बाइनरी ऑपरेशन: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 2: Line 2:
{{Short description|Mathematical operation with two operands}}
{{Short description|Mathematical operation with two operands}}


[[File:Binary operations as black box.svg|thumb|एक बाइनरी ऑपरेशन <math>\circ</math> तर्कों के संयोजन के लिए एक नियम है <math>x</math> तथा <math>y</math> उत्पादन करना <math>x\circ y</math>]]गणित में, एक बाइनरी ऑपरेशन या युग्मकीय ऑपरेशन एक अन्य अवयव उत्पन्न करने के लिए दो अवयवों (गणित) ([[ऑपरेंड|संकार्य]] कहा जाता है) के संयोजन के लिए एक नियम है। अधिक औपचारिक रूप से, एक बाइनरी ऑपरेशन [[arity|एरीटी]] दो का एक [[ऑपरेशन (गणित)]] है।
[[File:Binary operations as black box.svg|thumb|एक द्विआधारी संक्रिया <math>\circ</math> तर्कों के संयोजन के लिए एक नियम है <math>x</math> तथा <math>y</math> उत्पादन करना <math>x\circ y</math>]]गणित में, एक द्विआधारी संक्रिया या युग्मकीय संक्रिया एक अन्य अवयव उत्पन्न करने के लिए दो अवयवों (गणित) ([[ऑपरेंड|संकार्य]] कहा जाता है) के संयोजन के लिए एक नियम है। अधिक औपचारिक रूप से, एक द्विआधारी संक्रिया [[arity|एरीटी]] दो का एक [[ऑपरेशन (गणित)|संक्रिया (गणित)]] है।


अधिक विशेष रूप से, एक [[सेट (गणित)|समुच्चय (गणित)]] पर एक आंतरिक बाइनरी ऑपरेशन एक बाइनरी ऑपरेशन है जिसका फलन के दो डोमेन और [[कोडोमेन|सहप्रांत]] एक ही समुच्चय हैं। उदाहरणों में जोड़, [[घटाव]] और [[गुणा]] की परिचित अंकगणितीय संक्रियाएं सम्मिलित हैं। अन्य उदाहरण गणित के विभिन्न क्षेत्रों में सरलता से पाए जाते हैं, जैसे सदिश जोड़, [[मैट्रिक्स गुणन|आव्यूह गुणन]] और [[संयुग्मन (समूह सिद्धांत)]]।
अधिक विशेष रूप से, एक [[सेट (गणित)|समुच्चय (गणित)]] पर एक आंतरिक द्विआधारी संक्रिया एक द्विआधारी संक्रिया है जिसका फलन के दो डोमेन और [[कोडोमेन|सहप्रांत]] एक ही समुच्चय हैं। उदाहरणों में जोड़, [[घटाव]] और [[गुणा]] की परिचित अंकगणितीय संक्रियाएं सम्मिलित हैं। अन्य उदाहरण गणित के विभिन्न क्षेत्रों में सरलता से पाए जाते हैं, जैसे सदिश जोड़, [[मैट्रिक्स गुणन|आव्यूह गुणन]] और [[संयुग्मन (समूह सिद्धांत)]]।


एरीटी दो का एक ऑपरेशन जिसमें कई समुच्चय सम्मिलित होते हैं, कभी-कभी 'बाइनरी ऑपरेशन' भी कहा जाता है। उदाहरण के लिए, सदिश समष्टि का अदिश गुणन एक सदिश उत्पन्न करने के लिए एक अदिश और एक सदिश लेता है, और अदिश गुणनफल एक अदिश उत्पन्न करने के लिए दो सदिश लेता है। ऐसे बाइनरी ऑपरेशनों को मात्र [[बाइनरी फ़ंक्शन|बाइनरी फलन]] कहा जा सकता है।
एरीटी दो का एक संक्रिया जिसमें कई समुच्चय सम्मिलित होते हैं, कभी-कभी 'द्विआधारी संक्रिया' भी कहा जाता है। उदाहरण के लिए, सदिश समष्टि का अदिश गुणन एक सदिश उत्पन्न करने के लिए एक अदिश और एक सदिश लेता है, और अदिश गुणनफल एक अदिश उत्पन्न करने के लिए दो सदिश लेता है। ऐसे द्विआधारी संक्रियाों को मात्र [[बाइनरी फ़ंक्शन|द्विआधारी फलन]] कहा जा सकता है।


बाइनरी ऑपरेशनों अधिकांश [[बीजगणित|बीजगणितीय]] संरचनाओं की कुंजीशिला हैं जिनका अध्ययन बीजगणित में किया जाता है, विशेष रूप से [[semigroup|अर्धसमूह]], [[मोनोइड|एकाभ]], [[समूह (गणित)]], वलय (बीजगणित), क्षेत्र (गणित), और सदिश रिक्त समष्टि में।
द्विआधारी संक्रियाों अधिकांश [[बीजगणित|बीजगणितीय]] संरचनाओं की कुंजीशिला हैं जिनका अध्ययन बीजगणित में किया जाता है, विशेष रूप से [[semigroup|अर्धसमूह]], [[मोनोइड|एकाभ]], [[समूह (गणित)]], वलय (बीजगणित), क्षेत्र (गणित), और सदिश रिक्त समष्टि में।


