पुलबैक (अंतर ज्यामिति): Difference between revisions

From Vigyanwiki
(Created page with "{{about|pullback operations in differential geometry, in particular, the pullback of differential forms and tensor fields on smooth man...")
 
No edit summary
Line 1: Line 1:
{{about|pullback operations in differential geometry, in particular, the pullback of [[differential form]]s and [[tensor (intrinsic definition)|tensor fields]] on [[smooth manifold]]s|other uses of the term in [[mathematics]]|pullback}}
{{about|pullback operations in differential geometry, in particular, the pullback of [[differential form]]s and [[tensor (intrinsic definition)|tensor fields]] on [[smooth manifold]]s|other uses of the term in [[mathematics]]|pullback}}


होने देना <math>\phi:M\to N</math> चिकने मैनिफोल्ड के बीच एक [[चिकना नक्शा]] बनें <math>M</math> और <math>N</math>. इसके बाद [[एक रूप]] | 1-फॉर्म के स्थान से जुड़ा एक [[रैखिक नक्शा]] है <math>N</math> (कोटिस्पर्शी बंडल के खंड (फाइबर बंडल) का रेखीय स्थान) 1-रूपों के स्थान पर <math>M</math>. इस रेखीय मानचित्र को पुलबैक के रूप में जाना जाता है (द्वारा <math>\phi</math>), और अक्सर द्वारा निरूपित किया जाता है <math>\phi^*</math>. अधिक आम तौर पर, किसी भी सहप्रसरण और सदिश टेंसर क्षेत्र के विपरीत - विशेष रूप से किसी भी अंतर रूप - पर <math>N</math> वापस खींचा जा सकता है <math>M</math> का उपयोग करते हुए <math>\phi</math>.
होने देना <math>\phi:M\to N</math> चिकने मैनिफोल्ड के बीच एक [[चिकना नक्शा]] बनें <math>M</math> और <math>N</math>. इसके बाद [[एक रूप]] | 1-फॉर्म के स्थान से जुड़ा एक [[रैखिक नक्शा]] है <math>N</math> (कोटिस्पर्शी बंडल के खंड (फाइबर बंडल) का रेखीय स्थान) 1-रूपों के स्थान पर <math>M</math>. इस रेखीय मानचित्र को पुलबैक के रूप में जाना जाता है (द्वारा <math>\phi</math>), और अधिकांशतः  द्वारा निरूपित किया जाता है <math>\phi^*</math>. अधिक सामान्यतः , किसी भी सहप्रसरण और सदिश टेंसर क्षेत्र के विपरीत - विशेष रूप से किसी भी अंतर रूप - पर <math>N</math> वापस खींचा जा सकता है <math>M</math> का उपयोग करते हुए <math>\phi</math>.


जब नक्शा <math>\phi</math> एक भिन्नता है, तो पुशबैकवर्ड (डिफरेंशियल) के साथ पुलबैक का उपयोग किसी भी टेंसर क्षेत्र को बदलने के लिए किया जा सकता है <math>N</math> को <math>M</math> या विपरीत। विशेष रूप से, अगर <math>\phi</math> के खुले उपसमुच्चय के बीच एक भिन्नता है <math>\R^n</math> और <math>\R^n</math>, निर्देशांक के परिवर्तन के रूप में देखा जाता है (शायद विभिन्न मैनिफोल्ड#चार्ट्स के बीच मैनिफोल्ड पर <math>M</math>), फिर पुलबैक और पुशफॉरवर्ड विषय के अधिक पारंपरिक (समन्वय निर्भर) दृष्टिकोणों में उपयोग किए जाने वाले वैक्टर टेंसरों के सहप्रसरण और प्रतिप्रसरण के परिवर्तन गुणों का वर्णन करते हैं।
जब नक्शा <math>\phi</math> एक भिन्नता है, तो पुशबैकवर्ड (डिफरेंशियल) के साथ पुलबैक का उपयोग किसी भी टेंसर क्षेत्र को बदलने के लिए किया जा सकता है <math>N</math> को <math>M</math> या विपरीत। विशेष रूप से, अगर <math>\phi</math> के खुले उपसमुच्चय के बीच एक भिन्नता है <math>\R^n</math> और <math>\R^n</math>, निर्देशांक के परिवर्तन के रूप में देखा जाता है (शायद विभिन्न मैनिफोल्ड#चार्ट्स के बीच मैनिफोल्ड पर <math>M</math>), फिर पुलबैक और पुशफॉरवर्ड विषय के अधिक पारंपरिक (समन्वय निर्भर) दृष्टिकोणों में उपयोग किए जाने वाले वैक्टर टेंसरों के सहप्रसरण और प्रतिप्रसरण के परिवर्तन गुणों का वर्णन करते हैं।
Line 30: Line 30:


