वास्तविक बंद क्षेत्र: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(4 intermediate revisions by 3 users not shown)
Line 2: Line 2:
{{hatnote|"आर्टिन-श्रेयर प्रमेय" यहां पुनर्निर्देश करता है। गैलोज़ सिद्धांत की शाखा के लिए, [[आर्टिन-श्रेयर सिद्धांत]] देखें।}}
{{hatnote|"आर्टिन-श्रेयर प्रमेय" यहां पुनर्निर्देश करता है। गैलोज़ सिद्धांत की शाखा के लिए, [[आर्टिन-श्रेयर सिद्धांत]] देखें।}}


गणित में, '''वास्तविक बंद क्षेत्र''' एक [[फ़ील्ड (गणित)|क्षेत्र (गणित)]] ''F'' है जिसमें [[वास्तविक संख्या|वास्तविक संख्याओं]] के क्षेत्र के समान [[प्रथम-क्रम तर्क|प्रथम-क्रम गुण]] होते हैं। कुछ उदाहरण वास्तविक संख्याओं का क्षेत्र, वास्तविक [[बीजगणितीय संख्या|बीजगणितीय संख्याओं]] का क्षेत्र और अतिवास्तविक संख्याओं का क्षेत्र हैं।
गणित में, '''वास्तविक बंद क्षेत्र''' एक [[फ़ील्ड (गणित)|क्षेत्र (गणित)]] ''F'' है जिसमें [[वास्तविक संख्या|वास्तविक संख्याओं]] के क्षेत्र के समान [[प्रथम-क्रम तर्क|प्रथम-क्रम गुण]] होते हैं। कुछ उदाहरण वास्तविक संख्याओं का क्षेत्र, वास्तविक [[बीजगणितीय संख्या|बीजगणितीय संख्याओं]] का क्षेत्र और अतिवास्तविक संख्याओं का क्षेत्र हैं।


==परिभाषाएँ==
==परिभाषाएँ==
Line 11: Line 11:
#F एक [[औपचारिक रूप से वास्तविक क्षेत्र]] है जैसे कि F में गुणांक वाले विषम डिग्री के प्रत्येक बहुपद का F में कम से कम एक मूल होता है, और F के प्रत्येक तत्व a के लिए F में b होता है जैसे कि a = b<sup>2</sup> या a==−b<sup>2</sup>.
#F एक [[औपचारिक रूप से वास्तविक क्षेत्र]] है जैसे कि F में गुणांक वाले विषम डिग्री के प्रत्येक बहुपद का F में कम से कम एक मूल होता है, और F के प्रत्येक तत्व a के लिए F में b होता है जैसे कि a = b<sup>2</sup> या a==−b<sup>2</sup>.
#F [[बीजगणितीय रूप से बंद]] नहीं है, किन्तु इसका बीजगणितीय बंद एक सीमित विस्तार है।
#F [[बीजगणितीय रूप से बंद]] नहीं है, किन्तु इसका बीजगणितीय बंद एक सीमित विस्तार है।
#F बीजगणितीय रूप से बंद नहीं है बल्कि [[फ़ील्ड विस्तार|क्षेत्र विस्तार]] <math>F(\sqrt{-1}\,)</math> है बीजगणितीय रूप से बंद है।
#F बीजगणितीय रूप से बंद नहीं है किन्तु [[फ़ील्ड विस्तार|क्षेत्र विस्तार]] <math>F(\sqrt{-1}\,)</math> है बीजगणितीय रूप से बंद है।
#एफ पर एक क्रमित है जो एफ के किसी भी उचित बीजीय विस्तार पर क्रमित तक विस्तारित नहीं है।
#एफ पर एक क्रमित है जो एफ के किसी भी उचित बीजीय विस्तार पर क्रमित तक विस्तारित नहीं है।
#F एक औपचारिक रूप से वास्तविक क्षेत्र है जैसे कि F का कोई भी उचित [[बीजगणितीय विस्तार]] औपचारिक रूप से वास्तविक नहीं है। (दूसरे शब्दों में, औपचारिक रूप से वास्तविक होने के गुण के संबंध में बीजीय समापन में क्षेत्र अधिकतम है।)
#F एक औपचारिक रूप से वास्तविक क्षेत्र है जैसे कि F का कोई भी उचित [[बीजगणितीय विस्तार]] औपचारिक रूप से वास्तविक नहीं है। (दूसरे शब्दों में, औपचारिक रूप से वास्तविक होने के गुण के संबंध में बीजीय समापन में क्षेत्र अधिकतम है।)
#F पर एक क्रम है जो इसे एक क्रमित किया गया क्षेत्र बनाता है जैसे कि, इस क्रम में, [[मध्यवर्ती मूल्य प्रमेय]] डिग्री ≥ 0 के साथ एफ से अधिक सभी बहुपदों के लिए रखता है।
#F पर एक क्रम है जो इसे एक क्रमित किया गया क्षेत्र बनाता है जैसे कि, इस क्रम में, [[मध्यवर्ती मूल्य प्रमेय]] डिग्री ≥ 0 के साथ एफ से अधिक सभी बहुपदों के लिए रखता है।
# F एक [[कमजोर ओ-न्यूनतम संरचना|कमजोर ओ-न्यूनतम क्रमित क्षेत्र]] है।<ref>D. Macpherson ''et al.'' (1998)</ref>
# F एक [[कमजोर ओ-न्यूनतम संरचना|कमजोर ओ-न्यूनतम क्रमित क्षेत्र]] है।<ref>D. Macpherson ''et al.'' (1998)</ref>
यदि F एक क्रमित क्षेत्र है, तो '<nowiki/>'''आर्टिन-श्रेयर प्रमेय'''<nowiki/>' में कहा गया है कि F में एक बीजगणितीय विस्तार है, जिसे F का ''''वास्तविक समापन'''<nowiki/>' K कहा जाता है, जैसे कि K एक वास्तविक बंद क्षेत्र है जिसका क्रम F पर दिए गए क्रम का विस्तार है, और F (ध्यान दें कि वास्तविक बंद क्षेत्रों के बीच प्रत्येक रिंग समरूपता स्वचालित रूप से क्रम समरूपता है, क्योंकि x ≤ y यदि और केवल यदि ∃z: y = x + z<sup>2</sup>) पर समान क्षेत्रों की एक अद्वितीय समरूपता [[तक]] अद्वितीय है।<ref>Rajwade (1993) pp.&nbsp;222–223</ref> उदाहरण के लिए, परिमेय संख्याओं के क्रमित क्षेत्र का वास्तविक समापन वास्तविक बीजगणितीय संख्याओं का क्षेत्र <math>\mathbb{R}_\mathrm{alg}</math> है। इस [[प्रमेय]] का नाम [[एमिल आर्टिन]] और [[ओटो श्रेयर]] के नाम पर रखा गया है, जिन्होंने 1926 में इसे गणितीय रूप से प्रमाणित किया था।
यदि F एक क्रमित क्षेत्र है, तो ''''आर्टिन-श्रेयर प्रमेय'''<nowiki/>' में कहा गया है कि F में एक बीजगणितीय विस्तार है, जिसे F का ''''वास्तविक समापन'''<nowiki/>' K कहा जाता है, जैसे कि K एक वास्तविक बंद क्षेत्र है जिसका क्रम F पर दिए गए क्रम का विस्तार है, और F (ध्यान दें कि वास्तविक बंद क्षेत्रों के बीच प्रत्येक रिंग समरूपता स्वचालित रूप से क्रम समरूपता है, क्योंकि x ≤ y यदि और केवल यदि ∃z: y = x + z<sup>2</sup>) पर समान क्षेत्रों की एक अद्वितीय समरूपता [[तक]] अद्वितीय है।<ref>Rajwade (1993) pp.&nbsp;222–223</ref> उदाहरण के लिए, परिमेय संख्याओं के क्रमित क्षेत्र का वास्तविक समापन वास्तविक बीजगणितीय संख्याओं का क्षेत्र <math>\mathbb{R}_\mathrm{alg}</math> है। इस [[प्रमेय]] का नाम [[एमिल आर्टिन]] और [[ओटो श्रेयर]] के नाम पर रखा गया है, जिन्होंने 1926 में इसे गणितीय रूप से प्रमाणित किया था।


