परमाणु सूत्र: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{about|गणितीय तर्क में एक अवधारणा|रसायन विज्ञान से अवधारणा|रासायनिक सूत्र}} | {{about|गणितीय तर्क में एक अवधारणा|रसायन विज्ञान से अवधारणा|रासायनिक सूत्र}} | ||
{{Short description|Mathematical logic concept}} | {{Short description|Mathematical logic concept}} | ||
[[गणितीय तर्क]] में, | [[गणितीय तर्क]] में, नाभिकीय [[Index.php?title=सूत्र|सूत्र]] एक ऐसा सूत्र है जिसमें कोई प्रस्ताविक संरचना नहीं होती है, अर्थात एक ऐसा सूत्र जिसमें कोई तार्किक संयोजक या समकक्ष सूत्र नहीं होता है जिसमें कोई सख्त [[उपसूत्र]] नहीं होता है। नाभिकीय सूत्र इस प्रकार तर्क के सबसे सरल सुनिर्मित सूत्र हैं। [[Index.php?title=तार्किक संयोजकों|तार्किक संयोजकों]] का उपयोग करते हुए नाभिकीय सूत्रों को मिलाकर यौगिक सूत्र बनाए जाते हैं। | ||
नाभिकीय सूत्रों का सटीक रूप विचाराधीन तर्क पर निर्भर करता है; [[Index.php?title=प्रस्तावपरक|प्रस्तावपरक]] तर्क के लिए, एक प्रस्तावपरक चर को अधिकांशतः अधिक संक्षेप में " नाभिकीय सूत्र" के रूप में संदर्भित किया जाता है, परंतु, अधिक सटीक रूप से, एक [[प्रस्तावक चर]] एक नाभिकीय सूत्र नहीं है, अपेक्षाकृत एक औपचारिक अभिव्यक्ति है जो एक नाभिकीय सूत्र को दर्शाता है। [[विधेय तर्क]] के लिए, नाभिकीय अपने तर्कों के साथ विधेय प्रतीक हैं, प्रत्येक तर्क एक शब्द है। [[Index.php?title= प्रतिरूप सिद्धांत|प्रतिरूप सिद्धांत]] में, नाभिकीय सूत्र केवल दिए गए [[हस्ताक्षर (तर्क)]] वाले प्रतीकों की [[Index.php?title=Index.php?title= तंत्रिका|तंत्रिका]] हैं, जो किसी दिए गए प्रतिरूप के संबंध में तृप्त हो सकते हैं या नहीं भी हो सकते हैं।<ref>{{cite book |last=Hodges |first=Wilfrid |year=1997 |title=एक छोटा मॉडल सिद्धांत|publisher=Cambridge University Press |isbn=0-521-58713-1 |pages=11–14}}</ref> | |||
== पहले क्रम के तर्क में परमाणु सूत्र == | == पहले क्रम के तर्क में परमाणु सूत्र == | ||
सामान्य प्रथम-क्रम तर्क के अच्छी तरह से गठित नियम और प्रस्ताव निम्नलिखित[[ | सामान्य प्रथम-क्रम तर्क के अच्छी तरह से गठित नियम और प्रस्ताव निम्नलिखित [[Index.php?title=रचनाक्रम|रचनाक्रम]] हैं: | ||
[[ | [[Index.php?title=वाक्य बीजगणित|वाक्य बीजगणित]]: | ||
* <math>t \equiv c \mid x \mid f (t_{1},\dotsc, t_{n})</math>, | * <math>t \equiv c \mid x \mid f (t_{1},\dotsc, t_{n})</math>, | ||
एक शब्द को [[Index.php?title=पुनरावर्ती|पुनरावर्ती]] से एक स्थिर c, या एक चर x, या एक n-ary फ़ंक्शन f के रूप में परिभाषित किया गया है, जिसके तर्क हैं। फ़ंक्शंस विषय ट्यूपल्स विषय को मानचित्र करता है। | |||
