अनुरूप ज्यामिति: Difference between revisions
No edit summary |
No edit summary |
||
(6 intermediate revisions by 3 users not shown) | |||
Line 10: | Line 10: | ||
जहां λ वास्तविक मूल्यवान सुचारू कार्य है जिसे कई गुना परिभाषित किया गया है और इसे 'अनुरूप कारक' कहा जाता है। ऐसे आव्यूह के समकक्ष वर्ग को 'अनुरूप मापीय' या 'अनुरूप वर्ग' के रूप में जाना जाता है। इस प्रकार, अनुरूप मापीय को मापीय के रूप में माना जा सकता है जो केवल स्तर तक परिभाषित होता है। प्रायः अनुरूप आव्यूह को अनुरूप वर्ग में मापीय का चयन करके और चयन किये हुए मापीय के लिए केवल अनुरूप अपरिवर्तनीय निर्माण प्रारम्भ करके प्रक्रिया की जाती है। | जहां λ वास्तविक मूल्यवान सुचारू कार्य है जिसे कई गुना परिभाषित किया गया है और इसे 'अनुरूप कारक' कहा जाता है। ऐसे आव्यूह के समकक्ष वर्ग को 'अनुरूप मापीय' या 'अनुरूप वर्ग' के रूप में जाना जाता है। इस प्रकार, अनुरूप मापीय को मापीय के रूप में माना जा सकता है जो केवल स्तर तक परिभाषित होता है। प्रायः अनुरूप आव्यूह को अनुरूप वर्ग में मापीय का चयन करके और चयन किये हुए मापीय के लिए केवल अनुरूप अपरिवर्तनीय निर्माण प्रारम्भ करके प्रक्रिया की जाती है। | ||
अनुरूप मापीय 'अनुरूप रूप से | अनुरूप मापीय 'अनुरूप रूप से समतल मैनिफोल्ड' है यदि कोई मापीय इसका प्रतिनिधित्व करता है जो समतल है, सामान्य अर्थों में [[रीमैन वक्रता टेन्सर]] लुप्त हो जाता है। केवल अनुरूप वर्ग में मापीय शोध संभव हो सकता है जो प्रत्येक बिंदु के विवृत निकट में समतल होता है। जब इन स्थितियों में अंतर करना आवश्यक होता है, तो अंत वाले को स्थानीय रूप से समतल कहा जाता है, चूँकि प्रायः साहित्य में कोई भेद नहीं रखा जाता है। n-वृत्त स्थानीय रूप से अनुरूप समतल मैनिफोल्ड है जो इस अर्थ में विश्व स्तर पर अनुरूप रूप से समतल नहीं है, जबकि यूक्लिडियन स्थान, टोरस, या कोई भी अनुरूप मैनिफोल्ड जो यूक्लिडियन स्थान के विवृत उपसमुच्चय द्वारा कवर किया गया है (वैश्विक रूप से) इसमें अनुरूप रूप से समतल है। अनुरूप रूप से समतल मैनिफोल्ड स्थानीय रूप से मोबियस ज्यामिति के अनुरूप है, जिसका अर्थ है कि मोबियस ज्यामिति में कई गुना से [[स्थानीय भिन्नता]] को संरक्षित करने वाला कोण उपस्थित है। दो आयामों में, प्रत्येक अनुरूप मापीय स्थानीय रूप से समतल है। आयाम में {{nowrap|''n'' > 3}} अनुरूप मापीय स्थानीय रूप से समतल है यदि केवल इसका [[वेइल टेंसर]] लुप्त हो जाता है; आयाम में {{nowrap|1=''n'' = 3}}, यदि केवल [[कपास टेंसर|कॉटन टेंसर]] लुप्त हो जाता है। | ||