यदि (F, P) एक क्रमित क्षेत्र है, और E, F का एक [[ गैलोज़ विस्तार ]] है, तो ज़ोर्न के लेम्मा द्वारा M के साथ अधिकतम क्रम किया गया क्षेत्र विस्तार (M, Q) है, जिसमें E का एक उपक्षेत्र है जिसमें F सम्मिलित है और M पर ऑर्डर P का विस्तार करता है। इस M को, इसके क्रम Q के साथ, E में (F, P) का सापेक्ष वास्तविक समापन कहा जाता है। हम (F, P) को E के सापेक्ष वास्तविक बंद कहते हैं यदि M सिर्फ F है। जब E, F का बीजगणितीय समापन है E में F का सापेक्ष वास्तविक समापन वास्तव में पहले वर्णित F का वास्तविक समापन है।<ref name=Efr177>Efrat (2006) p.&nbsp;177</ref>
यदि (F, P) एक क्रमित क्षेत्र है, और E, F का एक [[ गैलोज़ विस्तार |गैलोज़ विस्तार]] है, तो ज़ोर्न के लेम्मा द्वारा M के साथ अधिकतम क्रम किया गया क्षेत्र विस्तार (M, Q) है, जिसमें E का एक उपक्षेत्र है जिसमें F सम्मिलित है और M पर ऑर्डर P का विस्तार करता है। इस M को, इसके क्रम Q के साथ, E में (F, P) का सापेक्ष वास्तविक समापन कहा जाता है। हम (F, P) को E के सापेक्ष वास्तविक बंद कहते हैं यदि M सिर्फ F है। जब E, F का बीजगणितीय समापन है E में F का सापेक्ष वास्तविक समापन वास्तव में पहले वर्णित F का वास्तविक समापन है।<ref name=Efr177>Efrat (2006) p.&nbsp;177</ref>


यदि F एक क्षेत्र (क्षेत्र संचालन के साथ संगत कोई क्रम नहीं माना जाता है, न ही यह माना जाता है कि F क्रम करने योग्य है) है तो F के पास अभी भी एक वास्तविक समापन है, जो अब एक क्षेत्र नहीं हो सकता है, किन्तु सिर्फ एक [[असली बंद अंगूठी|वास्तविक बंद रिंग]] हो सकता है। उदाहरण के लिए, क्षेत्र <math>\mathbb{Q}(\sqrt 2)</math> का वास्तविक समापन रिंग <math>\mathbb{R}_\mathrm{alg} \!\times \mathbb{R}_\mathrm{alg}</math> है (दो प्रतियां <math>\mathbb{Q}(\sqrt 2)</math> के दो क्रमों के अनुरूप हैं। दूसरी ओर, यदि <math>\mathbb{Q}(\sqrt 2)</math> को <math>\mathbb{R}</math> का एक आदेशित उपक्षेत्र माना जाता है, तो इसका वास्तविक समापन फिर से क्षेत्र <math>\mathbb{R}_\mathrm{alg}</math>है।
यदि F एक क्षेत्र (क्षेत्र संचालन के साथ संगत कोई क्रम नहीं माना जाता है, न ही यह माना जाता है कि F क्रम करने योग्य है) है तो F के पास अभी भी एक वास्तविक समापन है, जो अब एक क्षेत्र नहीं हो सकता है, किन्तु सिर्फ एक [[असली बंद अंगूठी|वास्तविक बंद रिंग]] हो सकता है। उदाहरण के लिए, क्षेत्र <math>\mathbb{Q}(\sqrt 2)</math> का वास्तविक समापन रिंग <math>\mathbb{R}_\mathrm{alg} \!\times \mathbb{R}_\mathrm{alg}</math> है (दो प्रतियां <math>\mathbb{Q}(\sqrt 2)</math> के दो क्रमों के अनुरूप हैं। दूसरी ओर, यदि <math>\mathbb{Q}(\sqrt 2)</math> को <math>\mathbb{R}</math> का एक आदेशित उपक्षेत्र माना जाता है, तो इसका वास्तविक समापन फिर से क्षेत्र <math>\mathbb{R}_\mathrm{alg}</math>है।
Line 41: Line 41:
जहाँ {{mvar|x}} और {{mvar|y}} क्रमशः हटाए गए चर के सेट और रखे गए चर के सेट का प्रतिनिधित्व करते हैं।
जहाँ {{mvar|x}} और {{mvar|y}} क्रमशः हटाए गए चर के सेट और रखे गए चर के सेट का प्रतिनिधित्व करते हैं।


वास्तविक संख्याओं के प्रथम-क्रम सिद्धांत की निर्णायकता नाटकीय रूप से उन आदिम संचालन और फलनों पर निर्भर करती है जिन पर विचार (यहां जोड़ और गुणा) किया जाता है। अन्य फ़ंक्शन प्रतीकों को जोड़ना, उदाहरण के लिए, [[ उन लोगों के | साइन]] या [[घातांक प्रकार्य|घातांक फलन]], अनिर्णीत सिद्धांत प्रदान कर सकता है; रिचर्डसन की प्रमेय और [[वास्तविक संख्याओं के प्रथम-क्रम सिद्धांतों की निर्णायकता]] देखें।
वास्तविक संख्याओं के प्रथम-क्रम सिद्धांत की निर्णायकता नाटकीय रूप से उन आदिम संचालन और फलनों पर निर्भर करती है जिन पर विचार (यहां जोड़ और गुणा) किया जाता है। अन्य फ़ंक्शन प्रतीकों को जोड़ना, उदाहरण के लिए, [[ उन लोगों के |साइन]] या [[घातांक प्रकार्य|घातांक फलन]], अनिर्णीत सिद्धांत प्रदान कर सकता है; रिचर्डसन की प्रमेय और [[वास्तविक संख्याओं के प्रथम-क्रम सिद्धांतों की निर्णायकता]] देखें।