:<math>\Phi\colon V\rightarrow W, \qquad \Phi^*\colon W^*\rightarrow V^*.</math>
:<math>\Phi\colon V\rightarrow W, \qquad \Phi^*\colon W^*\rightarrow V^*.</math>
तन्यता के दृष्टिकोण से, मनमाना रैंक के टेंसरों के लिए पुलबैक की धारणा का विस्तार करने की कोशिश करना स्वाभाविक है, अर्थात, W की r प्रतियों के टेन्सर उत्पाद में मान लेने वाले W पर बहुरेखीय नक्शों के लिए, अर्थात, {{nowrap|''W'' ⊗ ''W'' ⊗ ⋅⋅⋅ ⊗ ''W''}}. हालांकि, ऐसे टेंसर उत्पाद के तत्व स्वाभाविक रूप से पीछे नहीं हटते हैं: इसके बजाय एक पुशफॉरवर्ड ऑपरेशन होता है {{nowrap|''V'' ⊗ ''V'' ⊗ ⋅⋅⋅ ⊗ ''V''}} को {{nowrap|''W'' ⊗ ''W'' ⊗ ⋅⋅⋅ ⊗ ''W''}} द्वारा दिए गए
तन्यता के दृष्टिकोण से, मनमाना रैंक के टेंसरों के लिए पुलबैक की धारणा का विस्तार करने की कोशिश करना स्वाभाविक है, अर्थात, W की r प्रतियों के टेन्सर उत्पाद में मान लेने वाले W पर बहुरेखीय नक्शों के लिए, अर्थात, {{nowrap|''W'' ⊗ ''W'' ⊗ ⋅⋅⋅ ⊗ ''W''}}. हालांकि, ऐसे टेंसर उत्पाद के तत्व स्वाभाविक रूप से पीछे नहीं हटते हैं: इसके अतिरिक्त  एक पुशफॉरवर्ड ऑपरेशन होता है {{nowrap|''V'' ⊗ ''V'' ⊗ ⋅⋅⋅ ⊗ ''V''}} को {{nowrap|''W'' ⊗ ''W'' ⊗ ⋅⋅⋅ ⊗ ''W''}} द्वारा दिए गए


:<math>\Phi_*(v_1\otimes v_2\otimes\cdots\otimes v_r)=\Phi(v_1)\otimes \Phi(v_2)\otimes\cdots\otimes \Phi(v_r).</math>
:<math>\Phi_*(v_1\otimes v_2\otimes\cdots\otimes v_r)=\Phi(v_1)\otimes \Phi(v_2)\otimes\cdots\otimes \Phi(v_r).</math>

Revision as of 14:21, 23 May 2023

होने देना चिकने मैनिफोल्ड के बीच एक चिकना नक्शा बनें और . इसके बाद एक रूप | 1-फॉर्म के स्थान से जुड़ा एक रैखिक नक्शा है (कोटिस्पर्शी बंडल के खंड (फाइबर बंडल) का रेखीय स्थान) 1-रूपों के स्थान पर . इस रेखीय मानचित्र को पुलबैक के रूप में जाना जाता है (द्वारा ), और अधिकांशतः द्वारा निरूपित किया जाता है . अधिक सामान्यतः , किसी भी सहप्रसरण और सदिश टेंसर क्षेत्र के विपरीत - विशेष रूप से किसी भी अंतर रूप - पर वापस खींचा जा सकता है का उपयोग करते हुए .