तर्कवाक्य: | |||
* <math>A, B, ... \equiv P (t_{1},\dotsc, t_{n}) \mid A \wedge B \mid \top \mid A \vee B \mid \bot \mid A \supset B \mid \forall x.\ A \mid \exists x.\ A </math>, | * <math>A, B, ... \equiv P (t_{1},\dotsc, t_{n}) \mid A \wedge B \mid \top \mid A \vee B \mid \bot \mid A \supset B \mid \forall x.\ A \mid \exists x.\ A </math>, | ||
एक तर्कवाक्य को पुनरावर्ती रूप से एक n- सव [[Index.php?title=Index.php?title= निर्धारक|निर्धारक]] P के रूप में परिभाषित किया गया है, जिसका तर्क शब्द tk हैं, या तार्किक संयोजकों, या [[Index.php?title= परिमाणकों|परिमाणकों]] से बना एक अभिव्यक्ति है जो अन्य तर्कवाक्यों के साथ प्रयोग किया जाता है। | |||
एक | एक नाभिकीय सूत्र या नाभिकीय शब्दों के एक समूह के लिए उचित एक विशेषण है; अर्थात्, एक नाभिकीय सूत्र P एक विशेषण और tn पदों के लिए P (t1,…, tn) के रूप का एक सूत्र है। | ||
तार्किक संयोजकों और परिमाणकों के साथ | तार्किक संयोजकों और परिमाणकों के साथ अणुओं की रचना करके अन्य सभी सुनिर्मित सूत्र प्राप्त किए जाते हैं। | ||
उदाहरण के लिए, सूत्र ∀x। पी (एक्स) ∧ ∃y। क्यू (वाई, एफ (एक्स)) ∨ ∃z। आर | उदाहरण के लिए, सूत्र ∀x। पी (एक्स) ∧ ∃y। क्यू (वाई, एफ (एक्स)) ∨ ∃z। आर में नाभिकीय होते हैं | ||
* <math> P (x) </math> | * <math> P (x) </math> | ||
* <math>Q (y, f (x))</math> | * <math>Q (y, f (x))</math> | ||
* <math>R (z)</math>. | * <math>R (z)</math>. | ||
चूँकि | चूँकि नाभिकीय सूत्र में कोई परिमाणक प्रकट नहीं होते हैं, नाभिकीय सूत्र में चर प्रतीकों की सभी आवृत्तियाँ स्पष्ट होती हैं।<ref>W. V. O. Quine, ''Mathematical Logic'' (1981), p.161. Harvard University Press, 0-674-55451-5</ref> | ||
== यह भी देखें == | == यह भी देखें == | ||
* मॉडल सिद्धांत में, [[संरचना (गणितीय तर्क)]] | * मॉडल सिद्धांत में, [[संरचना (गणितीय तर्क)]] नाभिकीय सूत्रों की व्याख्या प्रदान करती है। | ||
* [[ सबूत सिद्धांत ]] में, | * [[ सबूत सिद्धांत ]] में, नाभिकीय सूत्रों के लिए पोलारिटी (प्रूफ थ्योरी) असाइनमेंट [[ ध्यान केंद्रित करना (सबूत सिद्धांत) ]] का एक अनिवार्य घटक है। | ||
* [[परमाणु वाक्य]] | * [[परमाणु वाक्य]] | ||
Revision as of 21:51, 9 May 2023
गणितीय तर्क में, नाभिकीय सूत्र एक ऐसा सूत्र है जिसमें कोई प्रस्ताविक संरचना नहीं होती है, अर्थात एक ऐसा सूत्र जिसमें कोई तार्किक संयोजक या समकक्ष सूत्र नहीं होता है जिसमें कोई सख्त उपसूत्र नहीं होता है। नाभिकीय सूत्र इस प्रकार तर्क के सबसे सरल सुनिर्मित सूत्र हैं। तार्किक संयोजकों का उपयोग करते हुए नाभिकीय सूत्रों को मिलाकर यौगिक सूत्र बनाए जाते हैं।