=== निर्णय लेने की जटिलता 𝘛<sub>rcf</sub> ===
=== निर्णय लेने की जटिलता 𝘛<sub>rcf</sub> ===
Line 53: Line 53:
डेवनपोर्ट और हेन्ट्ज़ (1988) ने सिद्ध किया कि यह [[सबसे खराब स्थिति जटिलता]] {{mvar|n}} क्वांटिफायर के साथ लंबाई {{math|''O''(''n'')}} के सूत्रों के एक परिवार Φn का निर्माण करके और स्थिर डिग्री के बहुपदों को सम्मिलित करके क्वांटिफायर उन्मूलन के लिए लगभग इष्टतम है, जैसे कि कोई भी क्वांटिफायर-मुक्त {{math|Φ<sub>''n''</sub>}} के समतुल्य सूत्र में डिग्री <math>2^{2^{\Omega(n)}}</math>और लंबाई <math>2^{2^{\Omega(n)}},</math> के बहुपद सम्मिलित होने चाहिए जहां ओमेगा <math>\Omega(n)</math> बड़ा [[बड़ा ओमेगा संकेतन|ओमेगा संकेतन]] है। इससे पता चलता है कि क्वांटिफ़ायर उन्मूलन की समय जटिलता और स्थान जटिलता दोनों आंतरिक रूप से दोगुनी घातीय हैं।
डेवनपोर्ट और हेन्ट्ज़ (1988) ने सिद्ध किया कि यह [[सबसे खराब स्थिति जटिलता]] {{mvar|n}} क्वांटिफायर के साथ लंबाई {{math|''O''(''n'')}} के सूत्रों के एक परिवार Φn का निर्माण करके और स्थिर डिग्री के बहुपदों को सम्मिलित करके क्वांटिफायर उन्मूलन के लिए लगभग इष्टतम है, जैसे कि कोई भी क्वांटिफायर-मुक्त {{math|Φ<sub>''n''</sub>}} के समतुल्य सूत्र में डिग्री <math>2^{2^{\Omega(n)}}</math>और लंबाई <math>2^{2^{\Omega(n)}},</math> के बहुपद सम्मिलित होने चाहिए जहां ओमेगा <math>\Omega(n)</math> बड़ा [[बड़ा ओमेगा संकेतन|ओमेगा संकेतन]] है। इससे पता चलता है कि क्वांटिफ़ायर उन्मूलन की समय जटिलता और स्थान जटिलता दोनों आंतरिक रूप से दोगुनी घातीय हैं।


निर्णय समस्या के लिए, बेन-ऑर, [[डेक्सटर कोज़ेन]], और [[ जॉन रीफ़ ]] (1986) ने यह सिद्ध करने का दावा किया है कि वास्तविक बंद क्षेत्रों का सिद्धांत [[EXPSPACE|एक्सस्पेस]] में निर्णय लेने योग्य है, और इसलिए दोहरे घातीय समय में, किन्तु उनका तर्क (अधिक के मामले में) एक से अधिक चर) को आम तौर पर त्रुटिपूर्ण माना जाता है; चर्चा के लिए रेनेगर (1992) देखें।
निर्णय समस्या के लिए, बेन-ऑर, [[डेक्सटर कोज़ेन]], और [[ जॉन रीफ़ |जॉन रीफ़]] (1986) ने यह सिद्ध करने का दावा किया है कि वास्तविक बंद क्षेत्रों का सिद्धांत [[EXPSPACE|एक्सस्पेस]] में निर्णय लेने योग्य है, और इसलिए दोहरे घातीय समय में, किन्तु उनका तर्क (अधिक के मामले में) एक से अधिक चर) को आम तौर पर त्रुटिपूर्ण माना जाता है; चर्चा के लिए रेनेगर (1992) देखें।


विशुद्ध रूप से अस्तित्वगत सूत्रों के लिए, अर्थात् रूप के सूत्रों के लिए
विशुद्ध रूप से अस्तित्वगत सूत्रों के लिए, अर्थात् रूप के सूत्रों के लिए
Line 61: Line 61:
== क्रम गुण ==
== क्रम गुण ==


वास्तविक संख्याओं की एक अत्यंत महत्वपूर्ण संपत्ति यह है कि यह एक [[आर्किमिडीयन क्षेत्र]] है, जिसका अर्थ है कि इसमें आर्किमिडीयन संपत्ति है कि किसी भी वास्तविक संख्या के लिए, [[निरपेक्ष मूल्य]] में उससे बड़ा [[पूर्णांक]] होता है। एक समतुल्य कथन यह है कि किसी भी वास्तविक संख्या के लिए, बड़े और छोटे दोनों पूर्णांक होते हैं। ऐसे वास्तविक बंद क्षेत्र जो आर्किमिडीयन नहीं हैं, गैर-आर्किमिडीयन क्रमित क्षेत्र हैं। उदाहरण के लिए, हाइपररियल संख्याओं का कोई भी क्षेत्र वास्तविक बंद और गैर-आर्किमिडीयन है।
वास्तविक संख्याओं की एक अत्यंत महत्वपूर्ण गुण यह है कि यह एक [[आर्किमिडीयन क्षेत्र]] है, जिसका अर्थ है कि इसमें आर्किमिडीयन गुण है कि किसी भी वास्तविक संख्या के लिए, [[निरपेक्ष मूल्य]] में उससे बड़ा [[पूर्णांक]] होता है। एक समतुल्य कथन यह है कि किसी भी वास्तविक संख्या के लिए, बड़े और छोटे दोनों पूर्णांक होते हैं। ऐसे वास्तविक बंद क्षेत्र जो आर्किमिडीयन नहीं हैं, गैर-आर्किमिडीयन क्रमित क्षेत्र हैं। उदाहरण के लिए, हाइपररियल संख्याओं का कोई भी क्षेत्र वास्तविक बंद और गैर-आर्किमिडीयन है।