== शब्दावली ==
== शब्दावली ==
अधिक सटीक रूप से, एक समुच्चय (गणित) पर एक बाइनरी ऑपरेशन <math>S</math> [[कार्तीय गुणन]]फल के अवयवों का मानचित्र (गणित) है <math>S \times S</math> प्रति <math>S</math>:<ref>{{harvnb|Rotman|1973|loc=pg. 1}}</ref><ref>{{harvnb|Hardy|Walker|2002|loc=pg. 176, Definition 67}}</ref><ref>{{harvnb|Fraleigh|1976|loc= pg. 10}}</ref>
अधिक यथार्थ रूप से, एक समुच्चय (गणित) <math>S</math> पर एक द्विआधारी संक्रिया [[कार्तीय गुणन|कार्तीय गुणनफल]] <math>S \times S</math> से <math>S</math>:<ref>{{harvnb|Rotman|1973|loc=pg. 1}}</ref><ref>{{harvnb|Hardy|Walker|2002|loc=pg. 176, Definition 67}}</ref><ref>{{harvnb|Fraleigh|1976|loc= pg. 10}}</ref>
:<math>\,f \colon S \times S \rightarrow S.</math>
:<math>\,f \colon S \times S \rightarrow S</math> के अवयवों का प्रतिचित्र (गणित) है।
क्योंकि अवयवों की एक जोड़ी पर ऑपरेशन करने का परिणाम <math>S</math> पुन: का एक अंग है <math>S</math>, ऑपरेशन को बंद (या आंतरिक) बाइनरी ऑपरेशन कहा जाता है <math>S</math> (या कभी-कभी बंद करने की संपत्ति के रूप में व्यक्त किया जाता है (गणित))।<ref>{{harvnb|Hall|1959|loc=pg. 1}}</ref> यदि <math>f</math> एक फलन (गणित) नहीं है, लेकिन एक आंशिक फलन है <math>f</math> आंशिक बाइनरी ऑपरेशन कहा जाता है। उदाहरण के लिए, [[वास्तविक संख्या]]ओं का विभाजन आंशिक बाइनरी ऑपरेशन है, क्योंकि [[शून्य से विभाजन]] नहीं किया जा सकता है: <math>\frac{a}{0}</math> प्रत्येक वास्तविक संख्या के लिए अपरिभाषित है <math>a</math>. [[सार्वभौमिक बीजगणित]] और [[मॉडल सिद्धांत]] दोनों में, द्विआधारी संक्रियाओं को सभी अवयवों पर परिभाषित करने की आवश्यकता होती है <math>S \times S</math>.
क्योंकि <math>S</math> के अवयवों की एक जोड़ी पर संक्रिया करने का परिणाम पुन: <math>S</math> का एक अंग है, संक्रिया को <math>S</math> पर संवृत (या आंतरिक) द्विआधारी संक्रिया कहा जाता है (या कभी-कभी संवृत होने के गुण के रूप में व्यक्त किया जाता है)।<ref>{{harvnb|Hall|1959|loc=pg. 1}}</ref>


कभी-कभी, विशेष रूप से [[कंप्यूटर विज्ञान]] में, बाइनरी ऑपरेशन शब्द का उपयोग किसी बाइनरी फलन के लिए किया जाता है।
यदि <math>f</math> एक फलन (गणित) नहीं है, परन्तु एक आंशिक फलन है तो <math>f</math> को आंशिक द्विआधारी संक्रिया कहते हैं। उदाहरण के लिए, [[वास्तविक संख्या|वास्तविक संख्याओं]] का विभाजन आंशिक द्विआधारी संक्रिया है, क्योंकि [[शून्य से विभाजन]] नहीं किया जा सकता है: प्रत्येक वास्तविक संख्या <math>a</math> के लिए <math>\frac{a}{0}</math> अपरिभाषित है। [[सार्वभौमिक बीजगणित]] और [[मॉडल सिद्धांत]] दोनों में, द्विआधारी संक्रियाओं <math>S \times S</math> को सभी अवयवों पर परिभाषित करने की आवश्यकता होती है।
 
कभी-कभी, विशेष रूप से [[कंप्यूटर विज्ञान]] में, द्विआधारी संक्रिया शब्द का उपयोग किसी द्विआधारी फलन के लिए किया जाता है।