नाभिकीय सूत्रों का सटीक रूप विचाराधीन तर्क पर निर्भर करता है; प्रस्तावपरक तर्क के लिए, एक प्रस्तावपरक चर को अधिकांशतः अधिक संक्षेप में " नाभिकीय सूत्र" के रूप में संदर्भित किया जाता है, परंतु, अधिक सटीक रूप से, एक प्रस्तावक चर एक नाभिकीय सूत्र नहीं है, अपेक्षाकृत एक औपचारिक अभिव्यक्ति है जो एक नाभिकीय सूत्र को दर्शाता है। विधेय तर्क के लिए, नाभिकीय अपने तर्कों के साथ विधेय प्रतीक हैं, प्रत्येक तर्क एक शब्द है। प्रतिरूप सिद्धांत में, नाभिकीय सूत्र केवल दिए गए हस्ताक्षर (तर्क) वाले प्रतीकों की तंत्रिका हैं, जो किसी दिए गए प्रतिरूप के संबंध में तृप्त हो सकते हैं या नहीं भी हो सकते हैं।[1]
पहले क्रम के तर्क में परमाणु सूत्र
सामान्य प्रथम-क्रम तर्क के अच्छी तरह से गठित नियम और प्रस्ताव निम्नलिखित रचनाक्रम हैं:
- ,
एक शब्द को पुनरावर्ती से एक स्थिर c, या एक चर x, या एक n-ary फ़ंक्शन f के रूप में परिभाषित किया गया है, जिसके तर्क हैं। फ़ंक्शंस विषय ट्यूपल्स विषय को मानचित्र करता है।
तर्कवाक्य:
- ,
एक तर्कवाक्य को पुनरावर्ती रूप से एक n- सव निर्धारक P के रूप में परिभाषित किया गया है, जिसका तर्क शब्द tk हैं, या तार्किक संयोजकों, या परिमाणकों से बना एक अभिव्यक्ति है जो अन्य तर्कवाक्यों के साथ प्रयोग किया जाता है।
एक नाभिकीय सूत्र या नाभिकीय शब्दों के एक समूह के लिए उचित एक विशेषण है; अर्थात्, एक नाभिकीय सूत्र P एक विशेषण और tn पदों के लिए P (t1,…, tn) के रूप का एक सूत्र है।
तार्किक संयोजकों और परिमाणकों के साथ अणुओं की रचना करके अन्य सभी सुनिर्मित सूत्र प्राप्त किए जाते हैं।
उदाहरण के लिए, सूत्र ∀x। पी (एक्स) ∧ ∃y। क्यू (वाई, एफ (एक्स)) ∨ ∃z। आर में नाभिकीय होते हैं
- .
चूँकि नाभिकीय सूत्र में कोई परिमाणक प्रकट नहीं होते हैं, नाभिकीय सूत्र में चर प्रतीकों की सभी आवृत्तियाँ स्पष्ट होती हैं।[2]
यह भी देखें
- मॉडल सिद्धांत में, संरचना (गणितीय तर्क) नाभिकीय सूत्रों की व्याख्या प्रदान करती है।
- सबूत सिद्धांत में, नाभिकीय सूत्रों के लिए पोलारिटी (प्रूफ थ्योरी) असाइनमेंट ध्यान केंद्रित करना (सबूत सिद्धांत) का एक अनिवार्य घटक है।
- परमाणु वाक्य
संदर्भ
- ↑ Hodges, Wilfrid (1997). एक छोटा मॉडल सिद्धांत. Cambridge University Press. pp. 11–14. ISBN 0-521-58713-1.
- ↑ W. V. O. Quine, Mathematical Logic (1981), p.161. Harvard University Press, 0-674-55451-5
अग्रिम पठन
- Hinman, P. (2005). Fundamentals of Mathematical Logic. A K Peters. ISBN 1-56881-262-0.