आर्किमिडीज़ संपत्ति [[सह-अंतिमता]] की अवधारणा से संबंधित है। एक क्रमबद्ध सेट F में निहित एक सेट X, F में सह-अंतिम है यदि F में प्रत्येक y के लिए X में एक x है जैसे कि y < दूसरे शब्दों में, उदाहरण के लिए, [[प्राकृतिक संख्या]]एँ वास्तविक में सह-अंतिम होती हैं, और इसलिए वास्तविक की सह-अंतिमता होती है <math>\aleph_0</math>.
आर्किमिडीज़ गुण [[सह-अंतिमता]] की अवधारणा से संबंधित है। एक क्रमबद्ध सेट F में निहित एक सेट X, F में सह-अंतिम है यदि F में प्रत्येक y के लिए X में एक x है जैसे कि y < दूसरे शब्दों में, उदाहरण के लिए, [[प्राकृतिक संख्या]]एँ वास्तविक में सह-अंतिम होती हैं, और इसलिए वास्तविक की सह-अंतिमता <math>\aleph_0</math> होती है।


इसलिए हमारे पास वास्तविक बंद क्षेत्र F की प्रकृति को परिभाषित करने वाले निम्नलिखित अपरिवर्तनीय तत्व हैं:
इसलिए हमारे पास वास्तविक बंद क्षेत्र F की प्रकृति को परिभाषित करने वाले निम्नलिखित अपरिवर्तनीय तत्व हैं:


* एफ की प्रमुखता.
* F की प्रमुखता
* एफ की सह-अंतिमता।
* F की सह-अंतिमता


इसमें हम जोड़ सकते हैं
इसमें हम जोड़ सकते हैं
Line 74: Line 74:
* F का भार, जो F के सघन उपसमुच्चय का न्यूनतम आकार है।
* F का भार, जो F के सघन उपसमुच्चय का न्यूनतम आकार है।


ये तीन कार्डिनल नंबर हमें किसी भी वास्तविक बंद क्षेत्र के क्रम गुणों के बारे में बहुत कुछ बताते हैं, हालांकि यह पता लगाना मुश्किल हो सकता है कि वे क्या हैं, खासकर यदि हम सातत्य परिकल्पना को लागू करने के इच्छुक नहीं हैं। ऐसे विशेष गुण भी हैं जो धारण कर भी सकते हैं और नहीं भी:
ये तीन कार्डिनल संख्या हमें किसी भी वास्तविक बंद क्षेत्र के क्रम गुणों के बारे में बहुत कुछ बताते हैं, चूंकि यह पता लगाना कठिन हो सकता है कि वे क्या हैं, विशेषकर यदि हम सातत्य परिकल्पना को लागू करने के इच्छुक नहीं हैं। ऐसे विशेष गुण भी हैं जो धारण कर भी सकते हैं और नहीं भी:


* एक क्षेत्र F 'पूर्ण' है यदि कोई क्रम किया गया क्षेत्र K ठीक से F युक्त नहीं है, जैसे कि F, K में सघन है। यदि F की सह-अंतिमता κ है, तो यह कहने के बराबर है कि κ द्वारा अनुक्रमित [[कॉची अनुक्रम]] F में अभिसरण अनुक्रम हैं।
* एक क्षेत्र F ''''पूर्ण'''<nowiki/>' है यदि कोई क्रम किया गया क्षेत्र K ठीक से F युक्त नहीं है, जैसे कि F, K में सघन है। यदि F की सह-अंतिमता κ है, तो यह कहने के बराबर है कि κ द्वारा अनुक्रमित [[कॉची अनुक्रम]] F में अभिसरण अनुक्रम हैं।
* एक क्रमित क्षेत्र F में eta सेट गुण η है<sub>''α''</sub>, [[क्रमसूचक संख्या]] α के लिए, यदि कार्डिनलिटी से कम F के किन्हीं दो उपसमुच्चय L और U के लिए <math>\aleph_\alpha</math> जैसे कि L का प्रत्येक तत्व U के प्रत्येक तत्व से छोटा है, F में एक तत्व x है जिसका x L के प्रत्येक तत्व से बड़ा है और U के प्रत्येक तत्व से छोटा है। यह एक होने के [[मॉडल-सैद्धांतिक]] गुण से निकटता से संबंधित है [[संतृप्त मॉडल]]; कोई भी दो वास्तविक बंद क्षेत्र η हैं<sub>''α''</sub> यदि और केवल यदि वे हैं <math>\aleph_\alpha</math>-संतृप्त, और इसके अलावा दो η<sub>''α''</sub> कार्डिनैलिटी के दोनों वास्तविक बंद क्षेत्र <math>\aleph_\alpha</math> [[ आदेश समरूपी | क्रम समरूपी]] हैं।
* एक क्रमित क्षेत्र F में एटा सेट गुण η<sub>''α''</sub> है, [[क्रमसूचक संख्या]] α के लिए, यदि कार्डिनलिटी से कम F के किन्हीं दो उपसमुच्चय L और U के लिए <math>\aleph_\alpha</math> जैसे कि L का प्रत्येक तत्व U के प्रत्येक तत्व से छोटा है, F में एक तत्व x है जिसका x L के प्रत्येक तत्व से बड़ा है और U के प्रत्येक तत्व से छोटा है। यह एक होने के [[मॉडल-सैद्धांतिक]] गुण से निकटता से संबंधित है [[संतृप्त मॉडल]]; कोई भी दो वास्तविक बंद फ़ील्ड η<sub>''α''</sub> हैं यदि और केवल यदि वे <math>\aleph_\alpha</math>-संतृप्त हैं, और इसके अतिरिक्त दो η<sub>''α''</sub> वास्तविक बंद फ़ील्ड दोनों कार्डिनैलिटी <math>\aleph_\alpha</math> [[ आदेश समरूपी |क्रम समरूपी]] हैं।