अनुरूप ज्यामिति में कई विशेषताएं हैं जो इसे (छद्म-) रीमैनियन ज्यामिति से | अनुरूप ज्यामिति में कई विशेषताएं हैं जो इसे (छद्म-) रीमैनियन ज्यामिति से भिन्न करती हैं। प्रथम यह है कि चूँकि (छद्म-) रिमेंनियन ज्यामिति में प्रत्येक बिंदु पर उचित प्रकार से परिभाषित मापीय है, अनुरूप ज्यामिति में केवल आव्यूह का वर्ग होता है। इस प्रकार स्पर्शरेखा सदिश की लंबाई को परिभाषित नहीं किया जा सकता है, किन्तु दो सदिशों के मध्य का कोण अभी भी परिभाषित किया जा सकता है। अन्य विशेषता यह है कि कोई [[लेवी-Civita कनेक्शन|लेवी-सिविता कनेक्शन]] नहीं है क्योंकि यदि g और λ<sup>2</sup>g अनुरूप संरचना के दो प्रतिनिधि हैं, तो g और λ<sup>2</sup>g के क्रिस्टोफेल प्रतीक सहमत नहीं होंगे। λ<sup>2</sup>g से जुड़े फलन में λ के अवकलज सम्मिलित होंगे जबकि g से संबद्ध नहीं होंगे। | ||
इन अंतरों के | इन अंतरों के अतिरिक्त, अनुरूप ज्यामिति अभी भी सुगम है। लेवी-सिविता कनेक्शन और [[वक्रता रूप]], चूँकि केवल परिभाषित किया जा रहा है जब अनुरूप संरचना के विशेष प्रतिनिधि को एकल कर दिया गया है, भिन्न प्रतिनिधि चयन किये जाने पर λ और इसके डेरिवेटिव से जुड़े कुछ परिवर्तन नियमों को पूर्ण करते हैं। विशेष रूप से, (3 से अधिक आयाम में) वेइल टेंसर λ पर निर्भर नहीं होता है, और इसलिए यह 'अनुरूप अपरिवर्तनीय' है। इसके अतिरिक्त, भले ही अनुरूप कई गुना पर कोई लेवी-सिविता कनेक्शन नहीं है, इसके अतिरिक्त [[अनुरूप कनेक्शन]] के साथ कार्य कर सकता है, जिसे संबंधित मोबियस ज्यामिति पर आधारित [[कार्टन कनेक्शन]] के प्रकार के रूप में या [[वील कनेक्शन]] के रूप में नियंत्रित किया जा सकता है। यह किसी को 'अनुरूप वक्रता' और अनुरूप संरचना के अन्य आविष्कारों को परिभाषित करने की अनुमति देता है। | ||
== मोबियस [[ज्यामिति]] == | == मोबियस [[ज्यामिति]] == | ||
Line 53: | Line 53: | ||
==== यूक्लिडियन अंतरिक्ष ==== | ==== यूक्लिडियन अंतरिक्ष ==== | ||
[[Image:Conformal grid before Möbius transformation.svg|thumb|right|मोबियस परिवर्तन से | [[Image:Conformal grid before Möbius transformation.svg|thumb|right|मोबियस परिवर्तन से पूर्व समन्वय ग्रिड]] | ||
[[Image:Conformal grid after Möbius transformation.svg|thumb|right|मोबियस परिवर्तन के | [[Image:Conformal grid after Möbius transformation.svg|thumb|right|मोबियस परिवर्तन के पश्चात वही ग्रिड]]द्विघात रूप के अनुरूप समरूपता का समूह है: | ||
:<math>q(z,\bar{z}) = z\bar{z} </math> | :<math>q(z,\bar{z}) = z\bar{z} </math> | ||
Line 208: | Line 208: | ||
*{{springer|id=C/c024770|title=Conformal geometry|author=G.V. Bushmanova}} | *{{springer|id=C/c024770|title=Conformal geometry|author=G.V. Bushmanova}} | ||
*http://www.euclideanspace.com/maths/geometry/space/nonEuclid/conformal/index.htm | *http://www.euclideanspace.com/maths/geometry/space/nonEuclid/conformal/index.htm | ||
