हॉज सिद्धांत: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(4 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{Short description|Mathematical manifold theory}}
{{Short description|Mathematical manifold theory}}
गणित में, '''हॉज सिद्धांत''', विलियम वालेंस डगलस हॉज के नाम पर डब्ल्यू वी. डी. हॉज, आंशिक अंतर समीकरणों का उपयोग करके गुना M के [[कोहोलॉजी समूह|सह-समरूपता समूह]] का अध्ययन करने की विधि है। प्रमुख अवलोकन यह है कि, M पर [[रिमेंनियन मीट्रिक]] दिए जाने पर, प्रत्येक सह-समरूपता वर्ग का [[प्रतिनिधि (गणित)]] होता है, अंतर रूप जो मेट्रिक के [[लाप्लासियन]] ऑपरेटर के अंतर्गत लुप्त हो जाता है। ऐसे रूपों को हार्मोनिक कहा जाता है।
गणित में, '''हॉज सिद्धांत''', विलियम वालेंस डगलस हॉज के नाम पर डब्ल्यू वी. डी. हॉज, आंशिक अंतर समीकरणों का उपयोग करके M के [[कोहोलॉजी समूह|सह-समरूपता समूह]] का अध्ययन करने की विधि है। प्रमुख अवलोकन यह है कि, M पर [[रिमेंनियन मीट्रिक]] दिए जाने पर, प्रत्येक सह-समरूपता वर्ग का [[प्रतिनिधि (गणित)]] होता है, अंतर रूप जो मेट्रिक के [[लाप्लासियन]] ऑपरेटर के अंतर्गत लुप्त हो जाता है। ऐसे रूपों को हार्मोनिक कहा जाता है।


1930 के दशक में [[बीजगणितीय ज्यामिति]] का अध्ययन करने के लिए सिद्धांत को हॉज द्वारा विकसित किया गया था, और यह [[डॉ कहलमज गर्भाशय|डी राम कोहोमोलॉजी]] पर [[गेर्गेस डी रहम|जॉर्जेस डी राम]] के कार्य पर बनाया गया था। इसके दो समुच्चयिंग्स में प्रमुख अनुप्रयोग हैं: [[ रीमैनियन कई गुना |रीमैनियन मैनिफोल्ड्स]] और काहलर मैनिफोल्ड्स हॉज की प्राथमिक प्रेरणा, जटिल प्रक्षेपी विविधता का अध्ययन, पश्चात की स्थितियों में सम्मिलित है। हॉज सिद्धांत बीजगणितीय ज्यामिति में महत्वपूर्ण उपकरण बन गया है, विशेष रूप से [[बीजगणितीय चक्र]] के अध्ययन के संबंध में है।
1930 के दशक में [[बीजगणितीय ज्यामिति]] का अध्ययन करने के लिए सिद्धांत को हॉज द्वारा विकसित किया गया था, और यह [[डॉ कहलमज गर्भाशय|डी राम कोहोमोलॉजी]] पर [[गेर्गेस डी रहम|जॉर्जेस डी राम]] के कार्य पर बनाया गया था। इसके दो सेटिंग्स में प्रमुख अनुप्रयोग हैं: [[ रीमैनियन कई गुना |रीमैनियन मैनिफोल्ड्स]] और काहलर मैनिफोल्ड्स हॉज की प्राथमिक प्रेरणा, जटिल प्रक्षेपी विविधता का अध्ययन, पश्चात की स्थितियों में सम्मिलित है। हॉज सिद्धांत बीजगणितीय ज्यामिति में महत्वपूर्ण उपकरण बन गया है, विशेष रूप से [[बीजगणितीय चक्र]] के अध्ययन के संबंध में है।


जबकि हॉज सिद्धांत वास्तविक और जटिल संख्याओं पर आंतरिक रूप से निर्भर है, इसे [[संख्या सिद्धांत]] में प्रश्नों पर प्रयुक्त किया जा सकता है। अंकगणितीय स्थितियों में, ''p''-एडिक हॉज सिद्धांत के उपकरणों ने शास्त्रीय हॉज सिद्धांत के वैकल्पिक प्रमाण, या अनुरूप परिणाम दिए हैं।
जबकि हॉज सिद्धांत वास्तविक और जटिल संख्याओं पर आंतरिक रूप से निर्भर है, इसे [[संख्या सिद्धांत]] में प्रश्नों पर प्रयुक्त किया जा सकता है। अंकगणितीय स्थितियों में, ''p''-एडिक हॉज सिद्धांत के उपकरणों ने शास्त्रीय हॉज सिद्धांत के वैकल्पिक प्रमाण, या अनुरूप परिणाम दिए हैं।


== इतिहास ==
== इतिहास ==
1920 के दशक में [[बीजगणितीय टोपोलॉजी]] का क्षेत्र अभी भी नवजात था। इसने अभी तक [[सह-समरूपता]] की धारणा विकसित नहीं की थी, और विभेदक रूपों और टोपोलॉजी के मध्य की सम्बन्ध को व्यर्थ विधियों द्वारा अध्ययन किया गया था। 1928 में, एली कार्टन ने सुर लेस नॉम्ब्रेस डी बेट्टी डेस एस्पेसेस डी ग्रुप्स क्लोस शीर्षक से नोट प्रकाशित किया, जिसमें उन्होंने विचार दिया, किंतु यह सिद्ध नहीं किया कि अंतर रूपों और टोपोलॉजी को जोड़ा जाना चाहिए। इसे पढ़ने के पश्चात, उस समय छात्र, जॉर्जेस डी राम प्रेरणा से तुरंत प्रभावित हुए। 1931 की अपनी थीसिस में, उन्होंने शोभनीय परिणाम सिद्ध किया जिसे अब डी राम की प्रमेय कहा जाता है। स्टोक्स के प्रमेय के अनुसार, किसी भी कॉम्पैक्ट स्मूथ मैनिफोल्ड M, बिलिनियर पेयरिंग के लिए, [[एकवचन समरूपता]] श्रृंखलाओं के साथ विभेदक रूपों का एकीकरण है:
1920 के दशक में [[बीजगणितीय टोपोलॉजी]] का क्षेत्र अभी भी नवजात था। इसने अभी तक [[सह-समरूपता]] की धारणा विकसित नहीं की थी, और विभेदक रूपों और टोपोलॉजी के मध्य के सम्बन्ध को व्यर्थ विधियों द्वारा अध्ययन किया गया था। 1928 में, एली कार्टन ने सुर लेस नॉम्ब्रेस डी बेट्टी डेस एस्पेसेस डी ग्रुप्स क्लोस शीर्षक से नोट प्रकाशित किया, जिसमें उन्होंने विचार दिया, किंतु यह सिद्ध नहीं किया कि अंतर रूपों और टोपोलॉजी को जोड़ा जाना चाहिए। इसे पढ़ने के पश्चात, उस समय छात्र, जॉर्जेस डी राम प्रेरणा से प्रभावित हुए। 1931 की अपनी थीसिस में, उन्होंने शोभनीय परिणाम सिद्ध किये जिसे अब डी राम की प्रमेय कहा जाता है। स्टोक्स के प्रमेय के अनुसार, किसी भी कॉम्पैक्ट स्मूथ मैनिफोल्ड M, बिलिनियर पेयरिंग के लिए, [[एकवचन समरूपता]] श्रृंखलाओं के साथ विभेदक रूपों का एकीकरण है:
:<math>H_k(M; \mathbf{R}) \times H^k_{\text{dR}}(M; \mathbf{R}) \to \mathbf{R}.</math>
:<math>H_k(M; \mathbf{R}) \times H^k_{\text{dR}}(M; \mathbf{R}) \to \mathbf{R}.</math>
जैसा कि मूल रूप से कहा गया है, डी राम के प्रमेय का आशय है कि यह आदर्श युग्मन है, और इसलिए बाईं ओर प्रत्येक शब्द एक दूसरे के सदिश क्षेत्र दोहरे हैं। समकालीन भाषा में, डी राम के प्रमेय को अधिकांशतः कथन के रूप में अभिव्यक्त किया जाता है कि वास्तविक गुणांक के साथ एकवचन सह-समरूपता डी राम सह-समरूपता के लिए आइसोमॉर्फिक है:
जैसा कि मूल रूप से कहा गया है, डी राम के प्रमेय का आशय है कि यह आदर्श युग्मन है, और इसलिए बाईं ओर प्रत्येक शब्द एक दूसरे के सदिश क्षेत्र दोहरे हैं। समकालीन भाषा में, डी राम के प्रमेय को अधिकांशतः कथन के रूप में अभिव्यक्त किया जाता है कि वास्तविक गुणांक के साथ एकवचन सह-समरूपता डी राम सह-समरूपता के लिए आइसोमॉर्फिक है:
Line 13: Line 13:
डी राम का मूल कथन पोंकारे द्वंद्व का परिणाम है।<ref name=glimpse>{{Citation | first = Srishti | last = Chatterji | last2 =Ojanguren | first2 = Manuel | title = A glimpse of the de Rham era | url = http://sma.epfl.ch/~ojangure/Glimpse.pdf | series = working paper, [[École Polytechnique Fédérale de Lausanne|EPFL]] | year = 2010  }}</ref>
डी राम का मूल कथन पोंकारे द्वंद्व का परिणाम है।<ref name=glimpse>{{Citation | first = Srishti | last = Chatterji | last2 =Ojanguren | first2 = Manuel | title = A glimpse of the de Rham era | url = http://sma.epfl.ch/~ojangure/Glimpse.pdf | series = working paper, [[École Polytechnique Fédérale de Lausanne|EPFL]] | year = 2010  }}</ref>