== सामान्यीकृत सातत्य परिकल्पना ==
== सामान्यीकृत सातत्य परिकल्पना ==


यदि हम सातत्य परिकल्पना को मानने के इच्छुक हों तो वास्तविक बंद क्षेत्रों की विशेषताएँ बहुत सरल हो जाती हैं। यदि सातत्य परिकल्पना मान्य है, तो [[सातत्य की प्रमुखता]] वाले और η वाले सभी वास्तविक बंद क्षेत्र<sub>1</sub> गुण क्रम समरूपी हैं। इस अद्वितीय क्षेत्र Ϝ को [[अल्ट्राप्रोडक्ट]] के माध्यम से परिभाषित किया जा सकता है <math>\mathbb{R}^{\mathbb{N}}/\mathbf{M}</math>, जहां एम एक अधिकतम आदर्श है जो क्षेत्र क्रम-आइसोमोर्फिक की ओर नहीं ले जाता है <math>\mathbb{R}</math>. यह गैरमानक विश्लेषण में सबसे अधिक उपयोग की जाने वाली हाइपररियल संख्या है, और इसकी विशिष्टता सातत्य परिकल्पना के बराबर है। (सातत्य परिकल्पना के बिना भी हमारे पास यह है कि यदि सातत्य की प्रमुखता है
यदि हम सामान्यीकृत सातत्य परिकल्पना को मानने के इच्छुक हैं तो वास्तविक बंद क्षेत्रों की विशेषताएं बहुत सरल हो जाती हैं। यदि सातत्य परिकल्पना सही है, तो [[सातत्य की प्रमुखता]] वाले और η<sub>1</sub> वाले सभी वास्तविक बंद क्षेत्र गुण क्रम समरूपी हैं। इस अद्वितीय क्षेत्र Ϝ को [[अल्ट्राप्रोडक्ट]] के माध्यम से परिभाषित किया जा सकता है, जैसे कि <math>\mathbb{R}^{\mathbb{N}}/\mathbf{M}</math>, जहां एम एक अधिकतम आदर्श है जो फ़ील्ड ऑर्डर-आइसोमोर्फिक को <math>\mathbb{R}</math> तक नहीं ले जाता है। यह गैरमानक विश्लेषण में सबसे अधिक उपयोग की जाने वाली हाइपररियल संख्या है, और इसकी विशिष्टता सातत्य परिकल्पना के बराबर है। (सातत्य परिकल्पना के बिना भी हमारे पास यह है कि यदि सातत्य की कार्डिनैलिटी <math>\aleph_\beta</math> है तो हमारे पास आकार <math>\aleph_\beta</math> का एक अद्वितीय η<sub>''β''</sub> क्षेत्र है।)
<math>\aleph_\beta</math> तो हमारे पास एक अद्वितीय ईटा सेट|η है<sub>''β''</sub> आकार का क्षेत्र <math>\aleph_\beta</math>.)


इसके अलावा, हमें Ϝ का निर्माण करने के लिए अल्ट्रापावर की आवश्यकता नहीं है, हम क्षेत्र के गैर-शून्य शब्दों की अनगिनत अनंत संख्या के साथ श्रृंखला के उपक्षेत्र के रूप में बहुत अधिक रचनात्मक रूप से कर सकते हैं <math>\mathbb{R}[[G]]</math> एक [[पूरी तरह से आदेशित समूह|पूरी तरह से क्रमित समूह]] [[एबेलियन समूह]] [[विभाज्य समूह]] जी पर [[औपचारिक शक्ति श्रृंखला]] का एक ईटा सेट है|η<sub>1</sub> कार्डिनैलिटी का समूह <math>\aleph_1</math> {{harv|Alling|1962}}.
इसके अलावा, हमें Ϝ का निर्माण करने के लिए अल्ट्रापावर की आवश्यकता नहीं है, हम [[पूरी तरह से आदेशित समूह|पूरी तरह से क्रमित समूह]] किए गए [[औपचारिक शक्ति श्रृंखला]] के क्षेत्र <math>\mathbb{R}[[G]]</math> के गैर-शून्य शब्दों की गणनीय संख्या के साथ श्रृंखला के उपक्षेत्र के रूप में बहुत अधिक रचनात्मक रूप से कर सकते हैं[[एबेलियन समूह]] [[विभाज्य समूह]] जी जो कि कार्डिनैलिटी <math>\aleph_1</math> {{harv|एलिंग|1962}} का एक η<sub>1</sub> समूह है।


हालाँकि, Ϝ एक पूर्ण क्षेत्र नहीं है; यदि हम इसे पूरा करते हैं, तो हम बड़ी कार्डिनैलिटी के क्षेत्र Κ के साथ समाप्त होते हैं। Ϝ में सातत्य की प्रमुखता है, जो परिकल्पना के अनुसार है <math>\aleph_1</math>, Κ में कार्डिनैलिटी है <math>\aleph_2</math>, और इसमें घने उपक्षेत्र के रूप में Ϝ सम्मिलित है। यह कोई अल्ट्रापावर नहीं है बल्कि यह एक अतिवास्तविक क्षेत्र है, और इसलिए गैरमानक विश्लेषण के उपयोग के लिए एक उपयुक्त क्षेत्र है। इसे वास्तविक संख्याओं के उच्च-आयामी एनालॉग के रूप में देखा जा सकता है; प्रमुखता के साथ <math>\aleph_2</math> के बजाय <math>\aleph_1</math>, सह-अंतिमता <math>\aleph_1</math> के बजाय <math>\aleph_0</math>, और वजन <math>\aleph_1</math> के बजाय <math>\aleph_0</math>, और η के साथ<sub>1</sub> η के स्थान पर संपत्ति<sub>0</sub> संपत्ति (जिसका अर्थ केवल यह है कि किन्हीं दो वास्तविक संख्याओं के बीच हम दूसरी संपत्ति ढूंढ सकते हैं)
चूँकि, Ϝ एक पूर्ण फ़ील्ड नहीं है; यदि हम इसे पूरा करते हैं, तो हम बड़ी कार्डिनैलिटी के क्षेत्र Κ के साथ समाप्त होते हैं। Ϝ में सातत्य की प्रमुखता है, जो परिकल्पना के अनुसार <math>\aleph_1</math> है, Κ में प्रमुखता <math>\aleph_2</math> है, और इसमें घने उपक्षेत्र के रूप में Ϝ सम्मिलित है। यह कोई अल्ट्रापावर नहीं है किन्तु यह एक अतिवास्तविक क्षेत्र है, और इसलिए गैरमानक विश्लेषण के उपयोग के लिए एक उपयुक्त क्षेत्र है। इसे वास्तविक संख्याओं; <math>\aleph_1</math> के अतिरिक्त कार्डिनैलिटी <math>\aleph_2</math> के साथ, <math>\aleph_0</math> के अतिरिक्त सह-अंतिमता <math>\aleph_1</math> और <math>\aleph_0</math> के अतिरिक्त वजन <math>\aleph_1</math>, और η<sub>0</sub> गुण के स्थान पर η<sub>1</sub> गुण के साथ (जिसका अर्थ है कि किन्हीं दो वास्तविक संख्याओं के बीच हम एक और खोज सकते हैं) के उच्च-आयामी एनालॉग के रूप में देखा जा सकता है।


== वास्तविक बंद क्षेत्र के उदाहरण ==
== वास्तविक बंद क्षेत्र के उदाहरण ==
Line 129: Line 128:
*[http://www.maths.manchester.ac.uk/raag/ ''Real Algebraic and Analytic Geometry Preprint Server'']
*[http://www.maths.manchester.ac.uk/raag/ ''Real Algebraic and Analytic Geometry Preprint Server'']
*[http://www.logique.jussieu.fr/modnet/Publications/Preprint%20server/ ''Model Theory preprint server'']
*[http://www.logique.jussieu.fr/modnet/Publications/Preprint%20server/ ''Model Theory preprint server'']
[[Category: वास्तविक बंद क्षेत्र| वास्तविक बंद क्षेत्र]] [[Category: फ़ील्ड (गणित)]] [[Category: वास्तविक बीजगणितीय ज्यामिति]]


 
[[Category:All articles with unsourced statements]]
 
