडॉर्फ़ सांस्थितिक समूह को आवश्यक रूप से असंतत होना चाहिए। इससे यह निष्कर्ष निकलता है कि हॉसडॉर्फ़ समूह का प्रत्येक परिमित उपसमूह असंतत होता है। | ||
G का एक | G का एक असंतत उपसमूह H 'सह संहत' है, यदि G का एक [[कॉम्पैक्ट उपसमुच्चय|संहत उपसमुच्चय]] K है जैसे कि HK = G। | ||
असंतत [[सामान्य उपसमूह]] समूहों को आच्छादित करने और [[स्थानीय रूप से आइसोमॉर्फिक समूह|समष्टिीय रूप से समरूप समूहों]] के सिद्धांत में महत्वपूर्ण भूमिका निभाते हैं। एक सम्बद्ध समष्टि समूह G का एक असंतत सामान्य उपसमूह आवश्यक रूप से G के [[केंद्र (समूह सिद्धांत)|केंद्र (समूह सिद्धांत]]) में स्थित है और इसलिए [[एबेलियन समूह|अबेलियन समूह]] है। | |||
अन्य गुण: | अन्य गुण: | ||
* प्रत्येक | * प्रत्येक असंतत समूह [[पूरी तरह से डिस्कनेक्ट|पूर्ण रूप से असंबद्ध]] हो गया है | ||
* | *असंतत समूह का प्रत्येक उपसमूह असंतत होता है। | ||
* | * असंतत समूह का प्रत्येक [[भागफल समूह]] असंतत होता है। | ||
* | *असंतत समूहों की सीमित संख्या का गुणनफल असंतत होता है। | ||
*एक अलग समूह [[कॉम्पैक्ट समूह]] है | *एक अलग समूह [[कॉम्पैक्ट समूह|संहत समूह]] है यदि और मात्र यदि यह परिमित है। | ||
* प्रत्येक | * प्रत्येक असंतत समूह समष्टिीय रूप से संहत समूह है। | ||
* | * हॉसडॉर्फ़ समूह का प्रत्येक असंतत उपसमूह संवृत है। | ||
* | *संहत हॉसडॉर्फ़ समूह का प्रत्येक असंतत उपसमूह परिमित होता है। | ||
== उदाहरण == | == उदाहरण == | ||
* [[फ्रीज़ समूह]] और [[वॉलपेपर समूह]] यूक्लिडियन | * [[फ्रीज़ समूह]] और [[वॉलपेपर समूह]] यूक्लिडियन तल के समदूरीकता समूह के असंतत उपसमूह हैं। वॉलपेपर समूह सह-संहत हैं, परन्तु फ्रीज़ समूह नहीं हैं। | ||
* | * [[क्रिस्टलोग्राफिक समूह|क्रिस्टललेखीय समूह]] का अर्थ सामान्यतः कुछ यूक्लिडियन तल के समदूरीकता का सहसंहत, असंतत उपसमूह होता है। कभी-कभी, यद्यपि, एक क्रिस्टललेखीय समूह एक शून्य शक्तिशाली या हल करने योग्य लाइ समूह का एक सहसंहत असंतत उपसमूह हो सकता है। | ||
* प्रत्येक [[त्रिभुज समूह]] T गोले के | * प्रत्येक [[त्रिभुज समूह]] T गोले के समदूरीकता समूह का असंतत उपसमूह है (जब T परिमित है), यूक्लिडियन तल (जब T में एक उपसमूह के परिमित सूचकांक का 'Z' + 'Z' उपसमूह है), या यूक्लिडियन तल होता है। | ||
* फुचियन समूह, परिभाषा के अनुसार, | * फुचियन समूह, परिभाषा के अनुसार, अतिपरवलयिक तल के समदूरीकता समूह के असंतत उपसमूह हैं। | ||
** एक फ्यूचियन समूह जो | ** एक फ्यूचियन समूह जो अतिपरवलयिक तल के ऊपरी अर्ध-तल मॉडल पर अभिविन्यास को संरक्षित करते है और कार्य करते है, लाई समूह PSL (2,'R') का असंतत उपसमूह है, जो अतिपरवलयिक तल के ऊपरी अर्ध-तल मॉडल के समदूरीकता को संरक्षित करने वाले अभिविन्यास का समूह है। | ||
** एक फ्यूचियन समूह को कभी-कभी | ** एक फ्यूचियन समूह को कभी-कभी अतिपरवलयिक तल को समदूरीक रूप से त्रि-आयामी अतिपरवलयिक समष्टि में अंत: स्थापन करके और पूरे समष्टि में तल पर समूह क्रिया को विस्तारित