कोटैंजेंट बंडल: Difference between revisions
No edit summary |
No edit summary |
||
Line 12: | Line 12: | ||
कोटैंजेंट बंडल के [[ सुचारू कार्य |सुचारू कार्य]] [[ अनुभाग (फाइबर बंडल) |अनुभाग (फाइबर बंडल)]] को (अवकल) [[एक प्रपत्र]] कहा जाता है। | कोटैंजेंट बंडल के [[ सुचारू कार्य |सुचारू कार्य]] [[ अनुभाग (फाइबर बंडल) |अनुभाग (फाइबर बंडल)]] को (अवकल) [[एक प्रपत्र]] कहा जाता है। | ||
== | ==विरोधाभासी गुण == | ||
एक सहज रूपवाद <math> \phi\colon M\to N</math> कई गुना, एक [[पुलबैक (विभेदक ज्यामिति)]] प्रेरित करता है, <math>\phi^*T^*N</math> | एक सहज रूपवाद <math> \phi\colon M\to N</math> कई गुना, एक [[पुलबैक (विभेदक ज्यामिति)]] प्रेरित करता है, <math>\phi^*T^*N</math> M पर एक पुलबैक (विभेदक ज्यामिति) है, कोटैंजेंट सदिश और सदिश बंडलों के 1-रूपों का पुलबैक <math>\phi^*(T^*N)\to T^*M</math> है। | ||
== उदाहरण == | == उदाहरण == | ||
सदिश समष्टि का स्पर्शरेखा बंडल <math>\mathbb{R}^n</math> है और <math>T\,\mathbb{R}^n = \mathbb{R}^n\times \mathbb{R}^n</math>, कोटैंजेंट बंडल है, <math>T^*\mathbb{R}^n = \mathbb{R}^n\times (\mathbb{R}^n)^*</math>, जहाँ <math>(\mathbb{R}^n)^*</math> सहसदिशों की दोहरी समष्टि, रैखिक कार्यों को | सदिश समष्टि का स्पर्शरेखा बंडल <math>\mathbb{R}^n</math> है और <math>T\,\mathbb{R}^n = \mathbb{R}^n\times \mathbb{R}^n</math>, कोटैंजेंट बंडल है, <math>T^*\mathbb{R}^n = \mathbb{R}^n\times (\mathbb{R}^n)^*</math>, जहाँ <math>(\mathbb{R}^n)^*</math> सहसदिशों की दोहरी समष्टि, रैखिक कार्यों को <math>v^*:\mathbb{R}^n\to \mathbb{R}</math> इस प्रकार दर्शाता है। | ||
एक सहज विविधता <math>M\subset \mathbb{R}^n</math> दी गई है, किसी फ़ंक्शन के लुप्त हो रहे समष्टि द्वारा दर्शाए गए [[ऊनविम पृष्ठ]] के रूप में एम्बेडेड <math>f\in C^\infty (\mathbb{R}^n) | एक सहज विविधता <math>M\subset \mathbb{R}^n</math> दी गई है, किसी फ़ंक्शन के लुप्त हो रहे समष्टि द्वारा दर्शाए गए [[ऊनविम पृष्ठ]] के रूप में एम्बेडेड <math>f\in C^\infty (\mathbb{R}^n)</math> करता है, इस शर्त के साथ कि <math>\nabla f \neq 0,</math> स्पर्शरेखा बंडल है। | ||
:<math>TM = \{(x,v) \in T\,\mathbb{R}^n \ :\ f(x) = 0,\ \, df_x(v) = 0\},</math> | :<math>TM = \{(x,v) \in T\,\mathbb{R}^n \ :\ f(x) = 0,\ \, df_x(v) = 0\},</math> | ||
Line 25: | Line 25: | ||