जब नक्शा एक भिन्नता है, तो पुशबैकवर्ड (डिफरेंशियल) के साथ पुलबैक का उपयोग किसी भी टेंसर क्षेत्र को बदलने के लिए किया जा सकता है को या विपरीत। विशेष रूप से, अगर के खुले उपसमुच्चय के बीच एक भिन्नता है और , निर्देशांक के परिवर्तन के रूप में देखा जाता है (शायद विभिन्न मैनिफोल्ड#चार्ट्स के बीच मैनिफोल्ड पर ), फिर पुलबैक और पुशफॉरवर्ड विषय के अधिक पारंपरिक (समन्वय निर्भर) दृष्टिकोणों में उपयोग किए जाने वाले वैक्टर टेंसरों के सहप्रसरण और प्रतिप्रसरण के परिवर्तन गुणों का वर्णन करते हैं।

पुलबैक के पीछे का विचार अनिवार्य रूप से पुलबैक की धारणा है # एक फ़ंक्शन का दूसरे के साथ प्रीकंपोज़िशन। हालांकि, इस विचार को कई अलग-अलग संदर्भों में जोड़कर, काफी विस्तृत पुलबैक ऑपरेशंस का निर्माण किया जा सकता है। यह लेख सबसे सरल संक्रियाओं से शुरू होता है, फिर उनका उपयोग अधिक परिष्कृत संक्रियाओं के निर्माण के लिए करता है। मोटे तौर पर, पुलबैक मैकेनिज्म (प्रीकम्पोजिशन का उपयोग करके) अंतर ज्यामिति में कई कंस्ट्रक्शन को प्रतिपरिवर्ती संचालिका फंक्शनल में बदल देता है।

चिकने कार्यों और चिकने नक्शों का पुलबैक

होने देना (चिकनी) मैनिफोल्ड के बीच एक चिकना नक्शा बनें और , और मान लीजिए एक सुचारू कार्य है . फिर का पुलबैक द्वारा चिकना कार्य है पर द्वारा परिभाषित . इसी प्रकार यदि एक खुले सेट पर एक सहज कार्य है में , तो वही सूत्र खुले सेट पर एक सहज कार्य को परिभाषित करता है में . (शेफ (गणित) की भाषा में, पुलबैक चिकनी कार्यों के शीफ से एक रूपवाद को परिभाषित करता है प्रत्यक्ष छवि शीफ द्वारा चिकने कार्यों के पुलिंदे पर .)

अधिक सामान्यतः, यदि से एक चिकना नक्शा है किसी भी अन्य कई गुना , तब से एक चिकना नक्शा है को .

बंडलों और वर्गों का पुलबैक

अगर एक वेक्टर बंडल (या वास्तव में कोई फाइबर बंडल) खत्म हो गया है और एक चिकना नक्शा है, फिर पुलबैक बंडल एक वेक्टर बंडल (या फाइबर बंडल) खत्म हो गया है जिसका रेशा (गणित) खत्म हो गया में द्वारा दिया गया है .

इस स्थिति में, प्रीकंपोज़िशन के अनुभागों पर पुलबैक ऑपरेशन को परिभाषित करता है : अगर का एक खंड (फाइबर बंडल) है ऊपर , फिर पुलबैक बंडल का एक भाग है ऊपर .

बहुरेखीय रूपों का पुलबैक

होने देना Φ: VW वेक्टर रिक्त स्थान वी और डब्ल्यू के बीच एक रैखिक मानचित्र बनें (यानी, Φ का एक तत्व है L(V, W), भी निरूपित Hom(V, W)), और जाने

डब्ल्यू पर एक बहुरेखीय रूप हो (जिसे एक टेन्सर के रूप में भी जाना जाता है - एक टेंसर फ़ील्ड के साथ भ्रमित नहीं होना - रैंक का (0, s), जहां s उत्पाद में W के कारकों की संख्या है)। फिर पुलबैक ΦΦ द्वारा F का F, V पर एक बहुरेखीय रूप है, जिसे Φ के साथ F को पूर्वनिर्मित करके परिभाषित किया गया है। अधिक सटीकता से, दिए गए सदिश v1, में2, ..., मेंs वी में, ΦF सूत्र द्वारा परिभाषित किया गया है