करके [[क्लेनियन समूह]] की विशेष स्थिति के रूप में माना जाता है। | ||
** [[मॉड्यूलर समूह]] PSL(2,'Z') को PSL(2,'R') के | ** [[मॉड्यूलर समूह|प्रतिरूपक समूह]] PSL (2,'Z') को PSL (2,'R') के असंतत उपसमूह के रूप में माना जाता है। प्रतिरूपक समूह PSL (2, 'R') में एक जाली है, परन्तु यह सहसंहत नहीं है। | ||
* क्लेयनियन समूह, परिभाषा के अनुसार, [[अतिशयोक्तिपूर्ण स्थान]] के | * क्लेयनियन समूह, परिभाषा के अनुसार, [[अतिशयोक्तिपूर्ण स्थान|अतिपरवलयिक समष्टि]] के समदूरीकता समूह के असंतत उपसमूह हैं। इनमें [[अर्ध-फ्यूचियन समूह]] सम्मिलित हैं। | ||
** एक क्लेयनियन समूह जो | ** एक क्लेयनियन समूह जो अभिविन्यास को संरक्षित करते है और अतिपरवलयिक 3-समष्टि के ऊपरी अर्ध समष्टि मॉडल पर कार्य करते है, लाई समूह PSL (2,'C') का एक असंतत उपसमूह है, जो [[अतिशयोक्तिपूर्ण 3-अंतरिक्ष|अतिपरवलयिक 3-समष्टि]] के ऊपरी अर्ध समष्टि मॉडल के समदूरीकता को संरक्षित करने वाले अभिविन्यास का समूह है। | ||
* | * लाइ समूह में [[जाली (असतत उपसमूह)|जाली (असंतत उपसमूह]]) एक असंतत उपसमूह है जैसे कि भागफल समष्टि का हार माप परिमित है। | ||
== यह भी देखें == | == यह भी देखें == | ||
* [[क्रिस्टलोग्राफिक बिंदु समूह]] | * [[क्रिस्टलोग्राफिक बिंदु समूह|क्रिस्टललेखीय बिंदु समूह]] | ||
* सर्वांगसमता उपसमूह | * सर्वांगसमता उपसमूह | ||
* अंकगणितीय समूह | * अंकगणितीय समूह | ||
*[[ज्यामितीय समूह सिद्धांत]] | *[[ज्यामितीय समूह सिद्धांत]] | ||
* [[कम्प्यूटेशनल समूह सिद्धांत]] | * [[कम्प्यूटेशनल समूह सिद्धांत|अभिकलनात्मक समूह सिद्धांत]] | ||
* [[स्वतंत्र रूप से बंद]] | * [[स्वतंत्र रूप से बंद|स्वतंत्र रूप से संवृत]] | ||
* [[नि: शुल्क नियमित सेट]] | * [[नि: शुल्क नियमित सेट|मुक्त नियमित समुच्चय]] | ||
== उद्धरण == | == उद्धरण == | ||
Line 63: | Line 63: | ||
{{refend}} | {{refend}} | ||
{{DEFAULTSORT:Discrete Group}} | {{DEFAULTSORT:Discrete Group}} | ||
[[Category:Created On 01/05/2023|Discrete Group]] | |||
[[Category:Machine Translated Page|Discrete Group]] | |||
[[Category: Machine Translated Page]] | [[Category:Mathematics sidebar templates|Discrete Group]] | ||
[[Category: | [[Category:Pages with script errors|Discrete Group]] | ||
[[Category:Physics sidebar templates|Discrete Group]] | |||
[[Category:Sidebars with styles needing conversion|Discrete Group]] | |||
[[Category:Templates Translated in Hindi|Discrete Group]] | |||
[[Category:Templates Vigyan Ready|Discrete Group]] | |||
[[Category:असतत समूह| असतत समूह ]] | |||
[[Category:ज्यामितीय समूह सिद्धांत|Discrete Group]] |
Latest revision as of 17:10, 16 May 2023
बीजगणितीय संरचना → 'समूह सिद्धांत' समूह सिद्धांत |
---|
