ऑर्थोनॉर्मल आधार: Difference between revisions
m (added Category:Vigyan Ready using HotCat) |
m (13 revisions imported from alpha:ऑर्थोनॉर्मल_आधार) |
(No difference)
|
Revision as of 18:07, 10 July 2023
गणित में विशेष रूप से रैखिक बीजगणित में परिमित आयाम (रैखिक बीजगणित) वाले आंतरिक उत्पाद स्थान V के लिए एक ऑर्थोनॉर्मल आधार के लिए एक आधार (रैखिक बीजगणित) है, जिसके सदिश ऑर्थोनॉर्मल हैं, अर्थात् वे सभी इकाई सदिश और एक-दूसरे के लिए ऑर्थोगोनल हैं।[1][2][3] उदाहरण के लिए, यूक्लिडियन स्थान के लिए मानक आधार एक ऑर्थोनॉर्मल आधार है, जहां प्रासंगिक आंतरिक उत्पाद सदिश का डॉट गुणन है। किसी घूर्णन (गणित) या प्रतिबिंब (गणित) (या किसी ऑर्थोगोनल परिवर्तन) के अनुसार मानक आधार की छवि (गणित) भी ऑर्थोनॉर्मल होती है, और के लिए प्रत्येक ऑर्थोनॉर्मल आधार इसी तरह उत्पन्न होता है।
सामान्य आंतरिक उत्पाद स्थान के लिए, पर सामान्यीकृत ऑर्थोगोनल निर्देशांक को परिभाषित करने के लिए एक ऑर्थोनॉर्मल आधार का उपयोग किया जा सकता है। इन निर्देशांक के अनुसार, आंतरिक उत्पाद सदिश का एक डॉट उत्पाद बन जाता है। इस प्रकार एक ऑर्थोनॉर्मल आधार की उपस्थिति डॉट उत्पाद (सदिश स्थान) के अनुसार के अध्ययन के लिए एक परिमित-आयामी आंतरिक उत्पाद स्थान के अध्ययन को कम कर देती है। प्रत्येक परिमित-आयामी आंतरिक उत्पाद स्थान का एक ऑर्थोनॉर्मल आधार होता है, जिसे ग्राम-श्मिट प्रक्रिया का उपयोग करके एक स्वैच्छिक आधार से प्राप्त किया जा सकता है।
कार्यात्मक विश्लेषण में, ऑर्थोनॉर्मल आधार की अवधारणा को स्वैच्छिक विधि से (अनंत-आयामी) आंतरिक उत्पाद स्थानों में सामान्यीकृत किया जा सकता है।[4] पूर्व-हिल्बर्ट स्पेस को देखते हुए, के लिए एक ऑर्थोनॉर्मल आधार इस संपत्ति के साथ सदिश का एक ऑर्थोनॉर्मल समूह है कि में प्रत्येक सदिश को आधार में सदिशों के एक अनंत रैखिक संयोजन के रूप में लिखा जा सकता है। इस स्थिति में, ऑर्थोनॉर्मल आधार को कभी-कभी के लिए हिल्बर्ट आधार कहा जाता है। ध्यान दें कि इस अर्थ में ऑर्थोनॉर्मल आधार सामान्यतः हैमेल आधार नहीं होता है, क्योंकि अनंत रैखिक संयोजनों की आवश्यकता होती है।[5] विशेष रूप से, आधार का रैखिक विस्तार में सघन होना चाहिए, किन्तु यह संपूर्ण स्थान नहीं हो सकता है।
यदि हम हिल्बर्ट स्थान पर जाएं, तो ऑर्थोनॉर्मल आधार के समान रैखिक विस्तार वाले सदिश का गैर-ऑर्थोनॉर्मल समूह बिल्कुल भी आधार नहीं हो सकता है। उदाहरण के लिए, अंतराल पर किसी भी वर्ग-अभिन्न फलन (लगभग प्रत्येक स्थान) लिजेंड्रे बहुपदों (ऑर्थोनॉर्मल आधार) के अनंत योग के रूप में व्यक्त किया जा सकता है, किन्तु आवश्यक नहीं कि एकपदी के अनंत योग के रूप में व्यक्त किया जा सके।