[[Category:Articles with hatnote templates targeting a nonexistent page]] | |||
[[Category:Created On 11/12/2022]] | |||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:अनुरूप ज्यामिति| ]] | [[Category:अनुरूप ज्यामिति| ]] | ||
[[Category:विभेदक ज्यामिति]] | [[Category:विभेदक ज्यामिति]] | ||
Latest revision as of 18:41, 16 May 2023
गणित में, अनुरूप ज्यामिति स्थान पर कोण-संरक्षण (अनुरूप) परिवर्तनों के समुच्चय का अध्ययन है।
वास्तविक दो आयामी स्थान में, अनुरूप ज्यामिति उचित रीमैन सतहों की ज्यामिति है। स्थान में दो से अधिक आयामों में, अनुरूप ज्यामिति या तो समतल रिक्त स्थान (जैसे यूक्लिडियन स्थान स्थान या वृत्ताकार) कहलाते हैं, या अनुरूप मैनिफोल्ड के अध्ययन के लिए जो कि रीमैनियन या छद्म-रीमैनियन मैनिफोल्ड्स हैं, जो आव्यूह के वर्ग के साथ हैं और स्तर तक परिभाषित हैं। समतल संरचनाओं के अध्ययन को कभी-कभी मोबियस ज्यामिति कहा जाता है, और यह क्लेन ज्यामिति का प्रकार है।
अनुरूप मैनिफोल्ड
अनुरूप मैनिफोल्ड छद्म-रीमैनियन मैनिफोल्ड है जो मापीय टेंसरों के समतुल्य वर्ग से सुसज्जित है, जिसमें दो आव्यूह g और h समतुल्य हैं यदि केवल,
जहां λ वास्तविक मूल्यवान सुचारू कार्य है जिसे कई गुना परिभाषित किया गया है और इसे 'अनुरूप कारक' कहा जाता है। ऐसे आव्यूह के समकक्ष वर्ग को 'अनुरूप मापीय' या 'अनुरूप वर्ग' के रूप में जाना जाता है। इस प्रकार, अनुरूप मापीय को मापीय के रूप में माना जा सकता है जो केवल स्तर तक परिभाषित होता है। प्रायः अनुरूप आव्यूह को अनुरूप वर्ग में मापीय का चयन करके और चयन किये हुए मापीय के लिए केवल अनुरूप अपरिवर्तनीय निर्माण प्रारम्भ करके प्रक्रिया की जाती है।
अनुरूप मापीय 'अनुरूप रूप से समतल मैनिफोल्ड' है यदि कोई मापीय इसका प्रतिनिधित्व करता है जो समतल है, सामान्य अर्थों में रीमैन वक्रता टेन्सर लुप्त हो जाता है। केवल अनुरूप वर्ग में मापीय शोध संभव हो सकता है जो प्रत्येक बिंदु के विवृत निकट में समतल होता है। जब इन स्थितियों में अंतर करना आवश्यक होता है, तो अंत वाले को स्थानीय रूप से समतल कहा जाता है, चूँकि प्रायः साहित्य में कोई भेद नहीं रखा जाता है। n-वृत्त स्थानीय रूप से अनुरूप समतल मैनिफोल्ड है जो इस अर्थ में विश्व स्तर पर अनुरूप रूप से समतल नहीं है, जबकि यूक्लिडियन स्थान, टोरस, या कोई भी अनुरूप मैनिफोल्ड जो यूक्लिडियन स्थान के विवृत उपसमुच्चय द्वारा कवर किया गया है (वैश्विक रूप से) इसमें अनुरूप रूप से समतल है। अनुरूप रूप से समतल मैनिफोल्ड स्थानीय रूप से मोबियस ज्यामिति के अनुरूप है, जिसका अर्थ है कि मोबियस ज्यामिति में कई गुना से स्थानीय भिन्नता को संरक्षित करने वाला कोण उपस्थित है। दो आयामों में, प्रत्येक अनुरूप मापीय स्थानीय रूप से समतल है। आयाम में n > 3 अनुरूप मापीय स्थानीय रूप से समतल है यदि केवल इसका वेइल टेंसर लुप्त हो जाता है; आयाम में n = 3, यदि केवल कॉटन टेंसर लुप्त हो जाता है।