भिन्न से, [[सोलोमन लेफशेट्ज़]] के 1927 के पेपर ने [[बर्नहार्ड रीमैन]] के प्रमेयों को त्रुटिपूर्ण सिद्ध करने के लिए सामयिक विधियों का प्रयोग किया।<ref>Lefschetz, Solomon, "Correspondences Between Algebraic Curves", Ann. of Math. (2), Vol. 28, No. 1, 1927, pp. 342–354.</ref> आधुनिक भाषा में, यदि ω<sub>1</sub> और ω<sub>2</sub> बीजगणितीय वक्र C पर होलोमोर्फिक अंतर हैं, तो उनका वेज उत्पाद आवश्यक रूप से शून्य है क्योंकि C का केवल जटिल आयाम है; परिणामस्वरूप, उनके सह-समरूपता वर्गों का [[कप उत्पाद]] शून्य है, और जब इसे स्पष्ट किया गया, तो इसने लेफशेट्ज़ को [[रीमैन संबंध]] का नया प्रमाण दिया। इसके अतिरिक्त, यदि ω अशून्य होलोमॉर्फिक अंतर है, तब <math>\sqrt{-1}\,\omega \wedge \bar\omega</math> धनात्मक आयतन रूप है, जिससे लेफ्शेट्ज़ रीमैन की असमानताओं को फिर से प्राप्त करने में सक्षम था। 1929 में, डब्ल्यू वी डी. हॉज ने लेफशेट्ज़ के पेपर के बारे में सीखा। उन्होंने तुरंत देखा कि इसी प्रकार के सिद्धांत बीजगणितीय सतहों पर प्रयुक्त होते हैं। अधिक त्रुटिहीन रूप से, यदि ω बीजगणितीय सतह पर अशून्य होलोमोर्फिक रूप है, तो <math>\sqrt{-1}\,\omega \wedge \bar\omega</math> सकारात्मक है, इसलिए कप उत्पाद <math>\omega</math> और <math>\bar\omega</math> अशून्य होना चाहिए। यह इस प्रकार है कि ω स्वयं को अशून्य सह-समरूपता वर्ग का प्रतिनिधित्व करना चाहिए, इसलिए इसकी अवधि शून्य नहीं हो सकती। इससे सेवरी का प्रश्न का समाधान हो गया।<ref>[[Michael Atiyah]], ''William Vallance Douglas Hodge, 17 June 1903 – 7 July 1975'', Biogr. Mem. Fellows R. Soc., 1976, vol. 22, pp. 169–192.</ref>
भिन्न से, [[सोलोमन लेफशेट्ज़]] के 1927 के पेपर ने [[बर्नहार्ड रीमैन]] के प्रमेयों को त्रुटिपूर्ण सिद्ध करने के लिए सामयिक विधियों का प्रयोग किया।<ref>Lefschetz, Solomon, "Correspondences Between Algebraic Curves", Ann. of Math. (2), Vol. 28, No. 1, 1927, pp. 342–354.</ref> आधुनिक भाषा में, यदि ω<sub>1</sub> और ω<sub>2</sub> बीजगणितीय वक्र C पर होलोमोर्फिक अंतर हैं, तो उनका वेज उत्पाद आवश्यक रूप से शून्य है क्योंकि C का केवल जटिल आयाम है; परिणामस्वरूप, उनके सह-समरूपता वर्गों का [[कप उत्पाद]] शून्य है, और जब इसे स्पष्ट किया गया, तो इसने लेफशेट्ज़ को [[रीमैन संबंध]] का नया प्रमाण दिया। इसके अतिरिक्त, यदि ω अशून्य होलोमॉर्फिक अंतर है, तब <math>\sqrt{-1}\,\omega \wedge \bar\omega</math> धनात्मक आयतन रूप है, जिससे लेफ्शेट्ज़ रीमैन की असमानताओं को फिर से प्राप्त करने में सक्षम था। 1929 में, डब्ल्यू वी डी. हॉज ने लेफशेट्ज़ के पेपर के बारे में सीखा। उन्होंने देखा कि इसी प्रकार के सिद्धांत बीजगणितीय सतहों पर प्रयुक्त होते हैं। अधिक त्रुटिहीन रूप से, यदि ω बीजगणितीय सतह पर अशून्य होलोमोर्फिक रूप है, तो <math>\sqrt{-1}\,\omega \wedge \bar\omega</math> सकारात्मक है, इसलिए कप उत्पाद <math>\omega</math> और <math>\bar\omega</math> अशून्य होना चाहिए। यह इस प्रकार है कि ω स्वयं को अशून्य सह-समरूपता वर्ग का प्रतिनिधित्व करना चाहिए, इसलिए इसकी अवधि शून्य नहीं हो सकती। इससे सेवरी के प्रश्न का समाधान हो गया।<ref>[[Michael Atiyah]], ''William Vallance Douglas Hodge, 17 June 1903 – 7 July 1975'', Biogr. Mem. Fellows R. Soc., 1976, vol. 22, pp. 169–192.</ref>