:<math>T^*M = \bigl\{(x,v^*)\in T^*\mathbb{R}^n \ :\ f(x)=0,\ v^* \in T^*_xM \bigr\},</math> | :<math>T^*M = \bigl\{(x,v^*)\in T^*\mathbb{R}^n \ :\ f(x)=0,\ v^* \in T^*_xM \bigr\},</math> | ||
जहाँ <math>T^*_xM=\{v \in T_x\mathbb{R}^n\ :\ df_x(v)=0\}^*</math> चूँकि प्रत्येक सहसदिश <math>v^* \in T^*_xM</math> एक अद्वितीय <math>v \in T_xM</math> सदिश से मेल खाता है, जिसके लिए <math>v^*(u) = v \cdot u,</math> एक | जहाँ <math>T^*_xM=\{v \in T_x\mathbb{R}^n\ :\ df_x(v)=0\}^*</math> चूँकि प्रत्येक सहसदिश <math>v^* \in T^*_xM</math> एक अद्वितीय <math>v \in T_xM</math> सदिश से मेल खाता है, जिसके लिए <math>v^*(u) = v \cdot u,</math> एक स्वेच्छ के लिए <math>u \in T_xM,</math> | ||
:<math>T^*M = \bigl\{(x,v^*)\in T^*\mathbb{R}^n\ :\ f(x) = 0,\ v \in T_x\mathbb{R}^n,\ df_x(v)=0 \bigr\}</math> है। | :<math>T^*M = \bigl\{(x,v^*)\in T^*\mathbb{R}^n\ :\ f(x) = 0,\ v \in T_x\mathbb{R}^n,\ df_x(v)=0 \bigr\}</math> है। | ||
== [[चरण स्थान|चरण समष्टि]] के रूप में कोटैंजेंट बंडल == | == [[चरण स्थान|चरण समष्टि]] के रूप में कोटैंजेंट बंडल == | ||
चूँकि कोटैंजेंट बंडल X = T*M एक सदिश बंडल है, इसे अपने आप में कई गुना माना जा सकता है। क्योंकि प्रत्येक बिंदु पर M की स्पर्शरेखा दिशाओं को फाइबर में उनके दोहरे सहसदिश के साथ जोड़ा जा सकता है, X के पास एक कैनोनिकल वन-फॉर्म θ होता है, जिसे [[टॉटोलॉजिकल वन-फॉर्म]] कहा जाता है, जिसकी चर्चा नीचे की गई है। θ का [[बाहरी व्युत्पन्न]] एक [[सरलीकृत रूप]] है, जिसमें से X के लिए एक गैर-पतित [[वॉल्यूम फॉर्म]] बनाया जा सकता है। उदाहरण के लिए, परिणामस्वरूप X निरंतर एक | चूँकि कोटैंजेंट बंडल X = T*M एक सदिश बंडल है, इसे अपने आप में कई गुना माना जा सकता है। क्योंकि प्रत्येक बिंदु पर M की स्पर्शरेखा दिशाओं को फाइबर में उनके दोहरे सहसदिश के साथ जोड़ा जा सकता है, X के पास एक कैनोनिकल वन-फॉर्म θ होता है, जिसे [[टॉटोलॉजिकल वन-फॉर्म]] कहा जाता है, जिसकी चर्चा नीचे की गई है। θ का [[बाहरी व्युत्पन्न]] एक [[सरलीकृत रूप]] है, जिसमें से X के लिए एक गैर-पतित [[वॉल्यूम फॉर्म]] बनाया जा सकता है। उदाहरण के लिए, परिणामस्वरूप X निरंतर एक (स्पर्शरेखा बंडल TX एक ओरिएंटेबल है सदिश बंडल) [[ एडजस्टेबल |एडजस्टेबल]] मैनिफोल्ड है। निर्देशांक का एक विशेष समुच्चय कोटैंजेंट बंडल पर परिभाषित किया जा सकता है; इन्हें [[विहित निर्देशांक]] कहा जाता है। क्योंकि कोटैंजेंट बंडलों को [[ सिंपलेक्टिक मैनिफ़ोल्ड |सिंपलेक्टिक मैनिफ़ोल्ड]] ्स के रूप में सोचा जा सकता है, कोटैंजेंट बंडल पर किसी भी वास्तविक फ़ंक्शन को [[सिम्प्लेक्टिक वेक्टर स्पेस|सिम्प्लेक्टिक सदिश स्पेस]] के रूप में व्याख्या की जा सकती है; इस प्रकार कोटैंजेंट बंडल को एक चरण समष्टि के रूप में समझा जा सकता है जिस पर [[हैमिल्टनियन यांत्रिकी]] काम करती है। | ||