== गुण और उदाहरण ==
== गुण और उदाहरण ==
बाइनरी संक्रियाओं के विशिष्ट उदाहरण हैं योग (<math>+</math>) और गुणा (<math>\times</math>) [[संख्या]] और [[मैट्रिक्स (गणित)|आव्यूह (गणित)]] के साथ-साथ एक समुच्चय पर [[कार्यों की संरचना]]।
द्विआधारी संक्रियाओं के विशिष्ट उदाहरण हैं योग (<math>+</math>) और गुणा (<math>\times</math>) [[संख्या]] और [[मैट्रिक्स (गणित)|आव्यूह (गणित)]] के साथ-साथ एक समुच्चय पर [[कार्यों की संरचना]]।
उदाहरण के लिए,
उदाहरण के लिए,
* वास्तविक संख्या के समुच्चय पर <math>\mathbb R</math>, <math>f(a,b)=a+b</math> एक बाइनरी ऑपरेशन है क्योंकि दो वास्तविक संख्याओं का योग एक वास्तविक संख्या है।
* वास्तविक संख्या के समुच्चय पर <math>\mathbb R</math>, <math>f(a,b)=a+b</math> एक द्विआधारी संक्रिया है क्योंकि दो वास्तविक संख्याओं का योग एक वास्तविक संख्या है।
* प्राकृतिक संख्या के समुच्चय पर <math>\mathbb N</math>, <math>f(a,b)=a+b</math> एक बाइनरी ऑपरेशन है क्योंकि दो प्राकृतिक संख्याओं का योग एक प्राकृतिक संख्या है। यह पिछले वाले की तुलना में एक अलग बाइनरी ऑपरेशन है क्योंकि समुच्चय अलग हैं।
* प्राकृतिक संख्या के समुच्चय पर <math>\mathbb N</math>, <math>f(a,b)=a+b</math> एक द्विआधारी संक्रिया है क्योंकि दो प्राकृतिक संख्याओं का योग एक प्राकृतिक संख्या है। यह पिछले वाले की तुलना में एक अलग द्विआधारी संक्रिया है क्योंकि समुच्चय अलग हैं।
* मंच पर <math>M(2,\mathbb R)</math> का <math>2 \times 2</math> वास्तविक प्रविष्टियों के साथ मैट्रिसेस, <math>f(A,B)=A+B</math> एक द्विआधारी संक्रिया है क्योंकि ऐसे दो आव्यूहों का योग a है <math>2 \times 2</math> आव्यूह।
* मंच पर <math>M(2,\mathbb R)</math> का <math>2 \times 2</math> वास्तविक प्रविष्टियों के साथ मैट्रिसेस, <math>f(A,B)=A+B</math> एक द्विआधारी संक्रिया है क्योंकि ऐसे दो आव्यूहों का योग a है <math>2 \times 2</math> आव्यूह।
* मंच पर <math>M(2,\mathbb R)</math> का <math>2 \times 2</math> वास्तविक प्रविष्टियों के साथ मैट्रिसेस, <math>f(A,B)=AB</math> एक द्विआधारी संक्रिया है क्योंकि ऐसे दो आव्यूहों का गुणनफल a होता है <math>2 \times 2</math> आव्यूह।
* मंच पर <math>M(2,\mathbb R)</math> का <math>2 \times 2</math> वास्तविक प्रविष्टियों के साथ मैट्रिसेस, <math>f(A,B)=AB</math> एक द्विआधारी संक्रिया है क्योंकि ऐसे दो आव्यूहों का गुणनफल a होता है <math>2 \times 2</math> आव्यूह।
* दिए गए समुच्चय के लिए <math>C</math>, होने देना <math>S</math> सभी कार्यों का समुच्चय बनें <math>h \colon C \rightarrow C</math>. परिभाषित करना <math>f \colon S \times S \rightarrow S</math> द्वारा <math>f(h_1,h_2)(c)=(h_1 \circ h_2)(c)=h_1(h_2(c))</math> सभी के लिए <math>c \in C</math>, दो कार्यों की संरचना <math>h_1</math> तथा <math>h_2</math> में <math>S</math>. फिर <math>f</math> एक बाइनरी ऑपरेशन है क्योंकि दो कार्यों की संरचना फिर से समुच्चय पर एक फलन है <math>C</math> (अर्थात् सदस्य है <math>S</math>).
* दिए गए समुच्चय के लिए <math>C</math>, होने देना <math>S</math> सभी कार्यों का समुच्चय बनें <math>h \colon C \rightarrow C</math>परिभाषित करना <math>f \colon S \times S \rightarrow S</math> द्वारा <math>f(h_1,h_2)(c)=(h_1 \circ h_2)(c)=h_1(h_2(c))</math> सभी के लिए <math>c \in C</math>, दो कार्यों की संरचना <math>h_1</math> तथा <math>h_2</math> में <math>S</math>फिर <math>f</math> एक द्विआधारी संक्रिया है क्योंकि दो कार्यों की संरचना फिर से समुच्चय पर एक फलन है <math>C</math> (अर्थात् सदस्य है <math>S</math>)


बीजगणित और औपचारिक तर्क दोनों में रुचि के कई द्विआधारी संक्रियाएँ क्रम[[विनिमेय]], संतोषजनक हैं <math>f(a,b)=f(b,a)</math> सभी अवयवों के लिए <math>a</math> तथा <math>b</math> में <math>S</math>, या साहचर्य, संतोषजनक <math>f(f(a,b),c)=f(a,f(b,c))</math> सभी के लिए <math>a</math>, <math>b</math>, तथा <math>c</math> में <math>S</math>. कई में [[पहचान तत्व|पहचान अवयव]] और [[उलटा तत्व|उलटा अवयव]] भी होते हैं।
बीजगणित और औपचारिक तर्क दोनों में रुचि के कई द्विआधारी संक्रियाएँ क्रम[[विनिमेय]], संतोषजनक हैं <math>f(a,b)=f(b,a)</math> सभी अवयवों के लिए <math>a</math> तथा <math>b</math> में <math>S</math>, या साहचर्य, संतोषजनक <math>f(f(a,b),c)=f(a,f(b,c))</math> सभी के लिए <math>a</math>, <math>b</math>, तथा <math>c</math> में <math>S</math>कई में [[पहचान तत्व|पहचान अवयव]] और [[उलटा तत्व|उलटा अवयव]] भी होते हैं।