एक अलग सामान्यीकरण छद्म-आंतरिक उत्पाद रिक्त स्थान, परिमित-आयामी सदिश रिक्त स्थान के लिए है जो एक गैर-अपक्षयी सममित द्विरेखीय रूप से सुसज्जित है जिसे मीट्रिक टेंसर के रूप में जाना जाता है। ऐसे आधार पर, मीट्रिक धनात्मक और ऋणात्मक वाले का रूप लेता है।
उदाहरण
- के लिए, सदिश के समूह को मानक आधार कहा जाता है और मानक डॉट उत्पाद के संबंध में का एक ऑर्थोनॉर्मल आधार बनाता है। ध्यान दें कि मानक आधार और मानक डॉट उत्पाद दोनों ही को कार्टेशियन उत्पाद के रूप में देखने पर निर्भर करते हैं
- प्रमाण: एक सीधी गणना से पता चलता है कि इन सदिशों का आंतरिक उत्पाद शून्य, के बराबर है और उनका प्रत्येक परिमाण एक, के बराबर है। इसका अर्थ है कि ऑर्थोनॉर्मल समूह है। सभी सदिश स्केल किए गए आधार सदिश के योग के रूप में व्यक्त किया जा सकता है इसलिए का विस्तार और इसलिए आधार होना चाहिए। यह भी दिखाया जा सकता है कि मानक आधार मूल के माध्यम से अक्ष के चारों ओर घूमता है या मूल के माध्यम से विमान में परिलक्षित होता है, जो का एक लंबात्मक आधार भी बनाता है।
- प्रमाण: एक सीधी गणना से पता चलता है कि इन सदिशों का आंतरिक उत्पाद शून्य, के बराबर है और उनका प्रत्येक परिमाण एक, के बराबर है। इसका अर्थ है कि ऑर्थोनॉर्मल समूह है। सभी सदिश स्केल किए गए आधार सदिश के योग के रूप में व्यक्त किया जा सकता है
- के लिए, मानक आधार और आंतरिक उत्पाद को समान रूप से परिभाषित किया गया है। कोई भी अन्य ऑर्थोनॉर्मल आधार समूह O(n) में ऑर्थोगोनल परिवर्तन द्वारा मानक आधार से संबंधित है।
- छद्म-यूक्लिडियन स्थान के लिए, एक ऑर्थोगोनल आधार इसके अतिरिक्त मीट्रिक के साथ को संतुष्ट करता है यदि , और , और यदि है। कोई भी दो ऑर्थोनॉर्मल आधार छद्म-ऑर्थोगोनल परिवर्तन से संबंधित होते हैं। यदि , ये लोरेंत्ज़ परिवर्तन हैं।
- के साथ समूह जहां घातीय फलन को दर्शाता है, 2-मानदंड के संबंध में परिमित लेबेस्ग इंटीग्रल, के साथ फलन के स्थान का एक ऑर्थोनॉर्मल आधार बनाता है। यह फूरियर श्रृंखला के अध्ययन के लिए मौलिक है।
- के साथ समूह यदि और अन्यथा का एक लंबात्मक आधार बनाता है।
- स्टर्म-लिउविले ईजेनप्रॉब्लम के ईजेनफंक्शन।
- ऑर्थोगोनल मैट्रिक्स के स्तंभ सदिश ऑर्थोनॉर्मल समूह बनाते हैं।
मूल सूत्र
यदि , का ऑर्थोगोनल आधार है, तो प्रत्येक तत्व को इस प्रकार लिखा जा सकता है