जो वी पर एक बहुरेखीय रूप है। इसलिए Φ एक (रैखिक) संकारक है जो W पर बहुरेखीय रूपों से V पर बहुरेखीय रूपों तक होता है। एक विशेष मामले के रूप में, ध्यान दें कि यदि F, W पर एक रैखिक रूप (या (0,1)-टेंसर) है, ताकि F, W का एक अवयव है, W का दोहरा स्थान, फिर ΦF, V का एक अवयव है, और इसलिए Φ द्वारा पुलबैक दोहरे स्थानों के बीच एक रेखीय मानचित्र को परिभाषित करता है जो रेखीय मानचित्र Φ के विपरीत दिशा में कार्य करता है:

तन्यता के दृष्टिकोण से, मनमाना रैंक के टेंसरों के लिए पुलबैक की धारणा का विस्तार करने की कोशिश करना स्वाभाविक है, अर्थात, W की r प्रतियों के टेन्सर उत्पाद में मान लेने वाले W पर बहुरेखीय नक्शों के लिए, अर्थात, WW ⊗ ⋅⋅⋅ ⊗ W. हालांकि, ऐसे टेंसर उत्पाद के तत्व स्वाभाविक रूप से पीछे नहीं हटते हैं: इसके अतिरिक्त एक पुशफॉरवर्ड ऑपरेशन होता है VV ⊗ ⋅⋅⋅ ⊗ V को WW ⊗ ⋅⋅⋅ ⊗ W द्वारा दिए गए

फिर भी, यह इस बात का अनुसरण करता है कि यदि Φ उलटा है, पुलबैक को व्युत्क्रम फ़ंक्शन Φ द्वारा पुशफॉरवर्ड का उपयोग करके परिभाषित किया जा सकता है-1. इन दो निर्माणों के संयोजन से किसी भी रैंक के टेंसरों के लिए एक उलटा रैखिक मानचित्र के साथ एक पुशफॉरवर्ड ऑपरेशन प्राप्त होता है (r, s).

== कॉटैंजेंट वैक्टर और 1-फॉर्म == का पुलबैक

चलो φ : एम → एन चिकनी कई गुनाओं के बीच एक चिकनी नक्शा बनें। फिर φ का पुशफॉरवर्ड (अंतर), φ लिखा*, dφ, या Dφ, M के स्पर्शरेखा बंडल TM से पुलबैक बंडल φ तक एक वेक्टर बंडल आकारिकी (M से अधिक) है*टीएन। φ की दोहरी जगह* इसलिए φ से एक बंडल नक्शा है*टी*N से T*M, M का कोटैंजेंट बंडल।

अब मान लीजिए α T का एक खंड (फाइबर बंडल) है*N (एक डिफरेंशियल फॉर्म|N पर 1-फॉर्म), और φ का पुलबैक बंडल प्राप्त करने के लिए α को φ के साथ प्रीकंपोज़ करें*टी*एन. उपरोक्त बंडल मानचित्र (बिंदुवार) को इस अनुभाग में लागू करने से α का 'पुलबैक' φ द्वारा प्राप्त होता है, जो 1-रूप φ है*α ऑन एम द्वारा परिभाषित

एम में एक्स और टी में एक्स के लिएxएम।

(सहसंयोजक) टेंसर फ़ील्ड्स का पुलबैक

पिछले खंड का निर्माण रैंक के दसियों के लिए तुरंत सामान्यीकृत होता है किसी भी प्राकृतिक संख्या के लिए : ए कई गुना पर टेंसर क्षेत्र टेंसर बंडल का एक भाग चालू है जिसका फाइबर पर में बहुरेखीय का स्थान है -रूप

ले कर एक चिकने मानचित्र के (बिंदुवार) अंतर के बराबर से को , बहुरेखीय रूपों के पुलबैक को पुलबैक उत्पन्न करने के लिए वर्गों के पुलबैक के साथ जोड़ा जा सकता है टेंसर फ़ील्ड चालू . अधिक सटीक अगर एक है -टेंसर फील्ड ऑन , फिर का पुलबैक द्वारा है -टेंसर क्षेत्र पर द्वारा परिभाषित

के लिए में और में .