उपरोक्त पहले तीन उदाहरण क्रमविनिमेय हैं और उपरोक्त सभी उदाहरण साहचर्य हैं।
उपरोक्त पहले तीन उदाहरण क्रमविनिमेय हैं और उपरोक्त सभी उदाहरण साहचर्य हैं।


वास्तविक संख्या के समुच्चय पर <math>\mathbb R</math>, घटाव, अर्थात्, <math>f(a,b)=a-b</math>, एक बाइनरी ऑपरेशन है जो कम्यूटिव नहीं है, क्योंकि सामान्य तौर पर, <math>a-b \neq b-a</math>. यह साहचर्य भी नहीं है, क्योंकि, सामान्य तौर पर, <math>a-(b-c) \neq (a-b)-c</math>; उदाहरण के लिए, <math>1-(2-3)=2</math> लेकिन <math>(1-2)-3=-4</math>.
वास्तविक संख्या के समुच्चय पर <math>\mathbb R</math>, घटाव, अर्थात्, <math>f(a,b)=a-b</math>, एक द्विआधारी संक्रिया है जो कम्यूटिव नहीं है, क्योंकि सामान्य तौर पर, <math>a-b \neq b-a</math>यह साहचर्य भी नहीं है, क्योंकि, सामान्य तौर पर, <math>a-(b-c) \neq (a-b)-c</math>; उदाहरण के लिए, <math>1-(2-3)=2</math> परन्तु <math>(1-2)-3=-4</math>


प्राकृतिक संख्या के समुच्चय पर <math>\mathbb N</math>, बाइनरी ऑपरेशन [[घातांक]], <math>f(a,b)=a^b</math>, क्रमविनिमेय नहीं है, क्योंकि <math>a^b \neq b^a</math> (cf. समीकरण x^y = y^x|समीकरण x<sup>वाई </सुप> = वाई<sup>x</sup>), और तब से सहयोगी भी नहीं है <math>f(f(a,b),c) \neq f(a,f(b,c))</math>. उदाहरण के लिए, साथ <math>a=2</math>, <math>b=3</math>, तथा <math>c=2</math>, <math>f(2^3,2)=f(8,2)=8^2=64</math>, लेकिन <math>f(2,3^2)=f(2,9)=2^9=512</math>. समुच्चय में बदलाव करके <math>\mathbb N</math> पूर्णांकों के समुच्चय के लिए <math>\mathbb Z</math>, यह बाइनरी ऑपरेशन एक आंशिक बाइनरी ऑपरेशन बन जाता है क्योंकि यह अब अपरिभाषित है कब <math>a=0</math> तथा <math>b</math> कोई ऋणात्मक पूर्णांक है। किसी भी समुच्चय के लिए, इस ऑपरेशन की सही पहचान है (जो है <math>1</math>) जबसे <math>f(a,1)=a</math> सभी के लिए <math>a</math> समुच्चय में, जो एक पहचान (दो तरफा पहचान) नहीं है <math>f(1,b) \neq b</math> सामान्य रूप में।
प्राकृतिक संख्या के समुच्चय पर <math>\mathbb N</math>, द्विआधारी संक्रिया [[घातांक]], <math>f(a,b)=a^b</math>, क्रमविनिमेय नहीं है, क्योंकि <math>a^b \neq b^a</math> (cf। समीकरण x^y = y^x|समीकरण x<sup>वाई </सुप> = वाई<sup>x</sup>), और तब से सहयोगी भी नहीं है <math>f(f(a,b),c) \neq f(a,f(b,c))</math>उदाहरण के लिए, साथ <math>a=2</math>, <math>b=3</math>, तथा <math>c=2</math>, <math>f(2^3,2)=f(8,2)=8^2=64</math>, परन्तु <math>f(2,3^2)=f(2,9)=2^9=512</math>समुच्चय में बदलाव करके <math>\mathbb N</math> पूर्णांकों के समुच्चय के लिए <math>\mathbb Z</math>, यह द्विआधारी संक्रिया एक आंशिक द्विआधारी संक्रिया बन जाता है क्योंकि यह अब अपरिभाषित है कब <math>a=0</math> तथा <math>b</math> कोई ऋणात्मक पूर्णांक है। किसी भी समुच्चय के लिए, इस संक्रिया की सही पहचान है (जो है <math>1</math>) जबसे <math>f(a,1)=a</math> सभी के लिए <math>a</math> समुच्चय में, जो एक पहचान (दो तरफा पहचान) नहीं है <math>f(1,b) \neq b</math> सामान्य रूप में।