हॉज ने अनुभव किया कि ये तकनीकें उच्च आयामों पर भी प्रयुक्त होनी चाहिए। उनके सहयोगी पीटर फ्रेजर ने उन्हें डी राम की थीसिस का अनुरोध किया। डी राम की थीसिस को पढ़ने में, हॉज ने अनुभव किया कि रीमैन सतह पर होलोमोर्फिक 1-रूप के वास्तविक और काल्पनिक भाग कुछ अर्थों में एक दूसरे के लिए दोहरे थे। उन्हें संदेह था कि उच्च आयामों में समान द्वैत होना चाहिए; इस द्वंद्व को अब [[हॉज स्टार ऑपरेटर]] के रूप में जाना जाता है। उन्होंने आगे अनुमान लगाया कि प्रत्येक सह-समरूपता वर्ग के पास गुण के साथ विशिष्ट प्रतिनिधि होना चाहिए जिसमें यह गुण हो कि वह और उसका दोहरा दोनों बाहरी व्युत्पन्न ऑपरेटर के अंतर्गत लुप्त हो जाएं; इन्हें अब हार्मोनिक रूप कहा जाता है। हॉज ने 1930 के अधिकांश समय को इस समस्या के लिए समर्पित किया। प्रमाण पर उनका सबसे प्रथम प्रकाशित प्रयास 1933 में सामने आया, किंतु उन्होंने इसे शीर्ष पर अपरिष्कृत माना। युग के सबसे शोभनीय गणितज्ञों में से [[हरमन वेइल]] ने स्वयं को यह निर्धारित करने में असमर्थ पाया कि हॉज का प्रमाण सही था या नहीं। 1936 में, हॉज ने नया प्रमाण प्रकाशित किया। जबकि हॉज ने नए प्रमाण को अधिक उत्तम माना, बोहेनब्लस्ट द्वारा सरल दोष का परिक्षण किया गया। स्वतंत्र रूप से, हरमन वेइल और [[कुनिहिको कोडैरा]] ने त्रुटि को सुधारने के लिए हॉज के प्रमाण को संशोधित किया। इसने हार्मोनिक रूपों और सह-समरूपता वर्गों के मध्य हॉज की आवश्यकता वाली समरूपता की स्थापना की।
हॉज ने अनुभव किया कि ये तकनीकें उच्च आयामों पर भी प्रयुक्त होनी चाहिए। उनके सहयोगी पीटर फ्रेजर ने उन्हें डी राम की थीसिस का अनुरोध किया। डी राम की थीसिस को पढ़ने में, हॉज ने अनुभव किया कि रीमैन सतह पर होलोमोर्फिक 1-रूप के वास्तविक और काल्पनिक भाग कुछ अर्थों में एक दूसरे के लिए दोहरे थे। उन्हें संदेह था कि उच्च आयामों में समान द्वैत होना चाहिए; इस द्वंद्व को अब [[हॉज स्टार ऑपरेटर]] के रूप में जाना जाता है। उन्होंने आगे अनुमान लगाया कि प्रत्येक सह-समरूपता वर्ग के पास गुण के साथ विशिष्ट प्रतिनिधि होना चाहिए जिसमें यह गुण हो कि वह और उसका दोहरा दोनों बाहरी व्युत्पन्न ऑपरेटर के अंतर्गत लुप्त हो जाएं; इन्हें अब हार्मोनिक रूप कहा जाता है। हॉज ने 1930 के अधिकांश समय को इस समस्या के लिए समर्पित किया। प्रमाण पर उनका सबसे प्रथम प्रकाशित प्रयास 1933 में सामने आया, किंतु उन्होंने इसे शीर्ष पर अपरिष्कृत माना। युग के सबसे शोभनीय गणितज्ञों में से [[हरमन वेइल]] ने स्वयं को यह निर्धारित करने में असमर्थ पाया कि हॉज का प्रमाण सही था या नहीं। 1936 में, हॉज ने नया प्रमाण प्रकाशित किया। जबकि हॉज ने नए प्रमाण को अधिक उत्तम माना, बोहेनब्लस्ट द्वारा सरल दोष का परिक्षण किया गया। स्वतंत्र रूप से, हरमन वेइल और [[कुनिहिको कोडैरा]] ने त्रुटि को सुधारने के लिए हॉज के प्रमाण को संशोधित किया। इसने हार्मोनिक रूपों और सह-समरूपता वर्गों के मध्य हॉज की आवश्यकता वाली समरूपता की स्थापना की।
Line 21: Line 21:
एम. एफ अतियाह, विलियम वैलेंस डगलस हॉज, 17 जून 1903 - 7 जुलाई 1975, रॉयल सोसाइटी के फेलो के जीवनी संबंधी संस्मरण, वॉल्यूम 22, 1976, पीपी 169-192 है।  
एम. एफ अतियाह, विलियम वैलेंस डगलस हॉज, 17 जून 1903 - 7 जुलाई 1975, रॉयल सोसाइटी के फेलो के जीवनी संबंधी संस्मरण, वॉल्यूम 22, 1976, पीपी 169-192 है।  


== वास्तविक कई गुना के लिए हॉज सिद्धांत ==
== वास्तविक मैनिफोल्ड के लिए हॉज सिद्धांत ==


=== डी राम सह-समरूपता ===
=== डी राम सह-समरूपता ===
Line 31: Line 31:
:<math>H^k(M,\mathbf{R})\cong \frac{\ker d_k}{\operatorname{im} d_{k-1}}.</math>
:<math>H^k(M,\mathbf{R})\cong \frac{\ker d_k}{\operatorname{im} d_{k-1}}.</math>


'''हॉज सिद्धांत में ऑपरेटर'''


=== हॉज सिद्धांत में ऑपरेटर ===
M पर रिमेंनियन मीट्रिक g चयन करें और स्मरण रखें कि:
M पर रिमेंनियन मीट्रिक g चयन करें और स्मरण रखें कि:


:<math>\Omega^k(M) = \Gamma \left (\bigwedge\nolimits^k T^*(M) \right ).</math>
:<math>\Omega^k(M) = \Gamma \left (\bigwedge\nolimits^k T^*(M) \right ).</math>
मीट्रिक प्रत्येक फाइबर पर आंतरिक उत्पाद <math>\bigwedge\nolimits^k(T_p^*(M))</math> उत्पन्न करता है प्रत्येक कोटैंजेंट फाइबर से g द्वारा प्रेरित आंतरिक उत्पाद को विस्तारित करके ([[ग्रामियन मैट्रिक्स]] देखें)<math>T_p^*(M)</math>को h<math>k^{th}</math> [[बाहरी उत्पाद]]: <math>\bigwedge\nolimits^k(T_p^*(M))</math>. <math>\Omega^k(M)</math> आंतरिक उत्पाद को वॉल्यूम रूप के संबंध में M के ऊपर दिए गए k- रूपों के जोड़े के बिंदुवार आंतरिक उत्पाद के अभिन्न अंग के रूप में परिभाषित किया गया है। <math>\sigma</math>, g से जुड़ा हुआ है। स्पष्ट रूप से, कुछ दिए गए <math>\omega,\tau \in \Omega^k(M)</math> हमारे पास है:
मीट्रिक प्रत्येक फाइबर पर आंतरिक उत्पाद <math>\bigwedge\nolimits^k(T_p^*(M))</math> उत्पन्न करता है प्रत्येक कोटैंजेंट फाइबर से g द्वारा प्रेरित आंतरिक उत्पाद को विस्तारित करके ([[ग्रामियन मैट्रिक्स]] देखें) <math>T_p^*(M)</math>को h<math>k^{th}</math> [[बाहरी उत्पाद]]: <math>\bigwedge\nolimits^k(T_p^*(M))</math>. <math>\Omega^k(M)</math> आंतरिक उत्पाद को वॉल्यूम रूप के संबंध में M के ऊपर दिए गए k- रूपों के जोड़े के बिंदुवार आंतरिक उत्पाद के अभिन्न अंग के रूप में परिभाषित किया गया है। <math>\sigma</math>, g से जुड़ा हुआ है। स्पष्ट रूप से, कुछ दिए गए <math>\omega,\tau \in \Omega^k(M)</math> हमारे पास है:


:<math> (\omega,\tau) \mapsto \langle\omega,\tau\rangle := \int_M \langle \omega(p),\tau(p)\rangle_p \sigma.</math>
:<math> (\omega,\tau) \mapsto \langle\omega,\tau\rangle := \int_M \langle \omega(p),\tau(p)\rangle_p \sigma.</math>
Line 54: Line 54:


:<math>\mathcal{H}_\Delta^k(M) = \{\alpha\in\Omega^k(M)\mid\Delta\alpha=0\}.</math>
:<math>\mathcal{H}_\Delta^k(M) = \{\alpha\in\Omega^k(M)\mid\Delta\alpha=0\}.</math>
लाप्लासियन [[गणितीय भौतिकी]] में सबसे पहले प्रकट हुए। विशेष रूप से, विभेदक रूप भौतिक विज्ञान में अनुप्रयोग मैक्सवेल के समीकरण कहते हैं कि निर्वात में विद्युत चुम्बकीय क्षमता 1-रूप a है जिसका बाहरी व्युत्पन्न है {{nowrap|1=''dA'' = '' F''}} है, जहां F विद्युत चुम्बकीय क्षेत्र का प्रतिनिधित्व करने वाला 2-रूप है जैसे कि स्पेसटाइम पर {{nowrap|1=Δ''A'' = 0}} अंतरिक्ष-समय पर, आयाम 4 के [[मिन्कोवस्की अंतरिक्ष]] के रूप में देखा गया।
लाप्लासियन [[गणितीय भौतिकी]] में सबसे पहले प्रकट हुए। विशेष रूप से, विभेदक रूप भौतिक विज्ञान में अनुप्रयोग मैक्सवेल के समीकरण कहते हैं कि निर्वात में विद्युत चुम्बकीय क्षमता 1-रूप a है जिसका बाहरी व्युत्पन्न {{nowrap|1=''dA'' = '' F''}} है, जहां F विद्युत चुम्बकीय क्षेत्र का प्रतिनिधित्व करने वाला 2-रूप है जैसे कि स्पेसटाइम पर {{nowrap|1=Δ''A'' = 0}} अंतरिक्ष-समय पर, आयाम 4 के [[मिन्कोवस्की अंतरिक्ष]] के रूप में देखा गया।


[[बंद कई गुना|संवृत]] रीमैनियन मैनिफोल्ड पर प्रत्येक हार्मोनिक रूप α [[बंद और सटीक अंतर रूप|संवृत और त्रुटिहीन अंतर रूप]] है, जिसका अर्थ {{nowrap|1=''dα'' = 0}} है। परिणामस्वरूप, कैनोनिकल मानचित्र है <math>\varphi:\mathcal{H}_\Delta^k(M)\to H^k(M,\mathbf{R})</math>. हॉज प्रमेय कहता है कि <math>\varphi</math> वेक्टर रिक्त स्थान का समरूपता है।<ref>Warner (1983), Theorem 6.11.</ref> दूसरे शब्दों में, M पर प्रत्येक वास्तविक सह-समरूपता वर्ग में अद्वितीय हार्मोनिक प्रतिनिधि होता है। ठोस रूप से, हार्मोनिक प्रतिनिधि न्यूनतम ''L''<sup>2</sup> का अद्वितीय संवृत रूप है पैरामीटर जो किसी दिए गए सह-समरूपता वर्ग का प्रतिनिधित्व करता है। हॉज प्रमेय को [[अण्डाकार ऑपरेटर]] आंशिक अंतर समीकरणों के सिद्धांत का उपयोग करके सिद्ध किया गया था, हॉज के प्रारंभिक तर्कों को 1940 के दशक में कुनिहिको कोडायरा और अन्य लोगों द्वारा पूर्ण किया गया था।
[[बंद कई गुना|संवृत]] रीमैनियन मैनिफोल्ड पर प्रत्येक हार्मोनिक रूप α [[बंद और सटीक अंतर रूप|संवृत और त्रुटिहीन अंतर रूप]] है, जिसका अर्थ {{nowrap|1=''dα'' = 0}} है। परिणामस्वरूप, कैनोनिकल मानचित्र <math>\varphi:\mathcal{H}_\Delta^k(M)\to H^k(M,\mathbf{R})</math> है,  हॉज प्रमेय कहता है कि <math>\varphi</math> वेक्टर रिक्त स्थान का समरूपता है।<ref>Warner (1983), Theorem 6.11.</ref> दूसरे शब्दों में, M पर प्रत्येक वास्तविक सह-समरूपता वर्ग में अद्वितीय हार्मोनिक प्रतिनिधि होता है। ठोस रूप से, हार्मोनिक प्रतिनिधि न्यूनतम ''L''<sup>2</sup> का अद्वितीय संवृत रूप है पैरामीटर जो किसी दिए गए सह-समरूपता वर्ग का प्रतिनिधित्व करता है। हॉज प्रमेय को [[अण्डाकार ऑपरेटर]] आंशिक अंतर समीकरणों के सिद्धांत का उपयोग करके सिद्ध किया गया था, हॉज के प्रारंभिक तर्कों को 1940 के दशक में कुनिहिको कोडायरा और अन्य लोगों द्वारा पूर्ण किया गया था।


उदाहरण के लिए, हॉज प्रमेय का अर्थ है कि संवृत मैनिफोल्ड के वास्तविक गुणांक वाले सह-समरूपता समूह परिमित-आयामी हैं। (प्रमाणित है, इसे सिद्ध करने के अन्य विधियों हैं।) वास्तव में, ऑपरेटर Δ अंडाकार होते हैं, और संवृत मैनिफोल्ड अंडाकार ऑपरेटर के कर्नेल (बीजगणित) सदैव परिमित-आयामी वेक्टर स्थान होता है। हॉज प्रमेय का अन्य परिणाम यह है कि संवृत मैनिफोल्ड M पर रिमेंनियन मीट्रिक M मॉड्यूलो टोरसन उपसमूह के अभिन्न सह-समरूपता पर वास्तविक मूल्यवान आंतरिक उत्पाद निर्धारित करता है। यह इस प्रकार है, उदाहरण के लिए, [[सामान्य रैखिक समूह]] में M के [[आइसोमेट्री समूह]] की छवि {{nowrap|GL(''H''{{sup|∗}}(''M'', '''Z'''))}} परिमित है (क्योंकि [[जाली (समूह)]] के आइसोमेट्री का समूह परिमित है)।
उदाहरण के लिए, हॉज प्रमेय का अर्थ है कि संवृत मैनिफोल्ड के वास्तविक गुणांक वाले सह-समरूपता समूह परिमित-आयामी हैं। (प्रमाणित है, इसे सिद्ध करने के अन्य विधियों हैं।) वास्तव में, ऑपरेटर Δ अंडाकार होते हैं, और संवृत मैनिफोल्ड अंडाकार ऑपरेटर के कर्नेल (बीजगणित) सदैव परिमित-आयामी वेक्टर स्थान होता है। हॉज प्रमेय का अन्य परिणाम यह है कि संवृत मैनिफोल्ड M पर रिमेंनियन मीट्रिक M मॉड्यूलो टोरसन उपसमूह के अभिन्न सह-समरूपता पर वास्तविक मूल्यवान आंतरिक उत्पाद निर्धारित करता है। यह इस प्रकार है, उदाहरण के लिए, [[सामान्य रैखिक समूह]] में M के [[आइसोमेट्री समूह]] की छवि {{nowrap|GL(''H''{{sup|∗}}(''M'', '''Z'''))}} परिमित है (क्योंकि [[जाली (समूह)]] के आइसोमेट्री का समूह परिमित है)।
Line 83: Line 83:
L &= \bigoplus\nolimits_i L_i:\mathcal E^\bullet\to\mathcal E^\bullet
L &= \bigoplus\nolimits_i L_i:\mathcal E^\bullet\to\mathcal E^\bullet
\end{align}</math>
\end{align}</math>
और ''L''<sup>∗</sup> L का जोड़ है। अण्डाकार संकारक {{nowrap|1=Δ = ''LL''{{sup|∗}} + ''L''{{sup|∗}}''L''}} को परिभाषित करें। जैसा कि डे राम स्तिथि में, इससे हार्मोनिक अनुभागों का सदिश स्थान प्राप्त होता है:
और ''L''<sup>∗</sup> L का जोड़ है। अण्डाकार संकारक {{nowrap|1=Δ = ''LL''{{sup|∗}} + ''L''{{sup|∗}}''L''}} को परिभाषित करें। जैसा कि डी राम स्तिथि में, इससे हार्मोनिक अनुभागों का सदिश स्थान प्राप्त होता है:


:<math>\mathcal H=\{e\in\mathcal E^\bullet\mid\Delta e=0\}.</math>
:<math>\mathcal H=\{e\in\mathcal E^\bullet\mid\Delta e=0\}.</math>
Line 90: Line 90:
#Id = ''H'' + Δ''G'' = ''H'' + ''G''Δ
#Id = ''H'' + Δ''G'' = ''H'' + ''G''Δ
# ''LG'' = ''GL'', ''L''<sup>∗</sup>''G'' = ''GL''<sup>∗</sup>
# ''LG'' = ''GL'', ''L''<sup>∗</sup>''G'' = ''GL''<sup>∗</sup>
# कॉम्प्लेक्स की सह-समरूपता हार्मोनिक वर्गों के स्थान के लिए विहित रूप से समरूपी है, <math>H(E_j)\cong\mathcal H(E_j)</math>, इस अर्थ में कि प्रत्येक कोहोमोलॉजी वर्ग में एक अद्वितीय हार्मोनिक प्रतिनिधि होता है।
# कॉम्प्लेक्स की सह-समरूपता हार्मोनिक वर्गों के स्थान के लिए विहित रूप से समरूपी है, <math>H(E_j)\cong\mathcal H(E_j)</math>, इस अर्थ में कि प्रत्येक कोहोमोलॉजी वर्ग में अद्वितीय हार्मोनिक प्रतिनिधि होता है।


इस स्थिति में एक हॉज अपघटन भी है, जो डी राम कॉम्प्लेक्स के लिए उपरोक्त कथन को सामान्य बनाता है।
इस स्थिति में हॉज अपघटन भी है, जो डी राम कॉम्प्लेक्स के लिए उपरोक्त कथन को सामान्य बनाता है।


== जटिल प्रक्षेप्य किस्मों के लिए हॉज सिद्धांत ==
== जटिल प्रक्षेप्य के लिए हॉज सिद्धांत ==
{{main|हॉज संरचना}}
{{main|हॉज संरचना}}


Line 109: Line 109:


:<math>\smile \colon H^{p,q}(X) \times H^{p',q'}(X) \rightarrow H^{p+p',q+q'}(X).</math>
:<math>\smile \colon H^{p,q}(X) \times H^{p',q'}(X) \rightarrow H^{p+p',q+q'}(X).</math>
भाग ''H<sup>p</sup>''<sup>,''q''</sup>(''X'') हॉज अपघटन के को [[सुसंगत शीफ कोहोलॉजी|सुसंगत शीफ सह-समरूपता]] समूह के साथ पहचाना जा सकता है, जो केवल X पर जटिल मैनिफोल्ड के रूप में निर्भर करता है (कहलेर मीट्रिक की रूचि पर नहीं):<ref>Huybrechts (2005), Corollary 2.6.21.</ref>
भाग ''H<sup>p</sup>''<sup>,''q''</sup>(''X'') हॉज अपघटन को [[सुसंगत शीफ कोहोलॉजी|सुसंगत शीफ सह-समरूपता]] समूह के साथ पहचाना जा सकता है, जो केवल X पर जटिल मैनिफोल्ड के रूप में निर्भर करता है (कहलेर मीट्रिक की रूचि पर नहीं):<ref>Huybrechts (2005), Corollary 2.6.21.</ref>
:<math>H^{p,q}(X)\cong H^q(X,\Omega^p),</math>
:<math>H^{p,q}(X)\cong H^q(X,\Omega^p),</math>
जहां Ω<sup>p</sup>, X पर होलोमॉर्फिक p-रूप के [[शीफ (गणित)]] को दर्शाता है। उदाहरण के लिए, H<sup>p,0</sup>(X) सभी X पर होलोमोर्फिक p-रूपों का स्थान है। (यदि X प्रक्षेपी है, तो [[ जीन पियरे सेरे |जीन पियरे सेरे]] के [[GAGA|गागा]] प्रमेय का तात्पर्य है कि सभी X पर होलोमोर्फिक p-रूप वास्तव में बीजगणितीय है।)
जहां Ω<sup>p</sup>, X पर होलोमॉर्फिक p-रूप के [[शीफ (गणित)]] को दर्शाता है। उदाहरण के लिए, H<sup>p,0</sup>(X) सभी X पर होलोमोर्फिक p-रूपों का स्थान है। (यदि X प्रक्षेपी है, तो [[ जीन पियरे सेरे |जीन पियरे सेरे]] के [[GAGA|गागा]] प्रमेय का तात्पर्य है कि सभी X पर होलोमोर्फिक p-रूप वास्तव में बीजगणितीय है।)
Line 115: Line 115:
दूसरी ओर, इंटीग्रल को ''Z'' के होमोलॉजी वर्ग के कैप उत्पाद के रूप में लिखा जा सकता है और सह-समरूपता वर्ग द्वारा दर्शाया गया है <math>\alpha</math>. पोनकारे द्वैत द्वारा, Z का समरूपता वर्ग सह-समरूपता वर्ग के लिए दोहरा है जिसे हम [Z] कहेंगे, और कैप उत्पाद की गणना [Z] और α के कप उत्पाद को लेकर और X के मौलिक वर्ग के साथ कैपिंग करके की जा सकती है।
दूसरी ओर, इंटीग्रल को ''Z'' के होमोलॉजी वर्ग के कैप उत्पाद के रूप में लिखा जा सकता है और सह-समरूपता वर्ग द्वारा दर्शाया गया है <math>\alpha</math>. पोनकारे द्वैत द्वारा, Z का समरूपता वर्ग सह-समरूपता वर्ग के लिए दोहरा है जिसे हम [Z] कहेंगे, और कैप उत्पाद की गणना [Z] और α के कप उत्पाद को लेकर और X के मौलिक वर्ग के साथ कैपिंग करके की जा सकती है।


क्योंकि [Z] सह-समरूपता वर्ग है, इसमें हॉज अपघटन है। उपरोक्त गणना के अनुसार, यदि हम इस वर्ग को किसी भी प्रकार के वर्ग के साथ जोड़ते हैं <math>(p,q) \ne (k,k)</math>, तो हमें शून्य मिलता है। क्योंकि <math>H^{2n}(X, \Complex) = H^{n,n}(X)</math>, हम यह निष्कर्ष निकालते हैं कि [Z] को <math>H^{n-k,n-k}(X)</math> अंदर होना चाहिए।
क्योंकि [Z] सह-समरूपता वर्ग है, इसमें हॉज अपघटन है। उपरोक्त गणना के अनुसार, यदि हम इस वर्ग को किसी भी प्रकार के वर्ग के साथ जोड़ते हैं <math>(p,q) \ne (k,k)</math>, तो हमें शून्य मिलता है। क्योंकि <math>H^{2n}(X, \Complex) = H^{n,n}(X)</math>, से हम यह निष्कर्ष निकालते हैं कि [Z] को <math>H^{n-k,n-k}(X)</math> के अंदर होना चाहिए।