अनुरूप ज्यामिति में कई विशेषताएं हैं जो इसे (छद्म-) रीमैनियन ज्यामिति से भिन्न करती हैं। प्रथम यह है कि चूँकि (छद्म-) रिमेंनियन ज्यामिति में प्रत्येक बिंदु पर उचित प्रकार से परिभाषित मापीय है, अनुरूप ज्यामिति में केवल आव्यूह का वर्ग होता है। इस प्रकार स्पर्शरेखा सदिश की लंबाई को परिभाषित नहीं किया जा सकता है, किन्तु दो सदिशों के मध्य का कोण अभी भी परिभाषित किया जा सकता है। अन्य विशेषता यह है कि कोई लेवी-सिविता कनेक्शन नहीं है क्योंकि यदि g और λ2g अनुरूप संरचना के दो प्रतिनिधि हैं, तो g और λ2g के क्रिस्टोफेल प्रतीक सहमत नहीं होंगे। λ2g से जुड़े फलन में λ के अवकलज सम्मिलित होंगे जबकि g से संबद्ध नहीं होंगे।
इन अंतरों के अतिरिक्त, अनुरूप ज्यामिति अभी भी सुगम है। लेवी-सिविता कनेक्शन और वक्रता रूप, चूँकि केवल परिभाषित किया जा रहा है जब अनुरूप संरचना के विशेष प्रतिनिधि को एकल कर दिया गया है, भिन्न प्रतिनिधि चयन किये जाने पर λ और इसके डेरिवेटिव से जुड़े कुछ परिवर्तन नियमों को पूर्ण करते हैं। विशेष रूप से, (3 से अधिक आयाम में) वेइल टेंसर λ पर निर्भर नहीं होता है, और इसलिए यह 'अनुरूप अपरिवर्तनीय' है। इसके अतिरिक्त, भले ही अनुरूप कई गुना पर कोई लेवी-सिविता कनेक्शन नहीं है, इसके अतिरिक्त अनुरूप कनेक्शन के साथ कार्य कर सकता है, जिसे संबंधित मोबियस ज्यामिति पर आधारित कार्टन कनेक्शन के प्रकार के रूप में या वील कनेक्शन के रूप में नियंत्रित किया जा सकता है। यह किसी को 'अनुरूप वक्रता' और अनुरूप संरचना के अन्य आविष्कारों को परिभाषित करने की अनुमति देता है।
मोबियस ज्यामिति
मोबियस ज्यामिति "अनंत पर जोड़े गए बिंदु के साथ यूक्लिडियन अंतरिक्ष" या "मिन्कोव्स्की (या छद्म-यूक्लिडियन) स्थान के साथ शून्य शंकु के साथ अनंत पर जोड़ा जाता है। अर्थात्, व्यवस्था परिचित स्थान का संघनन है; ज्यामिति का संबंध कोणों को संरक्षित करने के निहितार्थ से है।
अमूर्त स्तर पर, आयाम दो की स्थिति को त्यागकर, यूक्लिडियन और छद्म-यूक्लिडियन रिक्त स्थान को उसी प्रकार से नियंत्रित किया जा सकता है। संकुचित द्वि-आयामी मिन्कोव्स्की तल व्यापक अनुरूप समरूपता प्रदर्शित करता है। औपचारिक रूप से, इसके अनुरूप परिवर्तनों का समूह अनंत-आयामी है। इसके विपरीत, संघनित यूक्लिडियन तल के अनुरूप परिवर्तनों का समूह केवल 6-आयामी है।
दो आयाम
मिन्कोवस्की तल
तल में मिन्कोव्स्की द्विघात रूप q(x, y) = 2xy के लिए अनुरूप समूह एबेलियन समूह लाइ समूह है:
लाइ बीजगणित cso(1, 1) के साथ सभी वास्तविक विकर्ण 2 × 2 आव्यूह सम्मिलित हैं।
अब मिंकोस्की तल पर विचार करें, ℝ2 मापीय से सुसज्जित है:
अनुरूप रूपांतरणों का 1-पैरामीटर समूह सदिश क्षेत्र X को इस संपत्ति के साथ उत्पन्न करता है कि X के साथ g का लाई डेरिवेटिव g के समानुपाती होता है। प्रतीकात्मक रूप से,
- LX g = λg कुछ λ के लिए।
विशेष रूप से, लाइ बीजगणित cso(1, 1) के उपरोक्त विवरण का उपयोग करके, इसका तात्पर्य है कि
- LX dx = a(x) dx
- LX dy = b(y) dy कुछ वास्तविक-मूल्यवान कार्यों के लिए a और b क्रमशः x और y पर निर्भर करता है।
इसके विपरीत, वास्तविक-मूल्यवान कार्यों की ऐसी किसी भी जोड़ी को देखते हुए, सदिश क्षेत्र X उपस्थित होता है जो 1. और 2 को संतुष्ट करता है। इसलिए अनुरूप संरचना, विट बीजगणित के अनंत समरूपता का बीजगणित अनंत-आयामी है।
मिन्कोव्स्की तल का अनुरूप संघनन दो हलकों S1 × S1 का कार्टेशियन उत्पाद है। सार्वभौमिक आवरण पर, अतिसूक्ष्म समरूपताओं को एकीकृत करने में कोई बाधा नहीं है, और इसलिए अनुरूप परिवर्तनों का समूह अनंत-आयामी लाइ समूह है:
जहां Diff(S1) वृत्त का डिफोमोर्फिज्म समूह है।[1]
अनुरूप समूह CSO(1, 1) और इसका लाइ बीजगणित द्वि-आयामी अनुरूप क्षेत्र सिद्धांत में वर्तमान रुचि के हैं।
यूक्लिडियन अंतरिक्ष
द्विघात रूप के अनुरूप समरूपता का समूह है:
समूह GL1(C) = C×, सम्मिश्र संख्याओं का गुणक समूह है। इसका लाई बीजगणित gl1(C) = C है।
मीट्रिक से लैस (यूक्लिडियन) जटिल तल पर विचार करता है।
इनफिनिटिमल अनुरूप समरूपता संतुष्ट करती है।
जहाँ f कॉची-रीमैन समीकरण को संतुष्ट करता है, और इसी प्रकार इसके डोमेन पर होलोमॉर्फिक है। (विट बीजगणित देखें।)
डोमेन के अनुरूप समरूपता इसलिए होलोमोर्फिक स्व-मानचित्रों से मिलकर बनता है। विशेष रूप से, अनुरूप संघनन पर - रीमैन क्षेत्र - मोबियस परिवर्तनों द्वारा अनुरूप परिवर्तन दिए गए हैं:
जहाँ ad − bc अशून्य है।
उच्च आयाम
दो आयामों में, स्थान के अनुरूप ऑटोमोर्फिज़्म का समूह अधिक बड़ा हो सकता है (जैसा कि लोरेंत्ज़ियन हस्ताक्षर की स्थिति में) या चर (यूक्लिडियन हस्ताक्षर की स्थिति में) हो सकता है। उच्च आयामों के साथ द्वि-आयामी स्थिति की कठोरता की तुलनात्मक अल्पता विश्लेषणात्मक तथ्य के कारण है कि संरचना के अत्यल्प ऑटोमोर्फिज्म के स्पर्शोन्मुख विकास अपेक्षाकृत अप्रतिबंधित हैं। लोरेंट्ज़ियन हस्ताक्षर में, स्वतंत्रता वास्तविक मूल्यवान कार्यों की जोड़ी में है। यूक्लिडियन में, स्वतंत्रता एकल होलोमोर्फिक फलन में है।