[[विभाजन (गणित)]] (<math>\div</math>), वास्तविक या परिमेय संख्याओं के समुच्चय पर एक आंशिक बाइनरी संक्रिया क्रमविनिमेय या साहचर्य नहीं है। [[टेट्रेशन]] (<math>\uparrow\uparrow</math>), प्राकृतिक संख्याओं पर एक बाइनरी ऑपरेशन के रूप में, क्रमविनिमेय या साहचर्य नहीं है और इसमें कोई पहचान अवयव नहीं है।
[[विभाजन (गणित)]] (<math>\div</math>), वास्तविक या परिमेय संख्याओं के समुच्चय पर एक आंशिक द्विआधारी संक्रिया क्रमविनिमेय या साहचर्य नहीं है। [[टेट्रेशन]] (<math>\uparrow\uparrow</math>), प्राकृतिक संख्याओं पर एक द्विआधारी संक्रिया के रूप में, क्रमविनिमेय या साहचर्य नहीं है और इसमें कोई पहचान अवयव नहीं है।


== नोटेशन ==
== नोटेशन ==
बाइनरी ऑपरेशनों को अक्सर [[इंफिक्स नोटेशन]] का उपयोग करके लिखा जाता है जैसे <math>a \ast b</math>, <math>a+b</math>, <math>a \cdot b</math> या (जुगलबंदी द्वारा#बिना प्रतीक वाला गणित) <math>ab</math> प्रपत्र के कार्यात्मक अंकन के बजाय <math>f(a, b)</math>. शक्तियाँ आमतौर पर ऑपरेटर के बिना भी लिखी जाती हैं, लेकिन दूसरे तर्क के साथ [[ऊपर की ओर लिखा हुआ]] के रूप में।
द्विआधारी संक्रियाों को अक्सर [[इंफिक्स नोटेशन]] का उपयोग करके लिखा जाता है जैसे <math>a \ast b</math>, <math>a+b</math>, <math>a \cdot b</math> या (जुगलसंवृती द्वारा#बिना प्रतीक वाला गणित) <math>ab</math> प्रपत्र के कार्यात्मक अंकन के बजाय <math>f(a, b)</math>शक्तियाँ आमतौर पर ऑपरेटर के बिना भी लिखी जाती हैं, परन्तु दूसरे तर्क के साथ [[ऊपर की ओर लिखा हुआ]] के रूप में।


बाइनरी ऑपरेशनों को कभी-कभी प्रीफिक्स या (अधिक बार) पोस्टफिक्स नोटेशन का उपयोग करते हुए लिखा जाता है, जिनमें से दोनों को कोष्ठक से अलग किया जाता है। उन्हें क्रमशः [[पोलिश संकेतन]] और [[रिवर्स पोलिश नोटेशन]] भी कहा जाता है।
द्विआधारी संक्रियाों को कभी-कभी प्रीफिक्स या (अधिक बार) पोस्टफिक्स नोटेशन का उपयोग करते हुए लिखा जाता है, जिनमें से दोनों को कोष्ठक से अलग किया जाता है। उन्हें क्रमशः [[पोलिश संकेतन]] और [[रिवर्स पोलिश नोटेशन]] भी कहा जाता है।


== बाइनरी ऑपरेशनों टर्नरी रिलेशनशिप == के रूप में
== द्विआधारी संक्रियाों टर्नरी रिलेशनशिप == के रूप में


एक बाइनरी ऑपरेशन <math>f</math> एक समुच्चय पर <math>S</math> एक टर्नरी संबंध के रूप में देखा जा सकता है <math>S</math>, यानी ट्रिपल का समुच्चय <math>(a, b, f(a,b))</math> में <math>S \times S \times S</math> सभी के लिए <math>a</math> तथा <math>b</math> में <math>S</math>.
एक द्विआधारी संक्रिया <math>f</math> एक समुच्चय पर <math>S</math> एक टर्नरी संबंध के रूप में देखा जा सकता है <math>S</math>, यानी ट्रिपल का समुच्चय <math>(a, b, f(a,b))</math> में <math>S \times S \times S</math> सभी के लिए <math>a</math> तथा <math>b</math> में <math>S</math>


== बाहरी बाइनरी ऑपरेशनों ==
== बाहरी द्विआधारी संक्रियाों ==
एक बाहरी बाइनरी ऑपरेशन एक बाइनरी फलन है <math>K \times S</math> प्रति <math>S</math>. यह उस अर्थ में एक समुच्चय पर एक बाइनरी ऑपरेशन से अलग है <math>K</math> जरूरत नहीं है <math>S</math>; इसके अवयव बाहर से आते हैं।
एक बाहरी द्विआधारी संक्रिया एक द्विआधारी फलन है <math>K \times S</math> प्रति <math>S</math>यह उस अर्थ में एक समुच्चय पर एक द्विआधारी संक्रिया से अलग है <math>K</math> जरूरत नहीं है <math>S</math>; इसके अवयव बाहर से आते हैं।