[[Category:Articles with unsourced statements from April 2020]]
[[Category: Machine Translated Page]]
[[Category:Commons category link from Wikidata]]
[[Category:Created On 02/07/2023]]
[[Category:Created On 02/07/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:फ़ील्ड (गणित)]]
[[Category:वास्तविक बंद क्षेत्र| वास्तविक बंद क्षेत्र]]
[[Category:वास्तविक बीजगणितीय ज्यामिति]]

Latest revision as of 17:18, 16 July 2023

गणित में, वास्तविक बंद क्षेत्र एक क्षेत्र (गणित) F है जिसमें वास्तविक संख्याओं के क्षेत्र के समान प्रथम-क्रम गुण होते हैं। कुछ उदाहरण वास्तविक संख्याओं का क्षेत्र, वास्तविक बीजगणितीय संख्याओं का क्षेत्र और अतिवास्तविक संख्याओं का क्षेत्र हैं।

परिभाषाएँ

वास्तविक बंद क्षेत्र एक क्षेत्र F है जिसमें निम्नलिखित समकक्ष शर्तों में से कोई भी सत्य है:

  1. F मूलतः वास्तविक संख्याओं के समतुल्य है। दूसरे शब्दों में, इसमें वास्तविक के समान प्रथम-क्रम गुण हैं: क्षेत्र की प्रथम-क्रम भाषा में कोई भी वाक्य (गणितीय तर्क) F में सत्य है यदि और केवल यदि यह वास्तविकता में सत्य है।
  2. F पर एक कुल क्रम है जो इसे एक क्रमित क्षेत्र बनाता है, इस क्रम में, F के प्रत्येक धनात्मक तत्व का F में एक वर्गमूल होता है और F में गुणांक वाले विषम (गणित) डिग्री के किसी भी बहुपद का F में कम से कम एक मूल होता है।
  3. F एक औपचारिक रूप से वास्तविक क्षेत्र है जैसे कि F में गुणांक वाले विषम डिग्री के प्रत्येक बहुपद का F में कम से कम एक मूल होता है, और F के प्रत्येक तत्व a के लिए F में b होता है जैसे कि a = b2 या a==−b2.
  4. F बीजगणितीय रूप से बंद नहीं है, किन्तु इसका बीजगणितीय बंद एक सीमित विस्तार है।
  5. F बीजगणितीय रूप से बंद नहीं है किन्तु क्षेत्र विस्तार है बीजगणितीय रूप से बंद है।
  6. एफ पर एक क्रमित है जो एफ के किसी भी उचित बीजीय विस्तार पर क्रमित तक विस्तारित नहीं है।
  7. F एक औपचारिक रूप से वास्तविक क्षेत्र है जैसे कि F का कोई भी उचित बीजगणितीय विस्तार औपचारिक रूप से वास्तविक नहीं है। (दूसरे शब्दों में, औपचारिक रूप से वास्तविक होने के गुण के संबंध में बीजीय समापन में क्षेत्र अधिकतम है।)
  8. F पर एक क्रम है जो इसे एक क्रमित किया गया क्षेत्र बनाता है जैसे कि, इस क्रम में, मध्यवर्ती मूल्य प्रमेय डिग्री ≥ 0 के साथ एफ से अधिक सभी बहुपदों के लिए रखता है।
  9. F एक कमजोर ओ-न्यूनतम क्रमित क्षेत्र है।[1]

यदि F एक क्रमित क्षेत्र है, तो 'आर्टिन-श्रेयर प्रमेय' में कहा गया है कि F में एक बीजगणितीय विस्तार है, जिसे F का 'वास्तविक समापन' K कहा जाता है, जैसे कि K एक वास्तविक बंद क्षेत्र है जिसका क्रम F पर दिए गए क्रम का विस्तार है, और F (ध्यान दें कि वास्तविक बंद क्षेत्रों के बीच प्रत्येक रिंग समरूपता स्वचालित रूप से क्रम समरूपता है, क्योंकि x ≤ y यदि और केवल यदि ∃z: y = x + z2) पर समान क्षेत्रों की एक अद्वितीय समरूपता तक अद्वितीय है।[2] उदाहरण के लिए, परिमेय संख्याओं के क्रमित क्षेत्र का वास्तविक समापन वास्तविक बीजगणितीय संख्याओं का क्षेत्र है। इस प्रमेय का नाम एमिल आर्टिन और ओटो श्रेयर के नाम पर रखा गया है, जिन्होंने 1926 में इसे गणितीय रूप से प्रमाणित किया था।

यदि (F, P) एक क्रमित क्षेत्र है, और E, F का एक गैलोज़ विस्तार है, तो ज़ोर्न के लेम्मा द्वारा M के साथ अधिकतम क्रम किया गया क्षेत्र विस्तार (M, Q) है, जिसमें E का एक उपक्षेत्र है जिसमें F सम्मिलित है और M पर ऑर्डर P का विस्तार करता है। इस M को, इसके क्रम Q के साथ, E में (F, P) का सापेक्ष वास्तविक समापन कहा जाता है। हम (F, P) को E के सापेक्ष वास्तविक बंद कहते हैं यदि M सिर्फ F है। जब E, F का बीजगणितीय समापन है E में F का सापेक्ष वास्तविक समापन वास्तव में पहले वर्णित F का वास्तविक समापन है।[3]

यदि F एक क्षेत्र (क्षेत्र संचालन के साथ संगत कोई क्रम नहीं माना जाता है, न ही यह माना जाता है कि F क्रम करने योग्य है) है तो F के पास अभी भी एक वास्तविक समापन है, जो अब एक क्षेत्र नहीं हो सकता है, किन्तु सिर्फ एक वास्तविक बंद रिंग हो सकता है। उदाहरण के लिए, क्षेत्र का वास्तविक समापन रिंग है (दो प्रतियां के दो क्रमों के अनुरूप हैं। दूसरी ओर, यदि को का एक आदेशित उपक्षेत्र माना जाता है, तो इसका वास्तविक समापन फिर से क्षेत्र है।

निर्णायकता और परिमाणक उन्मूलन

वास्तविक बंद फ़ील्ड की औपचारिक भाषा में जोड़ और गुणा के संचालन के लिए प्रतीक, स्थिरांक 0 और 1, और क्रम संबंध ≤ (साथ ही समानता, यदि इसे तार्किक प्रतीक नहीं माना जाता है) सम्मिलित हैं। इस भाषा में, वास्तविक बंद क्षेत्रों का (प्रथम-क्रम) सिद्धांत, , निम्नलिखित से मिलकर बनता है:

  • क्रमित क्षेत्र के स्वयंसिद्ध;
  • यह सिद्धांत कि प्रत्येक धनात्मक संख्या का एक वर्गमूल होता है;
  • प्रत्येक विषम संख्या के लिए , स्वयंसिद्ध यह दावा करता है कि डिग्री के सभी बहुपद कम से कम एक मूल हो.