=== टॉटोलॉजिकल वन-फॉर्म === | === टॉटोलॉजिकल वन-फॉर्म === | ||
{{main|टॉटोलॉजिकल वन-फॉर्म}} | {{main|टॉटोलॉजिकल वन-फॉर्म}} | ||
कोटैंजेंट बंडल में एक कैनोनिकल वन-फॉर्म θ होता है जिसे [[सहानुभूतिपूर्ण क्षमता]], पोंकारे 1-फॉर्म, या लिउविले 1-फॉर्म के रूप में भी जाना जाता है। इसका अर्थ यह है कि | कोटैंजेंट बंडल में एक कैनोनिकल वन-फॉर्म θ होता है जिसे [[सहानुभूतिपूर्ण क्षमता]], पोंकारे 1-फॉर्म, या लिउविले 1-फॉर्म के रूप में भी जाना जाता है। इसका अर्थ यह है कि यदि हम T*M को अपने आप में कई गुना मानते हैं, तो T*M के ऊपर सदिश बंडल T*(T*M) का एक कैनोनिकल वर्ग (फाइबर बंडल) है। | ||
इस अनुभाग का निर्माण कई विधियों से किया जा सकता है। सबसे प्राथमिक विधि स्थानीय निर्देशांक का उपयोग करती है। मान लीजिए कि x<sup>i</sup> | इस अनुभाग का निर्माण कई विधियों से किया जा सकता है। सबसे प्राथमिक विधि स्थानीय निर्देशांक का उपयोग करती है। मान लीजिए कि x<sup>i</sup> आधार मैनिफोल्ड M पर स्थानीय निर्देशांक हैं। इन आधार निर्देशांकों के संदर्भ में, फाइबर निर्देशांक p<sub>''i''</sub> हैं: T*M के एक विशेष बिंदु पर वन-फॉर्म का रूप p<sub>''i''</sub> होता है, Dx<sup>i</sup> ([[आइंस्टीन सारांश सम्मेलन]] निहित), तो मैनिफोल्ड T*M स्वयं स्थानीय निर्देशांक (x<sup>i</sup>) वहन करता है, p<sub>''i''</sub>) जहां x आधार पर निर्देशांक हैं और p फाइबर में निर्देशांक हैं। इन निर्देशांकों में विहित वन-फॉर्म दिया गया है, | ||
:<math>\theta_{(x,p)}=\sum_{{\mathfrak i}=1}^n p_i \, dx^i.</math> | :<math>\theta_{(x,p)}=\sum_{{\mathfrak i}=1}^n p_i \, dx^i.</math> | ||
Line 50: | Line 50: | ||
=== चरण समष्टि === | === चरण समष्टि === | ||
यदि मैनिफोल्ड <math>M</math> एक [[गतिशील प्रणाली]] में संभावित स्थितियों के समुच्चय का प्रतिनिधित्व करता है, | यदि मैनिफोल्ड <math>M</math> एक [[गतिशील प्रणाली]] में संभावित स्थितियों के समुच्चय का प्रतिनिधित्व करता है, तो कोटैंजेंट बंडल <math>\!