उच्च आयामों की स्थिति में, अतिसूक्ष्म समरूपता के स्पर्शोन्मुख विकास अधिकांश द्विघात बहुपदों में होते हैं।[2] विशेष रूप से, वे परिमित-आयामी लाइ बीजगणित बनाते हैं। मैनिफोल्ड के बिंदुवार इनफिनिटिमल अनुरूप समरूपता को उचित प्रकार से एकीकृत किया जा सकता है जब मैनिफोल्ड निश्चित प्रारूप अनुरूप रूप से समतल स्थान होता है (सार्वभौमिक कवर और असतत समूह उद्धरण लेने तक)।[3]
अनुरूप ज्यामिति का सामान्य सिद्धांत समान है, चूँकि यूक्लिडियन और छद्म-यूक्लिडियन हस्ताक्षर की स्थितियों में, कुछ अंतरों के साथ होता है।[4] किसी भी स्थिति में, अनुरूप रूप से समतलज्यामिति के प्रारूप स्थान को प्रस्तुत करने के अनेक प्रकार हैं। जब तक संदर्भ से अन्यथा स्पष्ट न हो, यह लेख यूक्लिडियन अनुरूप ज्यामिति की स्थिति को इस समझ के साथ मानता है कि यह छद्म-यूक्लिडियन स्थिति पर, यथोचित परिवर्तनों सहित, भी प्रारम्भ होता है।
विपरीत प्रारूप
अनुरूप ज्यामिति के विपरीत प्रारूप में क्षेत्रों में व्युत्क्रम द्वारा उत्पन्न यूक्लिडियन स्थान En पर स्थानीय परिवर्तनों का समूह होता है। लिउविले की प्रमेय के अनुसार, कोई भी कोण-संरक्षण स्थानीय (अनुरूप) परिवर्तन इस रूप का होता है।[5] इस दृष्टिकोण से, समतल अनुरूप स्थान के परिवर्तन गुण व्युत्क्रम ज्यामिति के हैं।
प्रक्षेपीय प्रारूप
प्रक्षेपीय प्रारूप प्रक्षेपीय स्थान में निश्चित क्वाड्रिक के साथ अनुरूप क्षेत्र की पहचान करता है। मान लीजिए q Rn+2 द्वारा परिभाषित लॉरेंत्ज़ियन द्विघात रूप को निरूपित करता है।
प्रक्षेपी स्थान में P(Rn+2) में, S को q = 0 का स्थान देता है। तब S अनुरूप ज्यामिति का प्रक्षेपी (या मोबियस) प्रारूप है। S पर अनुरूप परिवर्तन P(Rn+2) का प्रक्षेपी रैखिक परिवर्तन है जो चतुर्भुज अपरिवर्तनीय को त्याग देता है।
संबंधित निर्माण में, द्विघात S को मिन्कोव्स्की स्थान Rn+1,1 में शून्य शंकु के अनंत पर आकाशीय क्षेत्र के रूप में माना जाता है, जो उपरोक्त के रूप में द्विघात रूप q से सुसज्जित है। जिसे शून्य शंकु द्वारा परिभाषित किया गया है:
यह प्रक्षेपी चतुर्भुज S के ऊपर सजातीय शंकु है। मान लीजिए N+ को शून्य शंकु का भाग होने दें (मूल विस्थापित किये जाने के साथ)। तब तात्विक प्रक्षेपण Rn+1,1 ∖ {0} → P(Rn+2) प्रक्षेपण N+ → S तक सीमित है। इससे N+ को S के ऊपर रेखा बंडल की संरचना देता है। S पर अनुरूप परिवर्तन Rn+1,1 के ऑर्थोक्रोनस लोरेंत्ज़ परिवर्तनों से प्रेरित हैं, क्योंकि ये सजातीय रैखिक परिवर्तन हैं जो भविष्य के शून्य शंकु को संरक्षित करते हैं।
यूक्लिडियन क्षेत्र
सहज रूप से,वृत्त के अनुरूप समतल ज्यामिति वृत्त के रिमेंनियन ज्यामिति की तुलना में अल्प कठोर होती है। वृत्त की अनुरूप समरूपता उसके सभी हाइपरस्फीयरों में व्युत्क्रम द्वारा उत्पन्न होती है। दूसरी ओर, क्षेत्र के रिमानियन ज्यामिति जियोडेसिक हाइपरस्फीयर में व्युत्क्रम द्वारा उत्पन्न होते हैं (कार्टन-ड्यूडोने प्रमेय देखें।) यूक्लिडियन क्षेत्र को विहित प्रकार से अनुरूप क्षेत्र में मानचित्र किया जा सकता है, लेकिन इसके विपरीत नहीं।