बाह्य बाइनरी संक्रिया का एक उदाहरण रेखीय बीजगणित में अदिश गुणन है। यहां <math>K</math> एक क्षेत्र (गणित) है और <math>S</math> उस क्षेत्र पर एक सदिश समष्टि है।
बाह्य द्विआधारी संक्रिया का एक उदाहरण रेखीय बीजगणित में अदिश गुणन है। यहां <math>K</math> एक क्षेत्र (गणित) है और <math>S</math> उस क्षेत्र पर एक सदिश समष्टि है।


वैकल्पिक रूप से कुछ बाहरी बाइनरी संक्रियाओं को [[समूह क्रिया (गणित)]] के रूप में देखा जा सकता है <math>K</math> पर <math>S</math>. इसमें एक साहचर्य गुणन के अस्तित्व की आवश्यकता है <math>K</math>, और फ़ॉर्म का संगतता नियम <math>a(bs)=(ab)s</math>, कहाँ पे <math>a,b\in K</math> तथा <math>s\in S</math> (यहाँ, बाह्य संक्रिया और गुणन दोनों में <math>K</math> संयोजन द्वारा निरूपित किया जाता है)।
वैकल्पिक रूप से कुछ बाहरी द्विआधारी संक्रियाओं को [[समूह क्रिया (गणित)]] के रूप में देखा जा सकता है <math>K</math> पर <math>S</math>इसमें एक साहचर्य गुणन के अस्तित्व की आवश्यकता है <math>K</math>, और फ़ॉर्म का संगतता नियम <math>a(bs)=(ab)s</math>, कहाँ पे <math>a,b\in K</math> तथा <math>s\in S</math> (यहाँ, बाह्य संक्रिया और गुणन दोनों में <math>K</math> संयोजन द्वारा निरूपित किया जाता है)।


दो सदिश मानचित्रों का [[डॉट उत्पाद]] <math>S \times S</math> प्रति <math>K</math>, कहाँ पे <math>K</math> एक क्षेत्र है और <math>S</math> एक सदिश समष्टि है <math>K</math>. यह लेखकों पर निर्भर करता है कि क्या इसे बाइनरी ऑपरेशन माना जाता है।
दो सदिश प्रतिचित्रों का [[डॉट उत्पाद]] <math>S \times S</math> प्रति <math>K</math>, कहाँ पे <math>K</math> एक क्षेत्र है और <math>S</math> एक सदिश समष्टि है <math>K</math>यह लेखकों पर निर्भर करता है कि क्या इसे द्विआधारी संक्रिया माना जाता है।


== यह भी देखें ==
== यह भी देखें ==


* :श्रेणी:द्विआधारी संक्रियाओं के गुण
* :श्रेणी:द्विआधारी संक्रियाओं के गुण
* [[पुनरावृत्त बाइनरी ऑपरेशन]]
* [[पुनरावृत्त बाइनरी ऑपरेशन|पुनरावृत्त द्विआधारी संक्रिया]]
* [[ऑपरेटर (प्रोग्रामिंग)]]
* [[ऑपरेटर (प्रोग्रामिंग)]]
* त्रिगुट संचालन
* त्रिगुट संचालन
* ट्रुथ टेबल # बाइनरी ऑपरेशनों
* ट्रुथ टेबल # द्विआधारी संक्रियाों
* [[यूनरी ऑपरेशन]]
* [[यूनरी ऑपरेशन|यूनरी संक्रिया]]
* मैग्मा (बीजगणित), एक बाइनरी ऑपरेशन से लैस एक समुच्चय।
* मैग्मा (बीजगणित), एक द्विआधारी संक्रिया से लैस एक समुच्चय।


== टिप्पणियाँ==
== टिप्पणियाँ==
Line 98: Line 100:
*लीनियर अलजेब्रा
*लीनियर अलजेब्रा
*मेग्मा (बीजगणित)
*मेग्मा (बीजगणित)
*टर्नरी ऑपरेशन
*टर्नरी संक्रिया
== बाहरी संबंध ==
== बाहरी संबंध ==
* {{MathWorld|title=Binary Operation|urlname=BinaryOperation}}
* {{MathWorld|title=Binary Operation|urlname=BinaryOperation}}

Revision as of 21:22, 25 May 2023

एक द्विआधारी संक्रिया तर्कों के संयोजन के लिए एक नियम है तथा उत्पादन करना

गणित में, एक द्विआधारी संक्रिया या युग्मकीय संक्रिया एक अन्य अवयव उत्पन्न करने के लिए दो अवयवों (गणित) (संकार्य कहा जाता है) के संयोजन के लिए एक नियम है। अधिक औपचारिक रूप से, एक द्विआधारी संक्रिया एरीटी दो का एक संक्रिया (गणित) है।

अधिक विशेष रूप से, एक समुच्चय (गणित) पर एक आंतरिक द्विआधारी संक्रिया एक द्विआधारी संक्रिया है जिसका फलन के दो डोमेन और सहप्रांत एक ही समुच्चय हैं। उदाहरणों में जोड़, घटाव और गुणा की परिचित अंकगणितीय संक्रियाएं सम्मिलित हैं। अन्य उदाहरण गणित के विभिन्न क्षेत्रों में सरलता से पाए जाते हैं, जैसे सदिश जोड़, आव्यूह गुणन और संयुग्मन (समूह सिद्धांत)