हॉज नंबर ''h<sup>p</sup>''<sup>,''q''</sup>(''X'') का अर्थ जटिल वेक्टर स्पेस H का आयाम है ये सुचारु जटिल प्रक्षेप्य के महत्वपूर्ण अपरिवर्तनीय हैं; जब X की जटिल संरचना निरंतर परिवर्तित होती रहती है तो वे नहीं परिवर्तित होते हैं, और फिर भी वे सामान्य रूप से टोपोलॉजिकल इनवेरिएंट नहीं होते हैं। हॉज संख्या के गुणों में 'हॉज समरूपता' हैं ''h<sup>p</sup>''<sup>,''q''</sup> = ''h<sup>q</sup>''<sup>,''p''</sup> (क्योंकि''H<sup>p</sup>''<sup>,''q''</sup>(''X'') H का सम्मिश्र संयुग्म''H<sup>q</sup>''<sup>,''p''</sup>(''X'')) और {{nowrap|1=''h''<sup>''p'',''q''</sup> = ''h''<sup>''n''−''p'',''n''−''q''</sup>}} (सेरे द्वैत द्वारा) है।
हॉज नंबर ''h<sup>p</sup>''<sup>,''q''</sup>(''X'') का अर्थ जटिल वेक्टर स्पेस H का आयाम है ये सुचारु जटिल प्रक्षेप्य के महत्वपूर्ण अपरिवर्तनीय हैं; जब X की जटिल संरचना निरंतर परिवर्तित होती रहती है तो वे नहीं परिवर्तित होते हैं, और फिर भी वे सामान्य रूप से टोपोलॉजिकल इनवेरिएंट नहीं होते हैं। हॉज संख्या के गुणों में 'हॉज समरूपता' हैं ''h<sup>p</sup>''<sup>,''q''</sup> = ''h<sup>q</sup>''<sup>,''p''</sup> (क्योंकि ''H<sup>p</sup>''<sup>,''q''</sup>(''X'') H का सम्मिश्र संयुग्म ''H<sup>q</sup>''<sup>,''p''</sup>(''X'')) और {{nowrap|1=''h''<sup>''p'',''q''</sup> = ''h''<sup>''n''−''p'',''n''−''q''</sup>}} (सेरे द्वैत द्वारा) है।


सुचारु जटिल प्रक्षेपी विविधता (या कॉम्पैक्ट काहलर मैनिफोल्ड) की हॉज संख्या को होमोलॉजिकल मिरर समरूपता हॉज डायमंड में (जटिल आयाम 2 के स्थितियों में दिखाया गया) सूचीबद्ध किया जा सकता है:
सुचारु जटिल प्रक्षेपी विविधता (या कॉम्पैक्ट काहलर मैनिफोल्ड) की हॉज संख्या को होमोलॉजिकल मिरर समरूपता हॉज डायमंड में (जटिल आयाम 2 के स्थितियों में दिखाया गया) सूचीबद्ध किया जा सकता है:
Line 145: Line 145:
X की बेट्टी संख्याएँ दी गई पंक्ति में हॉज संख्याओं का योग हैं। हॉज सिद्धांत का मूलभूत अनुप्रयोग तो यह है कि विषम बेट्टी संख्या ''b''<sub>2''a''+1</sub> हॉज समरूपता द्वारा सुचारु जटिल प्रोजेक्टिव विविधता (या कॉम्पैक्ट काहलर मैनिफोल्ड) भी हैं। यह सामान्य रूप से कॉम्पैक्ट कॉम्प्लेक्स मैनिफोल्ड्स के लिए सही नहीं है, जैसा कि [[हॉफ सतह]] के उदाहरण द्वारा दिखाया गया है, जो कि भिन्न-भिन्न है {{nowrap|''S''<sup>1</sup> × ''S''<sup>3</sup>}} और इसलिए {{nowrap|1=''b''<sub>1</sub> = 1}} है।
X की बेट्टी संख्याएँ दी गई पंक्ति में हॉज संख्याओं का योग हैं। हॉज सिद्धांत का मूलभूत अनुप्रयोग तो यह है कि विषम बेट्टी संख्या ''b''<sub>2''a''+1</sub> हॉज समरूपता द्वारा सुचारु जटिल प्रोजेक्टिव विविधता (या कॉम्पैक्ट काहलर मैनिफोल्ड) भी हैं। यह सामान्य रूप से कॉम्पैक्ट कॉम्प्लेक्स मैनिफोल्ड्स के लिए सही नहीं है, जैसा कि [[हॉफ सतह]] के उदाहरण द्वारा दिखाया गया है, जो कि भिन्न-भिन्न है {{nowrap|''S''<sup>1</sup> × ''S''<sup>3</sup>}} और इसलिए {{nowrap|1=''b''<sub>1</sub> = 1}} है।


काहलर पैकेज हॉज सिद्धांत पर निर्मित, सुचारु जटिल प्रोजेक्टिव (या कॉम्पैक्ट काहलर मैनिफोल्ड्स) के सह-समरूपता पर प्रतिबंधों का शक्तिशाली समुच्चय है। परिणामों में [[लेफ्शेट्ज़ हाइपरप्लेन प्रमेय]], कठिन लेफ़्सचेट्ज़ प्रमेय और [[हॉज-रीमैन द्विरेखीय संबंध]] सम्मिलित हैं।<ref>Huybrechts (2005), sections 3.3 and 5.2; Griffiths & Harris (1994), sections 0.7 and 1.2; Voisin (2007), v. 1, ch. 6, and v. 2, ch. 1.</ref> इनमें से कई परिणाम मौलिक तकनीकी उपकरणों से आते हैं, जो हॉज सिद्धांत का उपयोग करके कॉम्पैक्ट काहलर मैनिफोल्ड के लिए सिद्ध हो सकते हैं, जिसमें काहलर पहचान और डडबार <math>\partial \bar \partial</math>लेम्मा सम्मिलित हैं।  
काहलर पैकेज हॉज सिद्धांत पर निर्मित, सुचारु जटिल प्रोजेक्टिव (या कॉम्पैक्ट काहलर मैनिफोल्ड्स) के सह-समरूपता पर प्रतिबंधों का शक्तिशाली समुच्चय है। परिणामों में [[लेफ्शेट्ज़ हाइपरप्लेन प्रमेय]], जटिल लेफ़्सचेट्ज़ प्रमेय और [[हॉज-रीमैन द्विरेखीय संबंध]] सम्मिलित हैं।<ref>Huybrechts (2005), sections 3.3 and 5.2; Griffiths & Harris (1994), sections 0.7 and 1.2; Voisin (2007), v. 1, ch. 6, and v. 2, ch. 1.</ref> इनमें से कई परिणाम मौलिक तकनीकी उपकरणों से आते हैं, जो हॉज सिद्धांत का उपयोग करके कॉम्पैक्ट काहलर मैनिफोल्ड के लिए सिद्ध हो सकते हैं, जिसमें काहलर पहचान और डडबार <math>\partial \bar \partial</math> लेम्मा सम्मिलित हैं।  