यूक्लिडियन इकाई क्षेत्र Rn+1 में बिंदुपथ है:
इसे मिन्कोस्की स्थान Rn+1,1 के लिए मान देकर मानचित्र किया जा सकता है।
यह सरलता से देखा जा सकता है कि इस परिवर्तन के अंतर्गत वृत्त की छवि मिंकोस्की स्थान में शून्य है, और इसलिए यह शंकु N+ पर स्थित है। परिणामस्वरूप, यह रेखा बंडल N+ → S के क्रॉस-सेक्शन को निर्धारित करता है।
फिर भी, इच्छानुसार विकल्प था। यदि κ(x) x = (z, x0, ..., xn) का कोई सकारात्मक कार्य है, फिर असाइनमेंट
N+ में मानचित्र भी देता है। फलन κ अनुरूप स्तर का इच्छानुसार विकल्प है।
प्रतिनिधि आव्यूह
क्षेत्र पर प्रतिनिधि रिमेंनियन मापीय है जो मानक क्षेत्र मापीय के समानुपाती होता है। यह अनुरूप मैनिफोल्ड के रूप में वृत्त का अनुभूत देता है। मानक क्षेत्र मापीय Rn+1 पर यूक्लिडियन मापीय का प्रतिबंध है:
वृत्त को
g का अनुरूप प्रतिनिधि λ2g के रूप का मापीय है, जहाँ λ वृत्त पर धनात्मक फलन है। g का अनुरूप वर्ग, निरूपित [g], ऐसे सभी प्रतिनिधियों का संग्रह है:
यूक्लिडियन क्षेत्र का N+ में अंतःस्थापन, जैसा कि पूर्व अनुभाग में है, S पर अनुरूप स्तर निर्धारित करता है। इसके विपरीत, S पर कोई भी अनुरूप स्तर इस प्रकार के अंतःस्थापन द्वारा दिया जाता है। इस प्रकार रेखा बंडल N+ → S को S पर अनुरूप स्तर के बंडल के साथ पहचाना जाता है: इस बंडल का भाग देने के लिए अनुरूप वर्ग [g] में मापीय निर्दिष्ट करने के समान है।
परिवेश मापीय प्रारूप
प्रतिनिधि आव्यूह को अनुभूत करने का अन्य प्रकार Rn+1, 1 विशेष समन्वय प्रणाली के माध्यम से होता है। मान लीजिए कि यूक्लिडियन n-क्षेत्र S में त्रिविम समन्वय प्रणाली है। इसमें Rn → S ⊂ Rn+1 निम्नलिखित मानचित्र सम्मिलित हैं:
इन त्रिविम निर्देशांकों के संदर्भ में, मिंकोवस्की स्थान में शून्य शंकु N+ पर समन्वय प्रणाली देना संभव होता है। ऊपर दिए गए अंतःस्थापन का उपयोग करते हुए, शून्य शंकु का प्रतिनिधि मापीय अनुभाग होता है:
N+ तक विस्तार के अनुरूप नए चर t प्रस्तुत करता है, जिससे कि शून्य शंकु द्वारा समन्वित होता है:
अंत में, ρ को N+ का निम्नलिखित परिभाषित कार्य होने देता है:
Rn+1,1 पर t, ρ, y निर्देशांक में, मिन्कोव्स्की मापीय रूप लेता है:
जहां gij वृत्त पर मापीय है।
इन प्रावधानों में, बंडल N+ के भाग में शून्य शंकु ρ = 0 के साथ yi के फलन के रूप में चर t = t(yi) के मान का विनिर्देश होता है। यह S पर अनुरूप मापीय के निम्नलिखित प्रतिनिधि उत्पन्न करता है:
क्लेनियन प्रारूप