\,T^{*}\!M</math>को संभावित स्थितियों और संवेग के समुच्चय के रूप में माना जा सकता है। उदाहरण के लिए, यह पेंडुलम के चरण स्थान का वर्णन करने की एक विधि है। पेंडुलम की स्थिति उसकी स्थिति (एक कोण) और उसके संवेग (या समकक्ष, उसके वेग, क्योंकि उसका द्रव्यमान स्थिर है) से निर्धारित होती है। संपूर्ण राज्य स्थान एक सिलेंडर की तरह दिखता है, जो वृत्त का कोटैंजेंट बंडल है। उपरोक्त सिम्प्लेटिक निर्माण, एक उपयुक्त ऊर्जा फ़ंक्शन के साथ, सिस्टम की भौतिकी का पूर्ण निर्धारण देता है। गति के हैमिल्टनियन समीकरणों के स्पष्ट निर्माण के लिए हैमिल्टनियन यांत्रिकी और जियोडेसिक प्रवाह पर लेख देखें। | ||
<math>\!\,T^{*}\!M</math> संभावित स्थितियों और | |||
==यह भी देखें== | ==यह भी देखें== | ||
* [[पौराणिक परिवर्तन]] | * [[पौराणिक परिवर्तन]] |
Revision as of 20:51, 9 July 2023
गणित में, विशेष रूप से विभेदक ज्यामिति में, स्मूथ मैनिफोल्ड का कोटैंजेंट बंडल मैनिफोल्ड के प्रत्येक बिंदु पर सभी कोटैंजेंट समष्टि का सदिश बंडल होता है। इसे स्पर्शरेखा बंडल के दोहरे बंडल के रूप में भी वर्णित किया जा सकता है। इसे श्रेणी (गणित) में सामान्यीकृत किया जा सकता है, जिसमें स्मूथ मैनिफोल्ड की तुलना में अधिक संरचना होती है, जैसे सम्मिश्र मैनिफोल्ड, या (कोटैंजेंट शीफ के रूप में) बीजगणितीय विविधता या योजना (गणित) की सहज स्थिति में, कोई भी रीमैनियन मीट्रिक या सिंपलेक्टिक रूप कोटैंजेंट बंडल और स्पर्शरेखा बंडल के बीच एक समरूपता देता है, लेकिन वे अन्य श्रेणियों में सामान्य समरूपी नहीं होते हैं।
विकर्ण आकारिकी के माध्यम से औपचारिक परिभाषा
कोटैंजेंट बंडल को परिभाषित करने की कई समान विधि हैं। कोटैंजेंट शीफ एक विकर्ण आकारिकी के माध्यम से निर्माण एक विकर्ण मानचित्रण Δ और रोगाणु (गणित) के माध्यम से होता है।
मान लीजिए कि M एक सहज मैनिफोल्ड है और M×M स्वयं M का कार्तीय गुणनफल है। विकर्ण मानचित्रण Δ M में एक बिंदु p को M×M के बिंदु (p,p) पर भेजता है। Δ की छवि को विकर्ण कहा जाता है। मान लीजिए कि , M×M पर सुचारु कार्यों के रोगाणुओं का समूह है जो विकर्ण पर लुप्त हो जाते हैं। इसके अतिरिक्त फिर भागफल शीफ़ (गणित) में कार्यों के तुल्यता वर्ग सम्मलित होते हैं जो विकर्ण मॉड्यूलो उच्च क्रम की शर्तों पर विलुप्त हो जाते हैं। कोटैंजेंट शीफ को इस शीफ के M से पुलबैक के रूप में परिभाषित किया गया है:
टेलर के प्रमेय के अनुसार, यह M के सुचारु कार्यों के रोगाणुओं के शीफ के संबंध में मॉड्यूल का एक स्थानीय रूप से मुक्त शीफ है। 'कोटैंजेंट बंडल' इस प्रकार यह M पर एक सदिश बंडल को परिभाषित करता है।
कोटैंजेंट बंडल के सुचारू कार्य अनुभाग (फाइबर बंडल) को (अवकल) एक प्रपत्र कहा जाता है।
विरोधाभासी गुण
एक सहज रूपवाद कई गुना, एक पुलबैक (विभेदक ज्यामिति) प्रेरित करता है, M पर एक पुलबैक (विभेदक ज्यामिति) है, कोटैंजेंट सदिश और सदिश बंडलों के 1-रूपों का पुलबैक है।
