वैकल्पिक श्रृंखला परीक्षण: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 20: Line 20:
वैकल्पिक श्रृंखला अनुमान प्रमेय
वैकल्पिक श्रृंखला अनुमान प्रमेय


इसके अलावा, मान लीजिए कि L श्रृंखला के योग को दर्शाता है, फिर आंशिक योग को
इसके अतिरिक्त, मान लीजिए कि L श्रृंखला के योग को दर्शाता है, फिर आंशिक योग को


:<math>S_k = \sum_{n=0}^k (-1)^{n} a_n\!</math>
:<math>S_k = \sum_{n=0}^k (-1)^{n} a_n\!</math>
Line 42: Line 42:
:<math> S_{2(m+1)}=S_{2m}+a_{2m+1}-a_{2m+2} \geq S_{2m} </math> दोनों क्योंकि ए<sub>''n''</sub> n के साथ नीरस रूप से घटता है।
:<math> S_{2(m+1)}=S_{2m}+a_{2m+1}-a_{2m+2} \geq S_{2m} </math> दोनों क्योंकि ए<sub>''n''</sub> n के साथ नीरस रूप से घटता है।


इसके अलावा, चूंकि ए<sub>''n''</sub> सकारात्मक हैं, <math> S_{2m+1}-S_{2m}=a_{2m+1} \geq 0 </math>. इस प्रकार हम निम्नलिखित विचारोत्तेजक असमानता बनाने के लिए इन तथ्यों को एकत्र कर सकते हैं:
इसके अतिरिक्त, चूंकि ए<sub>''n''</sub> सकारात्मक हैं, <math> S_{2m+1}-S_{2m}=a_{2m+1} \geq 0 </math>. इस प्रकार हम निम्नलिखित विचारोत्तेजक असमानता बनाने के लिए इन तथ्यों को एकत्र कर सकते हैं:


:<math> a_1 - a_2 = S_2 \leq S_{2m} \leq S_{2m+1} \leq S_1 = a_1. </math>
:<math> a_1 - a_2 = S_2 \leq S_{2m} \leq S_{2m+1} \leq S_1 = a_1. </math>
Line 52: Line 52:
सीमा L को कॉल करें, फिर मोनोटोन अभिसरण प्रमेय हमें अतिरिक्त जानकारी भी बताता है
सीमा L को कॉल करें, फिर मोनोटोन अभिसरण प्रमेय हमें अतिरिक्त जानकारी भी बताता है


:<math> S_{2m} \leq L \leq S_{2m+1} </math> किसी भी एम के लिए इसका मतलब यह है कि एक वैकल्पिक श्रृंखला का आंशिक योग भी अंतिम सीमा के ऊपर और नीचे एकांतर होता है। अधिक सटीक रूप से, जब पदों की संख्या विषम (सम) होती है, यानी अंतिम पद प्लस (माइनस) पद होता है, तो आंशिक योग अंतिम सीमा से ऊपर (नीचे) होता है।
:<math> S_{2m} \leq L \leq S_{2m+1} </math> किसी भी एम के लिए इसका मतलब यह है कि एक वैकल्पिक श्रृंखला का आंशिक योग भी अंतिम सीमा के ऊपर और नीचे एकांतर होता है। अधिक त्रुटिहीन रूप से, जब पदों की संख्या विषम (सम) होती है, अर्थात अंतिम पद प्लस (माइनस) पद होता है, तो आंशिक योग अंतिम सीमा से ऊपर (नीचे) होता है।


यह समझ तुरंत आंशिक योगों की त्रुटि की ओर ले जाती है, जैसा कि नीचे दिखाया गया है।
यह समझ तुरंत आंशिक योगों की त्रुटि की ओर ले जाती है, जैसा कि नीचे दिखाया गया है।
Line 58: Line 58:
=== प्रत्यावर्ती श्रृंखला अनुमान प्रमेय का प्रमाण ===
=== प्रत्यावर्ती श्रृंखला अनुमान प्रमेय का प्रमाण ===


हम दिखाना चाहेंगे <math>\left| S_k - L \right| \leq a_{k+1}\!</math> दो मामलों में विभाजित करके.
हम दिखाना चाहेंगे <math>\left| S_k - L \right| \leq a_{k+1}\!</math> दो स्थितियों में विभाजित करके.