एरीटी दो का एक संक्रिया जिसमें कई समुच्चय सम्मिलित होते हैं, कभी-कभी 'द्विआधारी संक्रिया' भी कहा जाता है। उदाहरण के लिए, सदिश समष्टि का अदिश गुणन एक सदिश उत्पन्न करने के लिए एक अदिश और एक सदिश लेता है, और अदिश गुणनफल एक अदिश उत्पन्न करने के लिए दो सदिश लेता है। ऐसे द्विआधारी संक्रियाों को मात्र द्विआधारी फलन कहा जा सकता है।

द्विआधारी संक्रियाों अधिकांश बीजगणितीय संरचनाओं की कुंजीशिला हैं जिनका अध्ययन बीजगणित में किया जाता है, विशेष रूप से अर्धसमूह, एकाभ, समूह (गणित), वलय (बीजगणित), क्षेत्र (गणित), और सदिश रिक्त समष्टि में।

शब्दावली

अधिक यथार्थ रूप से, एक समुच्चय (गणित) पर एक द्विआधारी संक्रिया कार्तीय गुणनफल से :[1][2][3]

के अवयवों का प्रतिचित्र (गणित) है।

क्योंकि के अवयवों की एक जोड़ी पर संक्रिया करने का परिणाम पुन: का एक अंग है, संक्रिया को पर संवृत (या आंतरिक) द्विआधारी संक्रिया कहा जाता है (या कभी-कभी संवृत होने के गुण के रूप में व्यक्त किया जाता है)।[4]

यदि एक फलन (गणित) नहीं है, परन्तु एक आंशिक फलन है तो को आंशिक द्विआधारी संक्रिया कहते हैं। उदाहरण के लिए, वास्तविक संख्याओं का विभाजन आंशिक द्विआधारी संक्रिया है, क्योंकि शून्य से विभाजन नहीं किया जा सकता है: प्रत्येक वास्तविक संख्या के लिए अपरिभाषित है। सार्वभौमिक बीजगणित और मॉडल सिद्धांत दोनों में, द्विआधारी संक्रियाओं को सभी अवयवों पर परिभाषित करने की आवश्यकता होती है।

कभी-कभी, विशेष रूप से कंप्यूटर विज्ञान में, द्विआधारी संक्रिया शब्द का उपयोग किसी द्विआधारी फलन के लिए किया जाता है।

गुण और उदाहरण

द्विआधारी संक्रियाओं के विशिष्ट उदाहरण हैं योग () और गुणा () संख्या और आव्यूह (गणित) के साथ-साथ एक समुच्चय पर कार्यों की संरचना। उदाहरण के लिए,

  • वास्तविक संख्या के समुच्चय पर , एक द्विआधारी संक्रिया है क्योंकि दो वास्तविक संख्याओं का योग एक वास्तविक संख्या है।
  • प्राकृतिक संख्या के समुच्चय पर , एक द्विआधारी संक्रिया है क्योंकि दो प्राकृतिक संख्याओं का योग एक प्राकृतिक संख्या है। यह पिछले वाले की तुलना में एक अलग द्विआधारी संक्रिया है क्योंकि समुच्चय अलग हैं।
  • मंच पर का वास्तविक प्रविष्टियों के साथ मैट्रिसेस, एक द्विआधारी संक्रिया है क्योंकि ऐसे दो आव्यूहों का योग a है आव्यूह।
  • मंच पर का वास्तविक प्रविष्टियों के साथ मैट्रिसेस, एक द्विआधारी संक्रिया है क्योंकि ऐसे दो आव्यूहों का गुणनफल a होता है आव्यूह।
  • दिए गए समुच्चय के लिए , होने देना सभी कार्यों का समुच्चय बनें । परिभाषित करना द्वारा सभी के लिए , दो कार्यों की संरचना तथा में । फिर एक द्विआधारी संक्रिया है क्योंकि दो कार्यों की संरचना फिर से समुच्चय पर एक फलन है (अर्थात् सदस्य है )।

बीजगणित और औपचारिक तर्क दोनों में रुचि के कई द्विआधारी संक्रियाएँ क्रमविनिमेय, संतोषजनक हैं सभी अवयवों के लिए तथा में , या साहचर्य, संतोषजनक सभी के लिए , , तथा में । कई में पहचान अवयव और उलटा अवयव भी होते हैं।

उपरोक्त पहले तीन उदाहरण क्रमविनिमेय हैं और उपरोक्त सभी उदाहरण साहचर्य हैं।

वास्तविक संख्या के समुच्चय पर , घटाव, अर्थात्, , एक द्विआधारी संक्रिया है जो कम्यूटिव नहीं है, क्योंकि सामान्य तौर पर, । यह साहचर्य भी नहीं है, क्योंकि, सामान्य तौर पर, ; उदाहरण के लिए, परन्तु