प्रथम यूक्लिडियन सिग्नेचर में समतल कंफर्मल ज्यामिति की स्थिति पर विचार करता है। n-आयामी प्रारूप (n + 2)-आयामी लोरेंट्ज़ियन स्थान Rn+1,1 का आकाशीय क्षेत्र है। यहाँ प्रारूप क्लेन ज्यामिति है: सजातीय स्थान G/H जहाँ G = SO(n + 1, 1) (n + 2)-आयामी लोरेंट्ज़ियन स्थान Rn+1,1 पर कार्य करता है और H प्रकाश शंकु में निश्चित शून्य किरण का आइसोट्रॉपी समूह है। इस प्रकार अनुरूप रूप से समतल प्रारूप प्रतिलोम ज्यामिति के स्थान हैं। मापीय हस्ताक्षर (p, q) के छद्म-यूक्लिडियन के लिए, प्रारूप समतल ज्यामिति को समान रूप से सजातीय स्थान O(p + 1, q + 1)/H के रूप में परिभाषित किया गया है, जहां H को पुनः शून्य रेखा के स्थायीकारक के रूप में लिया जाता है। ध्यान दें कि यूक्लिडियन और छद्म-यूक्लिडियन प्रारूप स्थान दोनों सघन हैं।
अनुरूप लाइ बीजगणित
समतल प्रारूप स्थान में सम्मिलित समूहों और बीजगणितों का वर्णन करने के लिए, Rp+1,q+1 पर निम्न रूप को ठीक करें :
जहाँ J हस्ताक्षर का द्विघात रूप (p, q) है। तब G = O(p + 1, q + 1) में (n + 2) × (n + 2) आव्यूह होते हैं जो Q : tMQM = Q को स्थिर करते हैं। लाइ बीजगणित कार्टन अपघटन स्वीकार करता है:
जहां
वैकल्पिक रूप से, यह अपघटन Rn ⊕ cso(p, q) ⊕ (Rn)∗ पर परिभाषित प्राकृतिक लाइ बीजगणित संरचना से सहमत है।
अंतिम निर्देशांक सदिश को प्रदर्शित करने वाली शून्य किरण का स्थिरीकरण बोरेल उपबीजगणित द्वारा दिया जाता है:
- h = g0 ⊕ g1
यह भी देखें
टिप्पणियाँ
- ↑ Paul Ginsparg (1989), Applied Conformal Field Theory. arXiv:hep-th/9108028. Published in Ecole d'Eté de Physique Théorique: Champs, cordes et phénomènes critiques/Fields, strings and critical phenomena (Les Houches), ed. by E. Brézin and J. Zinn-Justin, Elsevier Science Publishers B.V.
- ↑ Kobayashi (1972).
- ↑ Due to a general theorem of Sternberg (1962).
- ↑ Slovak (1993).
- ↑ S.A. Stepanov (2001) [1994], "Liouville theorems", Encyclopedia of Mathematics, EMS Press. G. Monge (1850). "Extension au case des trois dimensions de la question du tracé géographique, Note VI (by J. Liouville)". Application de l'Analyse à la géometrie. Bachelier, Paris. pp. 609–615..
संदर्भ
- Kobayashi, Shoshichi (1970). Transformation Groups in Differential Geometry (First ed.). Springer. ISBN 3-540-05848-6.
- Slovák, Jan (1993). Invariant Operators on Conformal Manifolds. Research Lecture Notes, University of Vienna (Dissertation).
- Sternberg, Shlomo (1983). Lectures on differential geometry. New York: Chelsea. ISBN 0-8284-0316-3.
बाहरी संबंध
- G.V. Bushmanova (2001) [1994], "Conformal geometry", Encyclopedia of Mathematics, EMS Press
- http://www.euclideanspace.com/maths/geometry/space/nonEuclid/conformal/index.htm