गणित में, एक सांस्थितिक समूह G को 'असंतत समूह' कहा जाता है यदि इसमें कोई सीमा बिंदु नहीं है (अर्थात, G में प्रत्येक अवयव के लिए, एक निकटवर्ती होता है जिसमें मात्र वह अवयव होता है)। समतुल्य रूप से, समूह G असंतत है यदि और मात्र यदि इसकी तत्समक अवयव पृथक बिंदु है।[1]
सांस्थितिक समूह G का एक उपसमूह H 'असंतत उपसमूह' है यदि G से प्रेरित सांस्थितिक के साथ संपन्न होने पर H असंतत है। दूसरे शब्दों में G में तत्समक का निकटवर्ती है जिसमें H का कोई अन्य अवयव नहीं है। उदाहरण के लिए, पूर्णांक, 'Z', वास्तविक संख्या, 'R' (मानक मीटरी समष्टि के साथ) का असंतत उपसमूह बनाते हैं, परन्तु परिमेय संख्याएँ, 'Q', ऐसा नहीं करते हैं।
किसी भी समूह को असंतत सांस्थितिक से संपन्न किया जा सकता है, जिससे यह असंतत सांस्थितिक समूह बन जाता है। चूंकि अलग समष्टि से प्रत्येक प्रतिचित्र निरंतर (सांस्थितिक) है, असंतत समूहों के बीच सांस्थितिक समरूपता वस्तुतः अंतर्निहित समूहों के बीच समूह समरूपता हैं। इसलिए, समूहों की श्रेणी और असंतत समूहों की श्रेणी के बीच श्रेणियों की समरूपता है। असंतत समूहों को इसलिए उनके अंतर्निहित (गैर-सांस्थितिक) समूहों के साथ पहचाना जा सकता है।
कुछ अवसर ऐसे होते हैं जब एक सांस्थितिक समूह या लाइ समूह उपयोगी रूप से असंतत सांस्थितिक, 'प्रकृति के विरुद्ध' के साथ संपन्न होते है। यह उदाहरण के लिए बोह्र संघनन के सिद्धांत में होते है, और लाइ समूहों के समूह सह समरूपता सिद्धांत में होते है।
असंतत समदूरीकता समूह एक समदूरीकता समूह है जैसे कि मीटरी समष्टि के प्रत्येक बिंदु के लिए समदूरीकता के अंतर्गत बिंदु के प्रतिचित्रों के समुच्चय असंतत समुच्चय है। असंतत समरूपता समूह समरूपता समूह है जो असंतत समदूरीकता समूह है।
गुण
चूंकि सांस्थितिक समूह सजातीय समष्टि हैं, इसलिए यह निर्धारित करने के लिए कि सांस्थितिक समूह असंतत है, किसी को मात्र एक बिंदु पर देखने की आवश्यकता है। विशेष रूप से, सांस्थितिक समूह मात्र तभी असंतत होता है, जब तत्समक वाला एकल (गणित) विवृत समुच्चय हो।
असंतत समूह एक शून्य-आयामी लाइ समूह के समान है (अगणनीय असंतत समूह दूसरे-गणनीय नहीं हैं, इसलिए जिन लेखकों को इस स्वयंसिद्ध को संतुष्ट करने के लिए लाइ समूहों की आवश्यकता होती है, वे इन समूहों को लाइ समूह नहीं मानते हैं)। असंतत समूह का तत्समक घटक मात्र साधारण समूह है जबकि घटकों का समूह समूह के लिए ही समरूप है।
चूंकि परिमित समुच्चय पर एकमात्र हॉसडॉर्फ़ सांस्थितिक असंतत है, परिमित हॉसडॉर्फ़ सांस्थितिक समूह को आवश्यक रूप से असंतत होना चाहिए। इससे यह निष्कर्ष निकलता है कि हॉसडॉर्फ़ समूह का प्रत्येक परिमित उपसमूह असंतत होता है।
G का एक असंतत उपसमूह H 'सह संहत' है, यदि G का एक संहत उपसमुच्चय K है जैसे कि HK = G।
असंतत सामान्य उपसमूह समूहों को आच्छादित करने और समष्टिीय रूप से समरूप समूहों के सिद्धांत में महत्वपूर्ण भूमिका निभाते हैं। एक सम्बद्ध समष्टि समूह G का एक असंतत सामान्य उपसमूह आवश्यक रूप से G के केंद्र (समूह सिद्धांत) में स्थित है और इसलिए अबेलियन समूह है।
अन्य गुण:
- प्रत्येक असंतत समूह पूर्ण रूप से असंबद्ध हो गया है
- असंतत समूह का प्रत्येक उपसमूह असंतत होता है।