हॉज सिद्धांत और गैर-एबेलियन हॉज सिद्धांत जैसे विस्तार भी कॉम्पैक्ट काहलर मैनिफोल्ड्स के संभावित [[मौलिक समूह|मौलिक समूहों]] पर स्थिर प्रतिबंध देते हैं।  
हॉज सिद्धांत और गैर-एबेलियन हॉज सिद्धांत जैसे विस्तार भी कॉम्पैक्ट काहलर मैनिफोल्ड्स के संभावित [[मौलिक समूह|मौलिक समूहों]] पर स्थिर प्रतिबंध देते हैं।  
Line 151: Line 151:
== बीजगणितीय चक्र और हॉज अनुमान ==
== बीजगणितीय चक्र और हॉज अनुमान ==
{{main|हॉज अनुमान}}
{{main|हॉज अनुमान}}
मान लीजिए कि X सहज जटिल प्रक्षेप्य है। [[ codimension |कोडिमेंशन]] p के x में जटिल उप-विविधता y कोहोमोलॉजी समूह के एलिमेंट्स को परिभाषित करती है <math>H^{2p}(X,\Z)</math> इसके अतिरिक्त, परिणामी वर्ग की विशेष गुण है: जटिल सह-समरूपता में इसकी छवि <math>H^{2p}(X,\Complex)</math> हॉज अपघटन के मध्य भाग में स्थित है, <math>H^{p,p}(X)</math> हॉज अनुमान सम्बन्ध की भविष्यवाणी करता है: प्रत्येक एलिमेंट्स <math>H^{2p}(X,\Z)</math> जिसकी छवि जटिल कोहोमोलॉजी में उप-स्थान में निहित है <math>H^{p,p}(X)</math> में सकारात्मक अभिन्न गुणक होना चाहिए जो कि a है <math>\Z</math> X की जटिल वर्गों का रैखिक संयोजन है। (इस प्रकार के रैखिक संयोजन को X पर 'बीजगणितीय चक्र' कहा जाता है।)
मान लीजिए कि X सहज जटिल प्रक्षेप्य है। [[ codimension |कोडिमेंशन]] p के x में जटिल उप-विविधता y कोहोमोलॉजी समूह के एलिमेंट्स को परिभाषित करते है <math>H^{2p}(X,\Z)</math> इसके अतिरिक्त, परिणामी वर्ग के  विशेष गुण है: जटिल सह-समरूपता में इसकी छवि <math>H^{2p}(X,\Complex)</math> हॉज अपघटन के मध्य भाग में स्थित है, <math>H^{p,p}(X)</math> हॉज अनुमान सम्बन्ध की भविष्यवाणी करता है: प्रत्येक एलिमेंट्स <math>H^{2p}(X,\Z)</math> जिसकी छवि जटिल कोहोमोलॉजी में उप-स्थान में निहित है <math>H^{p,p}(X)</math> में सकारात्मक अभिन्न गुणक होना चाहिए जो कि a है <math>\Z</math> X की जटिल वर्गों का रैखिक संयोजन है। (इस प्रकार के रैखिक संयोजन को X पर 'बीजगणितीय चक्र' कहा जाता है।)


महत्वपूर्ण बिंदु यह है कि हॉज अपघटन जटिल गुणांक वाले सह-समरूपता का अपघटन है जो सामान्यतः अभिन्न (या तर्कसंगत) गुणांक वाले सह-समरूपता के अपघटन से नहीं आता है। परिणामस्वरूप,  
महत्वपूर्ण बिंदु यह है कि हॉज अपघटन जटिल गुणांक वाले सह-समरूपता का अपघटन है जो सामान्यतः अभिन्न (या तर्कसंगत) गुणांक वाले सह-समरूपता के अपघटन से नहीं आता है। परिणामस्वरूप,  
Line 159: Line 159:
लेफ़शेट्ज़ (1,1)-प्रमेय कहता है कि हॉज अनुमान {{nowrap|1=''p'' = 1}} के लिए सत्य है (यहां तक ​​कि अभिन्न रूप से, अर्थात कथन में सकारात्मक अभिन्न एकाधिक की आवश्यकता के बिना)।
लेफ़शेट्ज़ (1,1)-प्रमेय कहता है कि हॉज अनुमान {{nowrap|1=''p'' = 1}} के लिए सत्य है (यहां तक ​​कि अभिन्न रूप से, अर्थात कथन में सकारात्मक अभिन्न एकाधिक की आवश्यकता के बिना)।


बीजीय फलन विशेष रूप से, [[बीजगणितीय कार्य|बीजगणितीय फलन]] के निश्चित अभिन्न अंग, जिन्हें अवधि के रूप में जाना जाता है, [[पारलौकिक संख्या]] हो सकते हैं। हॉज अनुमान की कठिनाई सामान्य रूप से ऐसे अभिन्नों की समझ की कमी को दर्शाती है।   
बीजीय फलन विशेष रूप से, [[बीजगणितीय कार्य|बीजगणितीय फलन]] के निश्चित अभिन्न अंग, जिन्हें अवधि के रूप में जाना जाता है, [[पारलौकिक संख्या]] हो सकते हैं। हॉज अनुमान की कठिनाई सामान्य रूप से ऐसे अभिन्नों के अल्पता को दर्शाती है।   


उदाहरण: जटिल प्रक्षेपी K3 सतह X के लिए, समूह {{nowrap|''H''<sup>2</sup>(''X'', '''Z''')}} Z<sup>22</sup> के लिए आइसोमोर्फिक है, और ''H''<sup>1,1</sup> (X) '''C'''<sup>20</sup> के लिए समरूपी है उनके प्रतिच्छेदन का रैंक 1 और 20 के मध्य कहीं भी हो सकती है; इस रैंक को X की पिकार्ड संख्या कहा जाता है। सभी प्रक्षेप्य K3 सतहों के मोडुली स्पेस में घटकों का अनंत समुच्चय होता है, प्रत्येक जटिल आयाम 19 का होता है। पिकार्ड नंबर a के साथ K3 सतहों के उप-स्थान का आयाम 20−a होता है।<ref>Griffiths & Harris (1994), p. 594.</ref> (इस प्रकार, अधिकांश प्रक्षेपी K3 सतहों के लिए, प्रतिच्छेदन {{nowrap|''H''<sup>2</sup>(''X'', '''Z''')}} H के साथ1,1(X) 'Z' के लिए समरूपी है, किंतु विशेष K3 सतहों के लिए प्रतिच्छेदन बड़ा हो सकता है।)
उदाहरण: जटिल प्रक्षेपी K3 सतह X के लिए, समूह {{nowrap|''H''<sup>2</sup>(''X'', '''Z''')}} Z<sup>22</sup> के लिए आइसोमोर्फिक है, और ''H''<sup>1,1</sup> (X) '''C'''<sup>20</sup> के लिए समरूपी है उनके प्रतिच्छेदन का रैंक 1 और 20 के मध्य कहीं भी हो सकती है; इस रैंक को X की पिकार्ड संख्या कहा जाता है। सभी प्रक्षेप्य K3 सतहों के मोडुली स्पेस में घटकों का अनंत समुच्चय होता है, प्रत्येक जटिल आयाम 19 का होता है। पिकार्ड नंबर a के साथ K3 सतहों के उप-स्थान का आयाम 20−a होता है।<ref>Griffiths & Harris (1994), p. 594.</ref> (इस प्रकार, अधिकांश प्रक्षेपी K3 सतहों के लिए, प्रतिच्छेदन {{nowrap|''H''<sup>2</sup>(''X'', '''Z''')}} H के साथ 1,1(X) 'Z' के लिए समरूपी है, किंतु विशेष K3 सतहों के लिए प्रतिच्छेदन बड़ा हो सकता है।)