उदाहरण
सदिश समष्टि का स्पर्शरेखा बंडल है और , कोटैंजेंट बंडल है, , जहाँ सहसदिशों की दोहरी समष्टि, रैखिक कार्यों को इस प्रकार दर्शाता है।
एक सहज विविधता दी गई है, किसी फ़ंक्शन के लुप्त हो रहे समष्टि द्वारा दर्शाए गए ऊनविम पृष्ठ के रूप में एम्बेडेड करता है, इस शर्त के साथ कि स्पर्शरेखा बंडल है।
जहाँ का दिशात्मक व्युत्पन्न है, परिभाषा के अनुसार, इस स्थिति में यह कोटैंजेंट बंडल है,
जहाँ चूँकि प्रत्येक सहसदिश एक अद्वितीय सदिश से मेल खाता है, जिसके लिए एक स्वेच्छ के लिए
- है।
चरण समष्टि के रूप में कोटैंजेंट बंडल
चूँकि कोटैंजेंट बंडल X = T*M एक सदिश बंडल है, इसे अपने आप में कई गुना माना जा सकता है। क्योंकि प्रत्येक बिंदु पर M की स्पर्शरेखा दिशाओं को फाइबर में उनके दोहरे सहसदिश के साथ जोड़ा जा सकता है, X के पास एक कैनोनिकल वन-फॉर्म θ होता है, जिसे टॉटोलॉजिकल वन-फॉर्म कहा जाता है, जिसकी चर्चा नीचे की गई है। θ का बाहरी व्युत्पन्न एक सरलीकृत रूप है, जिसमें से X के लिए एक गैर-पतित वॉल्यूम फॉर्म बनाया जा सकता है। उदाहरण के लिए, परिणामस्वरूप X निरंतर एक (स्पर्शरेखा बंडल TX एक ओरिएंटेबल है सदिश बंडल) एडजस्टेबल मैनिफोल्ड है। निर्देशांक का एक विशेष समुच्चय कोटैंजेंट बंडल पर परिभाषित किया जा सकता है; इन्हें विहित निर्देशांक कहा जाता है। क्योंकि कोटैंजेंट बंडलों को सिंपलेक्टिक मैनिफ़ोल्ड ्स के रूप में सोचा जा सकता है, कोटैंजेंट बंडल पर किसी भी वास्तविक फ़ंक्शन को सिम्प्लेक्टिक सदिश स्पेस के रूप में व्याख्या की जा सकती है; इस प्रकार कोटैंजेंट बंडल को एक चरण समष्टि के रूप में समझा जा सकता है जिस पर हैमिल्टनियन यांत्रिकी काम करती है।
टॉटोलॉजिकल वन-फॉर्म
कोटैंजेंट बंडल में एक कैनोनिकल वन-फॉर्म θ होता है जिसे सहानुभूतिपूर्ण क्षमता, पोंकारे 1-फॉर्म, या लिउविले 1-फॉर्म के रूप में भी जाना जाता है। इसका अर्थ यह है कि यदि हम T*M को अपने आप में कई गुना मानते हैं, तो T*M के ऊपर सदिश बंडल T*(T*M) का एक कैनोनिकल वर्ग (फाइबर बंडल) है।
इस अनुभाग का निर्माण कई विधियों से किया जा सकता है। सबसे प्राथमिक विधि स्थानीय निर्देशांक का उपयोग करती है। मान लीजिए कि xi आधार मैनिफोल्ड M पर स्थानीय निर्देशांक हैं। इन आधार निर्देशांकों के संदर्भ में, फाइबर निर्देशांक pi हैं: T*M के एक विशेष बिंदु पर वन-फॉर्म का रूप pi होता है, Dxi (आइंस्टीन सारांश सम्मेलन निहित), तो मैनिफोल्ड T*M स्वयं स्थानीय निर्देशांक (xi) वहन करता है, pi) जहां x आधार पर निर्देशांक हैं और p फाइबर में निर्देशांक हैं। इन निर्देशांकों में विहित वन-फॉर्म दिया गया है,