जब k = 2m+1, अर्थात विषम, तब
जब k = 2m+1, अर्थात विषम, तब
Line 68: Line 68:
जैसी इच्छा थी।
जैसी इच्छा थी।


दोनों मामले अनिवार्य रूप से पिछले प्रमाण में प्राप्त अंतिम असमानता पर निर्भर करते हैं।
दोनों स्थितियों अनिवार्य रूप से पिछले प्रमाण में प्राप्त अंतिम असमानता पर निर्भर करते हैं।


कॉची के अभिसरण परीक्षण का उपयोग करके वैकल्पिक प्रमाण के लिए, वैकल्पिक श्रृंखला देखें।
कॉची के अभिसरण परीक्षण का उपयोग करके वैकल्पिक प्रमाण के लिए, वैकल्पिक श्रृंखला देखें।
Line 84: Line 84:


:<math>\frac{1}{\sqrt{2}-1}-\frac{1}{\sqrt{2}+1}+\frac{1}{\sqrt{3}-1}-\frac{1}{\sqrt{3}+1}+\cdots</math>
:<math>\frac{1}{\sqrt{2}-1}-\frac{1}{\sqrt{2}+1}+\frac{1}{\sqrt{3}-1}-\frac{1}{\sqrt{3}+1}+\cdots</math>
चिह्न बारी-बारी से होते हैं और पद शून्य की ओर प्रवृत्त होते हैं। हालाँकि, एकरसता मौजूद नहीं है और हम परीक्षण लागू नहीं कर सकते। दरअसल सीरीज अलग-अलग है. दरअसल, आंशिक राशि के लिए <math>S_{2n}</math> अपने पास <math>S_{2n}=\frac{2}{1}+\frac{2}{2}+\frac{2}{3}+\cdots+\frac{2}{n-1}</math> जो हार्मोनिक श्रृंखला के आंशिक योग का दोगुना है, जो अपसारी है। इसलिए मूल श्रृंखला अपसारी है।
चिह्न बारी-बारी से होते हैं और पद शून्य की ओर प्रवृत्त होते हैं। चूँकि, एकरसता उपस्तिथ नहीं है और हम परीक्षण लागू नहीं कर सकते। मुख्य रूप से सीरीज अलग-अलग है. मुख्य रूप से, आंशिक राशि के लिए <math>S_{2n}</math> अपने पास <math>S_{2n}=\frac{2}{1}+\frac{2}{2}+\frac{2}{3}+\cdots+\frac{2}{n-1}</math> जो हार्मोनिक श्रृंखला के आंशिक योग का दोगुना है, जो अपसारी है। इसलिए मूल श्रृंखला अपसारी है।


=== परीक्षण केवल पर्याप्त है, आवश्यक नहीं ===
=== परीक्षण केवल पर्याप्त है, आवश्यक नहीं ===


लीबनिज़ परीक्षण की एकरसता कोई आवश्यक शर्त नहीं है, इस प्रकार परीक्षण स्वयं पर्याप्त है, लेकिन आवश्यक नहीं है। (परीक्षण का दूसरा भाग सभी श्रृंखलाओं के लिए अभिसरण की आवश्यक शर्त से परिचित है।)
लीबनिज़ परीक्षण की एकरसता कोई आवश्यक शर्त नहीं है, इस प्रकार परीक्षण स्वयं पर्याप्त है, किन्तु आवश्यक नहीं है। (परीक्षण का दूसरा भाग सभी श्रृंखलाओं के लिए अभिसरण की आवश्यक शर्त से परिचित है।)
नॉनमोनोटोनिक श्रृंखला के उदाहरण जो अभिसरण करते हैं <math>\sum_{n=2}^\infty \dfrac{(-1)^n}{n+(-1)^n}</math> और <math>\sum_{n=1}^{\infty} (-1)^n\dfrac{\cos^2n}{n^2}.</math>
नॉनमोनोटोनिक श्रृंखला के उदाहरण जो अभिसरण करते हैं <math>\sum_{n=2}^\infty \dfrac{(-1)^n}{n+(-1)^n}</math> और <math>\sum_{n=1}^{\infty} (-1)^n\dfrac{\cos^2n}{n^2}.</math>