यदि , का एक ऑर्थोनॉर्मल आधार है, तब निम्नलिखित अर्थों में का समरूपी है: एक विशेषण रैखिक ऑपरेटर उपस्थित है जैसे कि
अपूर्ण ओर्थोगोनल समूह
हिल्बर्ट स्पेस और में परस्पर ऑर्थोगोनल सदिश के एक समूह को देखते हुए, हम युक्त का सबसे छोटा बंद रैखिक उपस्पेस ले सकते हैं। तब का ऑर्थोगोनल आधार होगा; जो निश्चित रूप से अपूर्ण ऑर्थोगोनल समूह होने के कारण से छोटा हो सकता है या पूर्ण ऑर्थोगोनल समूह होने पर हो सकता है।
अस्तित्व
ज़ोर्न के लेम्मा और ग्राम-श्मिट प्रक्रिया (या अधिक सरल रूप से सुव्यवस्थित और ट्रांसफिनिट रिकर्सन) का उपयोग करके, कोई यह दिखा सकता है कि प्रत्येक हिल्बर्ट स्थान एक ऑर्थोनॉर्मल आधार को स्वीकार करता है;[6] इसके अतिरिक्त, एक ही स्थान के किन्हीं दो ऑर्थोनॉर्मल आधारों में समान कार्डिनैलिटी (इसे सदिश रिक्त स्थान के लिए सामान्य आयाम प्रमेय के प्रमाण के समान ही सिद्ध किया जा सकता है, भिन्न-भिन्न स्थितियों में यह इस बात पर निर्भर करता है कि बड़ा आधार उम्मीदवार गणनीय है या नहीं) होती है। हिल्बर्ट स्पेस को तभी अलग किया जा सकता है जब वह गणनीय ऑर्थोनॉर्मल आधार को स्वीकार करता है। (पसंद के सिद्धांत का उपयोग किए बिना कोई इस अंतिम कथन को सिद्ध कर सकता है।)
समरूपता के विकल्प के रूप में आधार का चुनाव
ठोसता के लिए हम एक सकारात्मक निश्चित सममित द्विरेखीय रूप के साथ एक वास्तविक आयामी सदिश अंतरिक्ष के लिए ऑर्थोनॉर्मल आधारों पर चर्चा करते हैं।
के संबंध में ऑर्थोनॉर्मल आधार को देखने का एक तरीका सदिश के एक समूह के रूप में है, जो हमें के लिए , और या लिखने की अनुमति देता हैं। इस आधार के संबंध में, के घटक विशेष रूप से सरल हैं:
अब हम आधार को माप के रूप में देख सकते हैं जो आंतरिक उत्पाद स्थानों की समरूपता है: इसे और अधिक स्पष्ट करने के लिए हम लिख सकते हैं
स्पष्ट रूप से हम लिख सकते हैं जहाँ , का दोहरा आधार तत्व हैं।
व्युत्क्रम घटक माप है
ये परिभाषाएँ यह प्रकट करती हैं कि आपत्ति है
समरूपता का स्थान पक्ष या ओर पक्ष पर ऑर्थोगोनल समूहों की क्रियाओं को स्वीकार करता है। ठोसता के लिए हम दिशा में निरुपित करने के लिए समरूपता को ठीक करते हैं, और ऐसे मापों के स्थान पर विचार करें,
यह स्थान के आइसोमेट्रीज़ के समूह द्वारा बाईं ओर की कार्रवाई को स्वीकार करता है, अर्थात, ऐसा है कि , रचना द्वारा दी गई क्रिया के साथ:
यह स्थान के आइसोमेट्रीज़ के समूह द्वारा सही कार्रवाई को भी स्वीकार करता है, वह है, , रचना द्वारा फिर से दी गई क्रिया के साथ: .