आंतरिक रूप से, T*M के प्रत्येक निश्चित बिंदु में विहित वन-फॉर्म का मान पुलबैक (विभेदक ज्यामिति) के रूप में दिया जाता है। विशेष रूप से, मान लीजिए कि π : T*M → M बंडल का प्रक्षेपण (गणित) है। Tx में एक बिंदु लेते हुए *M, M में एक बिंदु x और x पर वन-फॉर्म ω चुनने के समान है, और टॉटोलॉजिकल वन-फॉर्म θ बिंदु (x, ω) को मान प्रदान करता है,
अर्थात्, कोटैंजेंट बंडल के स्पर्शरेखा बंडल में एक सदिश v के लिए, (x, ω) पर टॉटोलॉजिकल वन-फॉर्म θ के अनुप्रयोग की गणना v को x पर स्पर्शरेखा बंडल में प्रक्षेपित करके की जाती है। dπ : T(T*M) → TM और इस प्रक्षेपण पर ω लागू करा जाता है, ध्यान दें कि टॉटोलॉजिकल वन-फॉर्म आधार M पर वन-फॉर्म का पुलबैक नहीं है।
सांकेतिक रूप
कोटैंजेंट बंडल में एक कैनोनिकल सिंपलेक्टिक रूप होता है, उस पर सिंपलेक्टिक 2-फॉर्म, टॉटोलॉजिकल वन-फॉर्म, सिंपलेक्टिक क्षमता के बाहरी व्युत्पन्न के रूप में यह सिद्ध करना कि यह फॉर्म वास्तव में सहानुभूतिपूर्ण है, यह ध्यान देकर किया जा सकता है कि सहानुभूति होना एक स्थानीय संपत्ति है: चूंकि कोटैंजेंट बंडल स्थानीय रूप से तुच्छ है, इसलिए इस परिभाषा को केवल द्वारा जांचने की आवश्यकता है, लेकिन वहां परिभाषित एक रूप का योग है , और का योग अंतर विहित सहानुभूति रूप है।
चरण समष्टि
यदि मैनिफोल्ड एक गतिशील प्रणाली में संभावित स्थितियों के समुच्चय का प्रतिनिधित्व करता है, तो कोटैंजेंट बंडल को संभावित स्थितियों और संवेग के समुच्चय के रूप में माना जा सकता है। उदाहरण के लिए, यह पेंडुलम के चरण स्थान का वर्णन करने की एक विधि है। पेंडुलम की स्थिति उसकी स्थिति (एक कोण) और उसके संवेग (या समकक्ष, उसके वेग, क्योंकि उसका द्रव्यमान स्थिर है) से निर्धारित होती है। संपूर्ण राज्य स्थान एक सिलेंडर की तरह दिखता है, जो वृत्त का कोटैंजेंट बंडल है। उपरोक्त सिम्प्लेटिक निर्माण, एक उपयुक्त ऊर्जा फ़ंक्शन के साथ, सिस्टम की भौतिकी का पूर्ण निर्धारण देता है। गति के हैमिल्टनियन समीकरणों के स्पष्ट निर्माण के लिए हैमिल्टनियन यांत्रिकी और जियोडेसिक प्रवाह पर लेख देखें।
यह भी देखें
संदर्भ
- Abraham, Ralph; Marsden, Jerrold E. (1978). Foundations of Mechanics. London: Benjamin-Cummings. ISBN 0-8053-0102-X.
- Jost, Jürgen (2002). Riemannian Geometry and Geometric Analysis. Berlin: Springer-Verlag. ISBN 3-540-63654-4.
- Singer, Stephanie Frank (2001). Symmetry in Mechanics: A Gentle Modern Introduction. Boston: Birkhäuser.