Revision as of 18:15, 7 July 2023

गणितीय विश्लेषण में, प्रत्यावर्ती श्रृंखला परीक्षण वह विधि है जिसका उपयोग यह दिखाने के लिए किया जाता है कि एक प्रत्यावर्ती श्रृंखला अभिसरण श्रृंखला है जब इसके पद (1) पूर्ण मूल्य में घटते हैं, और (2) सीमा में शून्य के करीब पहुंचते हैं। परीक्षण का उपयोग गॉटफ्राइड लीबनिज द्वारा किया गया था और इसे कभी-कभी लाइबनिज परीक्षण, लाइबनिज नियम या लाइबनिज मानदंड के रूप में जाना जाता है। परीक्षण केवल पर्याप्त है, आवश्यक नहीं, इसलिए कुछ अभिसरण वैकल्पिक श्रृंखला परीक्षण के पहले भाग में विफल हो सकती है।

औपचारिक वक्तव्य

वैकल्पिक श्रृंखला परीक्षण

प्रपत्र की एक श्रृंखला

जहां या तो सभी एn सकारात्मक हैं या सभी एn ऋणात्मक हैं, इसे प्रत्यावर्ती श्रृंखला कहा जाता है।

वैकल्पिक श्रृंखला परीक्षण यह गारंटी देता है कि यदि निम्नलिखित दो शर्तें पूरी होती हैं तो एक वैकल्पिक श्रृंखला अभिसरण करती है:

  1. मोनोटोनिक फ़ंक्शन कम हो जाता है[1], अर्थात।, , और

वैकल्पिक श्रृंखला अनुमान प्रमेय

इसके अतिरिक्त, मान लीजिए कि L श्रृंखला के योग को दर्शाता है, फिर आंशिक योग को

अगले छोड़े गए पद से घिरी त्रुटि के साथ L का अनुमान लगाता है:


प्रमाण

मान लीजिए हमें फॉर्म की एक श्रृंखला दी गई है , कहाँ और सभी प्राकृत संख्याओं के लिए n. (मामला नकारात्मक लेते हुए अनुसरण करता है।)[1]

प्रत्यावर्ती श्रृंखला परीक्षण का प्रमाण

हम सिद्ध करेंगे कि दोनों आंशिक योग हैं विषम संख्या में पदों के साथ, और सम संख्या में पदों के साथ, समान संख्या एल में परिवर्तित हो जाते हैं। इस प्रकार सामान्य आंशिक योग एल में भी अभिसरण होता है।

विषम आंशिक योग एकरस रूप से घटते हैं:

जबकि सम आंशिक राशियाँ एकरस रूप से बढ़ती हैं:

दोनों क्योंकि एn n के साथ नीरस रूप से घटता है।

इसके अतिरिक्त, चूंकि एn सकारात्मक हैं, . इस प्रकार हम निम्नलिखित विचारोत्तेजक असमानता बनाने के लिए इन तथ्यों को एकत्र कर सकते हैं:

अब, ध्यान दें कि ए1 − ए2 नीरस रूप से घटते अनुक्रम एस की निचली सीमा है2m+1, मोनोटोन अभिसरण प्रमेय का तात्पर्य यह है कि जैसे-जैसे m अनंत की ओर बढ़ता है, यह क्रम अभिसरण करता है। इसी प्रकार, आंशिक योग का क्रम भी परिवर्तित हो जाता है।