प्रमुख सजातीय स्थान के रूप में
मानक आंतरिक उत्पाद के साथ के लिए ऑर्थोनॉर्मल आधारों का समूह ऑर्थोगोनल समूह के लिए एक प्रमुख सजातीय स्थान या G-टॉर्सर है, और इसे ऑर्थोनॉर्मल n-फ़्रेम का स्टिफ़ेल मैनिफ़ोल्ड कहा जाता है।[7]
दूसरे शब्दों में, ऑर्थोनॉर्मल आधारों का स्थान ऑर्थोगोनल समूह की तरह है, किन्तु आधार बिंदु के विकल्प के बिना: ऑर्थोनॉर्मल आधारों के स्थान को देखते हुए, ऑर्थोनॉर्मल आधारों का कोई प्राकृतिक विकल्प नहीं है, किन्तु एक बार एक दिए जाने के बाद आधारों और ऑर्थोगोनल समूह के बीच एक से एक पत्राचार होता है। सामान्यतः, एक रेखीय मानचित्र इस बात से निर्धारित होता है कि वह किसी दिए गए आधार को कहां भेजता है: जिस तरह एक व्युत्क्रम माप किसी भी आधार को किसी अन्य आधार पर ले जा सकता है, एक ऑर्थोगोनल नक्शा किसी भी ऑर्थोगोनल आधार को किसी अन्य ऑर्थोगोनल आधार पर ले जा सकता है।
अन्य स्टिफ़ेल अपूर्ण ऑर्थोनॉर्मल आधारों (ऑर्थोनॉर्मल -फ़्रेम) के के लिए को मैनिफोल्ड करता है, ऑर्थोगोनल समूह के लिए अभी भी सजातीय स्थान हैं, किन्तु प्रमुख सजातीय स्थान नहीं हैं: किसी भी -फ़्रेम को ऑर्थोगोनल माप द्वारा किसी अन्य -फ़्रेम में ले जाया जा सकता है, किन्तु यह मानचित्र विशिष्ट रूप से निर्धारित नहीं है।
- के लिए ऑर्थोनॉर्मल आधारों का समूह के लिए G-टॉर्सर है।
- के लिए ऑर्थोनॉर्मल आधारों का समूह के लिए जी-टॉर्सर है।
- के लिए ऑर्थोनॉर्मल आधारों का समूह के लिए जी-टॉर्सर है।
- के लिए दाएं हाथ के ऑर्थोनॉर्मल आधारों का समूह के लिए जी-टॉर्सर है।
यह भी देखें
संदर्भ
- ↑ Lay, David C. (2006). रेखीय बीजगणित और इसके अनुप्रयोग (3rd ed.). Addison–Wesley. ISBN 0-321-28713-4.
- ↑ Strang, Gilbert (2006). रेखीय बीजगणित और इसके अनुप्रयोग (4th ed.). Brooks Cole. ISBN 0-03-010567-6.
- ↑ Axler, Sheldon (2002). रैखिक बीजगणित सही ढंग से किया गया (2nd ed.). Springer. ISBN 0-387-98258-2.
- ↑ Rudin, Walter (1987). वास्तविक एवं जटिल विश्लेषण. McGraw-Hill. ISBN 0-07-054234-1.
- ↑ Roman 2008, p. 218, ch. 9.
- ↑ Linear Functional Analysis Authors: Rynne, Bryan, Youngson, M.A. page 79
- ↑ "सीयू संकाय". engfac.cooper.edu. Retrieved 2021-04-15.
- Roman, Stephen (2008). Advanced Linear Algebra. Graduate Texts in Mathematics (Third ed.). Springer. ISBN 978-0-387-72828-5. (page 218, ch.9)
- Rudin, Walter (1991). Functional Analysis. International Series in Pure and Applied Mathematics. Vol. 8 (Second ed.). New York, NY: McGraw-Hill Science/Engineering/Math. ISBN 978-0-07-054236-5. OCLC 21163277.
बाहरी संबंध
- This Stack Exchange Post discusses why the set of Dirac Delta functions is not a basis of L2([0,1]).