उपरोक्त सभी सिद्धांतों को प्रथम-क्रम तर्क (अर्थात परिमाणक (तर्क)तर्क) केवल क्षेत्र के तत्वों पर निर्भर करता है) में व्यक्त किया जा सकता है।

अल्फ्रेड टार्स्की ने सिद्ध किया (c. 1931) वह पूर्ण सिद्धांत है, जिसका अर्थ है कि किसी के लिए भी -वाक्य, उपरोक्त सिद्धांतों से इसे सत्य या असत्य सिद्ध किया जा सकता है। आगे, निर्णायकता (तर्क) है, जिसका अर्थ है कि ऐसे किसी भी वाक्य की सत्यता या असत्यता का निर्णय करने के लिए एक कलन विधि है।[citation needed]

टार्स्की-सीडेनबर्ग प्रमेय इस परिणाम को निर्णायक क्वांटिफायर उन्मूलन तक विस्तारित करता है। अर्थात्, एक एल्गोरिथ्म है जो किसी भी -सूत्र को देता है जिसमें मुक्त चर हो सकते हैं जो समान मुक्त चर में एक समकक्ष क्वांटिफायर-मुक्त सूत्र उत्पन्न करता है जहां समकक्ष का अर्थ है कि दो सूत्र चर के बिल्कुल समान मानों के लिए सत्य हैं। टार्स्की-सीडेनबर्ग प्रमेय निर्णायकता प्रमेय का एक विस्तार है क्योंकि यह आसानी से जांचा जा सकता है कि मुक्त चर के बिना एक क्वांटिफायर-मुक्त सूत्र सही है या गलत।

इस प्रमेय को आगे निम्नलिखित प्रक्षेपण प्रमेय तक बढ़ाया जा सकता है। यदि R एक वास्तविक बंद क्षेत्र है, तो n मुक्त चर वाला एक सूत्र Rn के एक उपसमुच्चय को परिभाषित करता है, जो कि सूत्र को संतुष्ट करने वाले बिंदुओं का समूह है। ऐसे उपसमुच्चय को अर्धबीजगणितीय समुच्चय कहा जाता है। k वेरिएबल्स के सबसेट को देखते हुए, Rn से Rk तक का प्रक्षेपण वह फ़ंक्शन (गणित) है जो प्रत्येक n-टुपल को वेरिएबल्स के सबसेट के अनुरूप घटकों के k-टुपल में मैप करता है। प्रक्षेपण प्रमेय का दावा है कि एक अर्ध-बीजगणितीय सेट का प्रक्षेपण एक अर्ध-बीजगणितीय सेट है, और एक एल्गोरिथ्म है, जो एक अर्ध-बीजगणितीय सेट को परिभाषित करने वाला एक क्वांटिफायर-मुक्त सूत्र देता है, इसके प्रक्षेपण के लिए एक क्वांटिफायर-मुक्त सूत्र तैयार करता है।

वास्तव में, प्रक्षेपण प्रमेय क्वांटिफायर उन्मूलन के बराबर है, क्योंकि सूत्र द्वारा परिभाषित एक अर्ध-बीजगणितीय सेट का प्रक्षेपण p(x, y) द्वारा परिभाषित किया गया है

जहाँ x और y क्रमशः हटाए गए चर के सेट और रखे गए चर के सेट का प्रतिनिधित्व करते हैं।

वास्तविक संख्याओं के प्रथम-क्रम सिद्धांत की निर्णायकता नाटकीय रूप से उन आदिम संचालन और फलनों पर निर्भर करती है जिन पर विचार (यहां जोड़ और गुणा) किया जाता है। अन्य फ़ंक्शन प्रतीकों को जोड़ना, उदाहरण के लिए, साइन या घातांक फलन, अनिर्णीत सिद्धांत प्रदान कर सकता है; रिचर्डसन की प्रमेय और वास्तविक संख्याओं के प्रथम-क्रम सिद्धांतों की निर्णायकता देखें।

निर्णय लेने की जटिलता 𝘛rcf

क्वांटिफ़ायर उन्मूलन के लिए टार्स्की के मूल एल्गोरिदम में गैर-प्राथमिक समस्या कम्प्यूटेशनल जटिलता है, जिसका अर्थ है कि कोई टावर नहीं है

यदि n इनपुट सूत्र का आकार है तो एल्गोरिदम के निष्पादन समय को बाध्य किया जा सकता है। जॉर्ज ई. कोलिन्स द्वारा प्रस्तुत बेलनाकार बीजगणितीय अपघटन, जटिलता का एक अधिक व्यावहारिक एल्गोरिथ्म प्रदान करता है

जहाँ n चरों (मुक्त और बाध्य) की कुल संख्या है, d सूत्र में आने वाले बहुपदों की डिग्री का उत्पाद है, और O(n) बड़ा O अंकन है.

डेवनपोर्ट और हेन्ट्ज़ (1988) ने सिद्ध किया कि यह सबसे खराब स्थिति जटिलता n क्वांटिफायर के साथ लंबाई O(n) के सूत्रों के एक परिवार Φn का निर्माण करके और स्थिर डिग्री के बहुपदों को सम्मिलित करके क्वांटिफायर उन्मूलन के लिए लगभग इष्टतम है, जैसे कि कोई भी क्वांटिफायर-मुक्त Φn के समतुल्य सूत्र में डिग्री और लंबाई के बहुपद सम्मिलित होने चाहिए जहां ओमेगा बड़ा ओमेगा संकेतन है। इससे पता चलता है कि क्वांटिफ़ायर उन्मूलन की समय जटिलता और स्थान जटिलता दोनों आंतरिक रूप से दोगुनी घातीय हैं।

निर्णय समस्या के लिए, बेन-ऑर, डेक्सटर कोज़ेन, और जॉन रीफ़ (1986) ने यह सिद्ध करने का दावा किया है कि वास्तविक बंद क्षेत्रों का सिद्धांत एक्सस्पेस में निर्णय लेने योग्य है, और इसलिए दोहरे घातीय समय में, किन्तु उनका तर्क (अधिक के मामले में) एक से अधिक चर) को आम तौर पर त्रुटिपूर्ण माना जाता है; चर्चा के लिए रेनेगर (1992) देखें।

विशुद्ध रूप से अस्तित्वगत सूत्रों के लिए, अर्थात् रूप के सूत्रों के लिए

x1, ..., ∃xk P1(x1, ..., xk) ⋈ 0 ∧ ... ∧ Ps(x1, ..., xk) ⋈ 0,

जहां या तो <, > या = के लिए है, जटिलता कम है। बसु और रॉय (1996) ने sk+1dO(k) अंकगणितीय संक्रियाओं और बहुपद स्थान की जटिलता के साथ ऐसे अस्तित्व संबंधी सूत्र की सच्चाई तय करने के लिए एक अच्छा व्यवहार वाला एल्गोरिदम प्रदान किया।