अंतर रूपों का पुलबैक

सहसंयोजक टेंसर क्षेत्रों के पुलबैक का एक विशेष महत्वपूर्ण मामला अंतर रूपों का पुलबैक है। अगर एक अंतर है -फॉर्म, यानी बाहरी बंडल का एक हिस्सा (फाइबरवाइज) बारी-बारी से -फॉर्म चालू है , फिर का पुलबैक अंतर है -फॉर्म ऑन पिछले अनुभाग के समान सूत्र द्वारा परिभाषित:

के लिए में और में .

डिफरेंशियल फॉर्म के पुलबैक में दो गुण होते हैं जो इसे बेहद उपयोगी बनाते हैं।

  1. यह वेज उत्पाद के साथ इस अर्थ में संगत है कि अंतर रूपों के लिए और पर ,
  2. यह बाहरी व्युत्पन्न के साथ संगत है : अगर पर अवकलन रूप है तब


अलग-अलग रूपों द्वारा पुलबैक

जब नक्शा मैनिफोल्ड्स के बीच एक डिफियोमोर्फिज्म है, यानी, इसका एक चिकना व्युत्क्रम है, फिर पुलबैक को वेक्टर क्षेत्रों के साथ-साथ 1-रूपों के लिए परिभाषित किया जा सकता है, और इस प्रकार, विस्तार द्वारा, कई गुना पर एक मनमाना मिश्रित टेंसर क्षेत्र के लिए। रेखीय नक्शा

देने के लिए उलटा किया जा सकता है

एक सामान्य मिश्रित टेंसर फ़ील्ड तब का उपयोग कर रूपांतरित हो जाएगा और टेंसर उत्पाद के अनुसार टेंसर बंडल की प्रतियों में अपघटन और . कब , फिर पुलबैक और पुशफॉरवर्ड (डिफरेंशियल) कई गुना पर टेंसर के परिवर्तन गुणों का वर्णन करते हैं . पारंपरिक शब्दों में, पुलबैक टेंसर के सहसंयोजक सूचकांकों के परिवर्तन गुणों का वर्णन करता है; इसके विपरीत, सदिश सूचकांकों के सहप्रसरण और प्रतिप्रसरण का परिवर्तन एक पुशफॉरवर्ड (अंतर) द्वारा दिया जाता है।

ऑटोमोर्फिज्म द्वारा पुलबैक

पिछले खंड के निर्माण में एक प्रतिनिधित्व-सैद्धांतिक व्याख्या है जब कई गुना से एक भिन्नता है खुद को। इस मामले में व्युत्पन्न का एक भाग है . यह फ्रेम बंडल से जुड़े किसी भी बंडल के अनुभागों पर पुलबैक क्रिया को प्रेरित करता है का सामान्य रैखिक समूह के प्रतिनिधित्व द्वारा (कहाँ ).

पुलबैक और झूठ व्युत्पन्न

लाइ डेरिवेटिव देखें। सदिश क्षेत्र द्वारा परिभाषित भिन्नता के स्थानीय 1-पैरामीटर समूह में पूर्ववर्ती विचारों को लागू करके , और पैरामीटर के संबंध में अंतर करते हुए, किसी भी संबद्ध बंडल पर लाई डेरिवेटिव की धारणा प्राप्त की जाती है।

कनेक्शन का पुलबैक (सहसंयोजक डेरिवेटिव)

अगर एक वेक्टर बंडल पर एक कनेक्शन (वेक्टर बंडल) (या सहसंयोजक व्युत्पन्न) है ऊपर और से एक चिकना नक्शा है को , तो एक पुलबैक कनेक्शन है पर ऊपर , विशिष्ट रूप से इस शर्त द्वारा निर्धारित किया गया है कि


यह भी देखें

संदर्भ

  • Jost, Jürgen (2002). Riemannian Geometry and Geometric Analysis. Berlin: Springer-Verlag. ISBN 3-540-42627-2. See sections 1.5 and 1.6.
  • Abraham, Ralph; Marsden, Jerrold E. (1978). Foundations of Mechanics. London: Benjamin-Cummings. ISBN 0-8053-0102-X. See section 1.7 and 2.3.