अंततः, उन्हें एक ही संख्या में एकत्रित होना होगा क्योंकि

सीमा L को कॉल करें, फिर मोनोटोन अभिसरण प्रमेय हमें अतिरिक्त जानकारी भी बताता है

किसी भी एम के लिए इसका मतलब यह है कि एक वैकल्पिक श्रृंखला का आंशिक योग भी अंतिम सीमा के ऊपर और नीचे एकांतर होता है। अधिक त्रुटिहीन रूप से, जब पदों की संख्या विषम (सम) होती है, अर्थात अंतिम पद प्लस (माइनस) पद होता है, तो आंशिक योग अंतिम सीमा से ऊपर (नीचे) होता है।

यह समझ तुरंत आंशिक योगों की त्रुटि की ओर ले जाती है, जैसा कि नीचे दिखाया गया है।

प्रत्यावर्ती श्रृंखला अनुमान प्रमेय का प्रमाण

हम दिखाना चाहेंगे दो स्थितियों में विभाजित करके.

जब k = 2m+1, अर्थात विषम, तब

जब k = 2m, अर्थात सम, तब

जैसी इच्छा थी।

दोनों स्थितियों अनिवार्य रूप से पिछले प्रमाण में प्राप्त अंतिम असमानता पर निर्भर करते हैं।

कॉची के अभिसरण परीक्षण का उपयोग करके वैकल्पिक प्रमाण के लिए, वैकल्पिक श्रृंखला देखें।

सामान्यीकरण के लिए, डिरिचलेट का परीक्षण देखें।

उदाहरण

एक विशिष्ट उदाहरण

प्रत्यावर्ती हार्मोनिक श्रृंखला

वैकल्पिक श्रृंखला परीक्षण के लिए दोनों शर्तों को पूरा करता है और अभिसरण करता है।

एकरसता दिखाने के लिए एक उदाहरण की आवश्यकता है

निष्कर्ष के सत्य होने के लिए परीक्षण में सभी शर्तें, अर्थात् शून्य और एकरसता में अभिसरण, को पूरा किया जाना चाहिए। उदाहरण के लिए, श्रृंखला को लीजिए

चिह्न बारी-बारी से होते हैं और पद शून्य की ओर प्रवृत्त होते हैं। चूँकि, एकरसता उपस्तिथ नहीं है और हम परीक्षण लागू नहीं कर सकते। मुख्य रूप से सीरीज अलग-अलग है. मुख्य रूप से, आंशिक राशि के लिए अपने पास जो हार्मोनिक श्रृंखला के आंशिक योग का दोगुना है, जो अपसारी है। इसलिए मूल श्रृंखला अपसारी है।

परीक्षण केवल पर्याप्त है, आवश्यक नहीं

लीबनिज़ परीक्षण की एकरसता कोई आवश्यक शर्त नहीं है, इस प्रकार परीक्षण स्वयं पर्याप्त है, किन्तु आवश्यक नहीं है। (परीक्षण का दूसरा भाग सभी श्रृंखलाओं के लिए अभिसरण की आवश्यक शर्त से परिचित है।) नॉनमोनोटोनिक श्रृंखला के उदाहरण जो अभिसरण करते हैं और

यह भी देखें

  • वैकल्पिक श्रृंखला
  • डिरिक्लेट का परीक्षण

टिप्पणियाँ

^ In practice, the first few terms may increase. What is important is that for all after some point,[2] because the first finite amount of terms would not change a series' convergence/divergence.

संदर्भ

  1. The proof follows the idea given by James Stewart (2012) “Calculus: Early Transcendentals, Seventh Edition” pp. 727–730. ISBN 0-538-49790-4
  2. Dawkins, Paul. "Calculus II - Alternating Series Test". Paul's Online Math टिप्पणियाँ. Lamar University. Retrieved 1 November 2019.

बाहरी संबंध