प्राकृतिक संख्या के समुच्चय पर , द्विआधारी संक्रिया घातांक, , क्रमविनिमेय नहीं है, क्योंकि (cf। समीकरण x^y = y^x|समीकरण xवाई </सुप> = वाईx), और तब से सहयोगी भी नहीं है । उदाहरण के लिए, साथ , , तथा , , परन्तु । समुच्चय में बदलाव करके पूर्णांकों के समुच्चय के लिए , यह द्विआधारी संक्रिया एक आंशिक द्विआधारी संक्रिया बन जाता है क्योंकि यह अब अपरिभाषित है कब तथा कोई ऋणात्मक पूर्णांक है। किसी भी समुच्चय के लिए, इस संक्रिया की सही पहचान है (जो है ) जबसे सभी के लिए समुच्चय में, जो एक पहचान (दो तरफा पहचान) नहीं है सामान्य रूप में।

विभाजन (गणित) (), वास्तविक या परिमेय संख्याओं के समुच्चय पर एक आंशिक द्विआधारी संक्रिया क्रमविनिमेय या साहचर्य नहीं है। टेट्रेशन (), प्राकृतिक संख्याओं पर एक द्विआधारी संक्रिया के रूप में, क्रमविनिमेय या साहचर्य नहीं है और इसमें कोई पहचान अवयव नहीं है।

नोटेशन

द्विआधारी संक्रियाों को अक्सर इंफिक्स नोटेशन का उपयोग करके लिखा जाता है जैसे , , या (जुगलसंवृती द्वारा#बिना प्रतीक वाला गणित) प्रपत्र के कार्यात्मक अंकन के बजाय । शक्तियाँ आमतौर पर ऑपरेटर के बिना भी लिखी जाती हैं, परन्तु दूसरे तर्क के साथ ऊपर की ओर लिखा हुआ के रूप में।

द्विआधारी संक्रियाों को कभी-कभी प्रीफिक्स या (अधिक बार) पोस्टफिक्स नोटेशन का उपयोग करते हुए लिखा जाता है, जिनमें से दोनों को कोष्ठक से अलग किया जाता है। उन्हें क्रमशः पोलिश संकेतन और रिवर्स पोलिश नोटेशन भी कहा जाता है।

== द्विआधारी संक्रियाों टर्नरी रिलेशनशिप == के रूप में

एक द्विआधारी संक्रिया एक समुच्चय पर एक टर्नरी संबंध के रूप में देखा जा सकता है , यानी ट्रिपल का समुच्चय में सभी के लिए तथा में

बाहरी द्विआधारी संक्रियाों

एक बाहरी द्विआधारी संक्रिया एक द्विआधारी फलन है प्रति । यह उस अर्थ में एक समुच्चय पर एक द्विआधारी संक्रिया से अलग है जरूरत नहीं है ; इसके अवयव बाहर से आते हैं।

बाह्य द्विआधारी संक्रिया का एक उदाहरण रेखीय बीजगणित में अदिश गुणन है। यहां एक क्षेत्र (गणित) है और उस क्षेत्र पर एक सदिश समष्टि है।

वैकल्पिक रूप से कुछ बाहरी द्विआधारी संक्रियाओं को समूह क्रिया (गणित) के रूप में देखा जा सकता है पर । इसमें एक साहचर्य गुणन के अस्तित्व की आवश्यकता है , और फ़ॉर्म का संगतता नियम , कहाँ पे तथा (यहाँ, बाह्य संक्रिया और गुणन दोनों में संयोजन द्वारा निरूपित किया जाता है)।

दो सदिश प्रतिचित्रों का डॉट उत्पाद प्रति , कहाँ पे एक क्षेत्र है और एक सदिश समष्टि है । यह लेखकों पर निर्भर करता है कि क्या इसे द्विआधारी संक्रिया माना जाता है।

यह भी देखें

टिप्पणियाँ

  1. Rotman 1973, pg. 1
  2. Hardy & Walker 2002, pg. 176, Definition 67
  3. Fraleigh 1976, pg. 10
  4. Hall 1959, pg. 1


संदर्भ

  • Fraleigh, John B. (1976), A First Course in Abstract Algebra (2nd ed.), Reading: Addison-Wesley, ISBN 0-201-01984-1
  • Hall, Marshall Jr. (1959), The Theory of Groups, New York: Macmillan
  • Hardy, Darel W.; Walker, Carol L. (2002), Applied Algebra: Codes, Ciphers and Discrete Algorithms, Upper Saddle River, NJ: Prentice-Hall, ISBN 0-13-067464-8
  • Rotman, Joseph J. (1973), The Theory of Groups: An Introduction (2nd ed.), Boston: Allyn and Bacon


इस पेज में लापता आंतरिक लिंक की सूची

  • क्षेत्र (गणित)
  • योग
  • अंकगणितीय आपरेशनस
  • अवयव (गणित)
  • सदिश जोड़
  • अंक शास्त्र
  • अदिश उत्पाद
  • अंगूठी (बीजगणित)
  • स्केलर गुणज
  • सदिश स्थल
  • किसी फलन का डोमेन
  • बीजगणितीय संरचना
  • नक्शा (गणित)
  • समापन (गणित)
  • आंशिक समारोह
  • समारोह (गणित)
  • जोड़नेवाला
  • त्रैमासिक संबंध
  • लीनियर अलजेब्रा
  • मेग्मा (बीजगणित)
  • टर्नरी संक्रिया

बाहरी संबंध