- असंतत समूह का प्रत्येक भागफल समूह असंतत होता है।
- असंतत समूहों की सीमित संख्या का गुणनफल असंतत होता है।
- एक अलग समूह संहत समूह है यदि और मात्र यदि यह परिमित है।
- प्रत्येक असंतत समूह समष्टिीय रूप से संहत समूह है।
- हॉसडॉर्फ़ समूह का प्रत्येक असंतत उपसमूह संवृत है।
- संहत हॉसडॉर्फ़ समूह का प्रत्येक असंतत उपसमूह परिमित होता है।
उदाहरण
- फ्रीज़ समूह और वॉलपेपर समूह यूक्लिडियन तल के समदूरीकता समूह के असंतत उपसमूह हैं। वॉलपेपर समूह सह-संहत हैं, परन्तु फ्रीज़ समूह नहीं हैं।
- क्रिस्टललेखीय समूह का अर्थ सामान्यतः कुछ यूक्लिडियन तल के समदूरीकता का सहसंहत, असंतत उपसमूह होता है। कभी-कभी, यद्यपि, एक क्रिस्टललेखीय समूह एक शून्य शक्तिशाली या हल करने योग्य लाइ समूह का एक सहसंहत असंतत उपसमूह हो सकता है।
- प्रत्येक त्रिभुज समूह T गोले के समदूरीकता समूह का असंतत उपसमूह है (जब T परिमित है), यूक्लिडियन तल (जब T में एक उपसमूह के परिमित सूचकांक का 'Z' + 'Z' उपसमूह है), या यूक्लिडियन तल होता है।
- फुचियन समूह, परिभाषा के अनुसार, अतिपरवलयिक तल के समदूरीकता समूह के असंतत उपसमूह हैं।
- एक फ्यूचियन समूह जो अतिपरवलयिक तल के ऊपरी अर्ध-तल मॉडल पर अभिविन्यास को संरक्षित करते है और कार्य करते है, लाई समूह PSL (2,'R') का असंतत उपसमूह है, जो अतिपरवलयिक तल के ऊपरी अर्ध-तल मॉडल के समदूरीकता को संरक्षित करने वाले अभिविन्यास का समूह है।
- एक फ्यूचियन समूह को कभी-कभी अतिपरवलयिक तल को समदूरीक रूप से त्रि-आयामी अतिपरवलयिक समष्टि में अंत: स्थापन करके और पूरे समष्टि में तल पर समूह क्रिया को विस्तारित करके क्लेनियन समूह की विशेष स्थिति के रूप में माना जाता है।
- प्रतिरूपक समूह PSL (2,'Z') को PSL (2,'R') के असंतत उपसमूह के रूप में माना जाता है। प्रतिरूपक समूह PSL (2, 'R') में एक जाली है, परन्तु यह सहसंहत नहीं है।
- क्लेयनियन समूह, परिभाषा के अनुसार, अतिपरवलयिक समष्टि के समदूरीकता समूह के असंतत उपसमूह हैं। इनमें अर्ध-फ्यूचियन समूह सम्मिलित हैं।
- एक क्लेयनियन समूह जो अभिविन्यास को संरक्षित करते है और अतिपरवलयिक 3-समष्टि के ऊपरी अर्ध समष्टि मॉडल पर कार्य करते है, लाई समूह PSL (2,'C') का एक असंतत उपसमूह है, जो अतिपरवलयिक 3-समष्टि के ऊपरी अर्ध समष्टि मॉडल के समदूरीकता को संरक्षित करने वाले अभिविन्यास का समूह है।
- लाइ समूह में जाली (असंतत उपसमूह) एक असंतत उपसमूह है जैसे कि भागफल समष्टि का हार माप परिमित है।
यह भी देखें
- क्रिस्टललेखीय बिंदु समूह
- सर्वांगसमता उपसमूह
- अंकगणितीय समूह
- ज्यामितीय समूह सिद्धांत
- अभिकलनात्मक समूह सिद्धांत
- स्वतंत्र रूप से संवृत
- मुक्त नियमित समुच्चय
उद्धरण
- ↑ Pontrjagin 1946, p. 54.
संदर्भ
- Pontrjagin, Leon (1946). Topological Groups. Princeton University Press.
- "Discrete group of transformations", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
- "Discrete subgroup", Encyclopedia of Mathematics, EMS Press, 2001 [1994]