क्रम गुण

वास्तविक संख्याओं की एक अत्यंत महत्वपूर्ण गुण यह है कि यह एक आर्किमिडीयन क्षेत्र है, जिसका अर्थ है कि इसमें आर्किमिडीयन गुण है कि किसी भी वास्तविक संख्या के लिए, निरपेक्ष मूल्य में उससे बड़ा पूर्णांक होता है। एक समतुल्य कथन यह है कि किसी भी वास्तविक संख्या के लिए, बड़े और छोटे दोनों पूर्णांक होते हैं। ऐसे वास्तविक बंद क्षेत्र जो आर्किमिडीयन नहीं हैं, गैर-आर्किमिडीयन क्रमित क्षेत्र हैं। उदाहरण के लिए, हाइपररियल संख्याओं का कोई भी क्षेत्र वास्तविक बंद और गैर-आर्किमिडीयन है।

आर्किमिडीज़ गुण सह-अंतिमता की अवधारणा से संबंधित है। एक क्रमबद्ध सेट F में निहित एक सेट X, F में सह-अंतिम है यदि F में प्रत्येक y के लिए X में एक x है जैसे कि y < दूसरे शब्दों में, उदाहरण के लिए, प्राकृतिक संख्याएँ वास्तविक में सह-अंतिम होती हैं, और इसलिए वास्तविक की सह-अंतिमता होती है।

इसलिए हमारे पास वास्तविक बंद क्षेत्र F की प्रकृति को परिभाषित करने वाले निम्नलिखित अपरिवर्तनीय तत्व हैं:

  • F की प्रमुखता
  • F की सह-अंतिमता

इसमें हम जोड़ सकते हैं

  • F का भार, जो F के सघन उपसमुच्चय का न्यूनतम आकार है।

ये तीन कार्डिनल संख्या हमें किसी भी वास्तविक बंद क्षेत्र के क्रम गुणों के बारे में बहुत कुछ बताते हैं, चूंकि यह पता लगाना कठिन हो सकता है कि वे क्या हैं, विशेषकर यदि हम सातत्य परिकल्पना को लागू करने के इच्छुक नहीं हैं। ऐसे विशेष गुण भी हैं जो धारण कर भी सकते हैं और नहीं भी:

  • एक क्षेत्र F 'पूर्ण' है यदि कोई क्रम किया गया क्षेत्र K ठीक से F युक्त नहीं है, जैसे कि F, K में सघन है। यदि F की सह-अंतिमता κ है, तो यह कहने के बराबर है कि κ द्वारा अनुक्रमित कॉची अनुक्रम F में अभिसरण अनुक्रम हैं।
  • एक क्रमित क्षेत्र F में एटा सेट गुण ηα है, क्रमसूचक संख्या α के लिए, यदि कार्डिनलिटी से कम F के किन्हीं दो उपसमुच्चय L और U के लिए जैसे कि L का प्रत्येक तत्व U के प्रत्येक तत्व से छोटा है, F में एक तत्व x है जिसका x L के प्रत्येक तत्व से बड़ा है और U के प्रत्येक तत्व से छोटा है। यह एक होने के मॉडल-सैद्धांतिक गुण से निकटता से संबंधित है संतृप्त मॉडल; कोई भी दो वास्तविक बंद फ़ील्ड ηα हैं यदि और केवल यदि वे -संतृप्त हैं, और इसके अतिरिक्त दो ηα वास्तविक बंद फ़ील्ड दोनों कार्डिनैलिटी क्रम समरूपी हैं।

सामान्यीकृत सातत्य परिकल्पना

यदि हम सामान्यीकृत सातत्य परिकल्पना को मानने के इच्छुक हैं तो वास्तविक बंद क्षेत्रों की विशेषताएं बहुत सरल हो जाती हैं। यदि सातत्य परिकल्पना सही है, तो सातत्य की प्रमुखता वाले और η1 वाले सभी वास्तविक बंद क्षेत्र गुण क्रम समरूपी हैं। इस अद्वितीय क्षेत्र Ϝ को अल्ट्राप्रोडक्ट के माध्यम से परिभाषित किया जा सकता है, जैसे कि , जहां एम एक अधिकतम आदर्श है जो फ़ील्ड ऑर्डर-आइसोमोर्फिक को तक नहीं ले जाता है। यह गैरमानक विश्लेषण में सबसे अधिक उपयोग की जाने वाली हाइपररियल संख्या है, और इसकी विशिष्टता सातत्य परिकल्पना के बराबर है। (सातत्य परिकल्पना के बिना भी हमारे पास यह है कि यदि सातत्य की कार्डिनैलिटी है तो हमारे पास आकार का एक अद्वितीय ηβ क्षेत्र है।)

इसके अलावा, हमें Ϝ का निर्माण करने के लिए अल्ट्रापावर की आवश्यकता नहीं है, हम पूरी तरह से क्रमित समूह किए गए औपचारिक शक्ति श्रृंखला के क्षेत्र के गैर-शून्य शब्दों की गणनीय संख्या के साथ श्रृंखला के उपक्षेत्र के रूप में बहुत अधिक रचनात्मक रूप से कर सकते हैंएबेलियन समूह विभाज्य समूह जी जो कि कार्डिनैलिटी (एलिंग 1962) का एक η1 समूह है।

चूँकि, Ϝ एक पूर्ण फ़ील्ड नहीं है; यदि हम इसे पूरा करते हैं, तो हम बड़ी कार्डिनैलिटी के क्षेत्र Κ के साथ समाप्त होते हैं। Ϝ में सातत्य की प्रमुखता है, जो परिकल्पना के अनुसार है, Κ में प्रमुखता है, और इसमें घने उपक्षेत्र के रूप में Ϝ सम्मिलित है। यह कोई अल्ट्रापावर नहीं है किन्तु यह एक अतिवास्तविक क्षेत्र है, और इसलिए गैरमानक विश्लेषण के उपयोग के लिए एक उपयुक्त क्षेत्र है। इसे वास्तविक संख्याओं; के अतिरिक्त कार्डिनैलिटी के साथ, के अतिरिक्त सह-अंतिमता और के अतिरिक्त वजन , और η0 गुण के स्थान पर η1 गुण के साथ (जिसका अर्थ है कि किन्हीं दो वास्तविक संख्याओं के बीच हम एक और खोज सकते हैं) के उच्च-आयामी एनालॉग के रूप में देखा जा सकता है।

वास्तविक बंद क्षेत्र के उदाहरण

टिप्पणियाँ

  1. D. Macpherson et al. (1998)
  2. Rajwade (1993) pp. 222–223
  3. Efrat (2006) p. 177


संदर्भ


बाहरी संबंध