यह उदाहरण जटिल बीजगणितीय ज्यामिति में हॉज सिद्धांत द्वारा निभाई गई कई भिन्न-भिन्न भूमिकाओं का विचार देता है। सबसे पहले, हॉज सिद्धांत उन प्रतिबंधों को देता है जिन पर टोपोलॉजिकल रिक्त स्थान सुचारू जटिल प्रोजेक्टिव की संरचना हो सकते हैं। दूसरा, हॉज सिद्धांत दिए गए टोपोलॉजिकल प्रकार के साथ सुचारू जटिल प्रोजेक्टिव के मोडुली स्पेस के बारे में जानकारी देता है। सबसे उत्तम स्थितियाँ तब होती है जब टोरेली प्रमेय धारण करता है, जिसका अर्थ है कि इसकी हॉज संरचना द्वारा आइसोमोर्फिज्म तक की विविधता निर्धारित की जाती है। अंत में, हॉज सिद्धांत किसी दी गई विविधता पर बीजगणितीय चक्रों के [[चाउ समूह]] के बारे में जानकारी देता है। हॉज अनुमान चाउ समूह की छवि के बारे में है चाउ समूहों से सामान्य सह-समरूपता के लिए चक्र मानचित्र, किंतु हॉज सिद्धांत चक्र मानचित्र के कर्नेल के बारे में भी जानकारी देता है, उदाहरण के लिए मध्यवर्ती जैकबियन का उपयोग करके जो हॉज संरचना से निर्मित होते हैं।
यह उदाहरण जटिल बीजगणितीय ज्यामिति में हॉज सिद्धांत द्वारा निभाई गई कई भिन्न-भिन्न भूमिकाओं का विचार देता है। सबसे पहले, हॉज सिद्धांत उन प्रतिबंधों को देता है जिन पर टोपोलॉजिकल रिक्त स्थान सुचारू जटिल प्रोजेक्टिव की संरचना हो सकती हैं। दूसरा, हॉज सिद्धांत दिए गए टोपोलॉजिकल प्रकार के साथ सुचारू जटिल प्रोजेक्टिव के मोडुली स्पेस के बारे में जानकारी देता है। सबसे उत्तम स्थितियाँ तब होती है जब टोरेली प्रमेय धारण करता है, जिसका अर्थ है कि इसकी हॉज संरचना द्वारा आइसोमोर्फिज्म तक की विविधता निर्धारित की जाती है। अंत में, हॉज सिद्धांत किसी दी गई विविधता पर बीजगणितीय चक्रों के [[चाउ समूह]] के बारे में जानकारी देता है। हॉज अनुमान चाउ समूह की छवि के बारे में है चाउ समूहों से सामान्य सह-समरूपता के लिए चक्र मानचित्र, किंतु हॉज सिद्धांत चक्र मानचित्र के कर्नेल के बारे में भी जानकारी देता है, उदाहरण के लिए मध्यवर्ती जैकबियन का उपयोग करके जो हॉज संरचना से निर्मित होते हैं।


== सामान्यीकरण ==
== सामान्यीकरण ==
Line 170: Line 170:
[[ चौराहा समरूपता | इंटरसेक्शन समरूपता]] द्वारा एकवचन के लिए हॉज सिद्धांत का भिन्न सामान्यीकरण प्रदान किया जाता है। अर्थात्, मोरीहिको सैटो ने दिखाया कि किसी भी जटिल प्रक्षेप्य विविधता (आवश्यक रूप से चिकनी नहीं) के प्रतिच्छेदन होमोलॉजी में शुद्ध हॉज संरचना है, जैसे कि सहज स्थितियों में, पूर्ण काहलर पैकेज इंटरसेक्शन होमोलॉजी तक विस्तारित है।
[[ चौराहा समरूपता | इंटरसेक्शन समरूपता]] द्वारा एकवचन के लिए हॉज सिद्धांत का भिन्न सामान्यीकरण प्रदान किया जाता है। अर्थात्, मोरीहिको सैटो ने दिखाया कि किसी भी जटिल प्रक्षेप्य विविधता (आवश्यक रूप से चिकनी नहीं) के प्रतिच्छेदन होमोलॉजी में शुद्ध हॉज संरचना है, जैसे कि सहज स्थितियों में, पूर्ण काहलर पैकेज इंटरसेक्शन होमोलॉजी तक विस्तारित है।


जटिल ज्यामिति का मूलभूत विषय यह है कि गैर-आइसोमॉर्फिक कॉम्प्लेक्स मैनिफोल्ड्स के निरंतर सदस्य हैं (जो वास्तविक मैनिफोल्ड्स के रूप में सभी भिन्न-भिन्न हैं) [[फिलिप ग्रिफिथ्स]] की [[हॉज संरचना की भिन्नता]] की धारणा बताती है कि कैसे सुचारू जटिल प्रक्षेपी विविधता ' ''X''<nowiki/>' की हॉज संरचना परिवर्तित करती है जब ' ''X''<nowiki/>' भिन्न होता है। ज्यामितीय शब्दों में, यह सदस्य से संबंधित [[अवधि मानचित्रण]] का अध्ययन करने के समान है। सैटो का [[हॉज मॉड्यूल]] का सिद्धांत सामान्यीकरण है।  
जटिल ज्यामिति का मूलभूत विषय यह है कि गैर-आइसोमॉर्फिक कॉम्प्लेक्स मैनिफोल्ड्स का निरंतर सदस्य हैं (जो वास्तविक मैनिफोल्ड्स के रूप में सभी भिन्न-भिन्न हैं) [[फिलिप ग्रिफिथ्स]] की [[हॉज संरचना की भिन्नता]] की धारणा बताती है कि कैसे सुचारू जटिल प्रक्षेपी विविधता '<nowiki/>''X''<nowiki/>' की हॉज संरचना परिवर्तित करती है जब '''X''<nowiki/>' भिन्न होता है। ज्यामितीय शब्दों में, यह सदस्य से संबंधित [[अवधि मानचित्रण]] का अध्ययन करने के समान है। सैटो का [[हॉज मॉड्यूल]] का सिद्धांत सामान्यीकरण है।


== यह भी देखें ==
== यह भी देखें ==
Line 194: Line 194:
*{{Citation | author1-first=Raymond O. | author1-last=Wells Jr. | author1-link=Raymond O. Wells Jr. | title=Differential Analysis on Complex Manifolds | volume=65 | edition=3rd | publisher=[[Springer Science+Business Media|Springer]] | year=2008 | orig-year=1973 | mr=2359489 | isbn=978-0-387-73891-8 | doi=10.1007/978-0-387-73892-5| series=Graduate Texts in Mathematics | hdl=10338.dmlcz/141778 | hdl-access=free }}
*{{Citation | author1-first=Raymond O. | author1-last=Wells Jr. | author1-link=Raymond O. Wells Jr. | title=Differential Analysis on Complex Manifolds | volume=65 | edition=3rd | publisher=[[Springer Science+Business Media|Springer]] | year=2008 | orig-year=1973 | mr=2359489 | isbn=978-0-387-73891-8 | doi=10.1007/978-0-387-73892-5| series=Graduate Texts in Mathematics | hdl=10338.dmlcz/141778 | hdl-access=free }}


[[Category: हॉज थ्योरी | हॉज थ्योरी ]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
 
 
 
[[Category: Machine Translated Page]]
[[Category:Created On 20/05/2023]]
[[Category:Created On 20/05/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:हॉज थ्योरी| हॉज थ्योरी ]]

Latest revision as of 18:29, 16 July 2023

गणित में, हॉज सिद्धांत, विलियम वालेंस डगलस हॉज के नाम पर डब्ल्यू वी. डी. हॉज, आंशिक अंतर समीकरणों का उपयोग करके M के सह-समरूपता समूह का अध्ययन करने की विधि है। प्रमुख अवलोकन यह है कि, M पर रिमेंनियन मीट्रिक दिए जाने पर, प्रत्येक सह-समरूपता वर्ग का प्रतिनिधि (गणित) होता है, अंतर रूप जो मेट्रिक के लाप्लासियन ऑपरेटर के अंतर्गत लुप्त हो जाता है। ऐसे रूपों को हार्मोनिक कहा जाता है।

1930 के दशक में बीजगणितीय ज्यामिति का अध्ययन करने के लिए सिद्धांत को हॉज द्वारा विकसित किया गया था, और यह डी राम कोहोमोलॉजी पर जॉर्जेस डी राम के कार्य पर बनाया गया था। इसके दो सेटिंग्स में प्रमुख अनुप्रयोग हैं: रीमैनियन मैनिफोल्ड्स और काहलर मैनिफोल्ड्स हॉज की प्राथमिक प्रेरणा, जटिल प्रक्षेपी विविधता का अध्ययन, पश्चात की स्थितियों में सम्मिलित है। हॉज सिद्धांत बीजगणितीय ज्यामिति में महत्वपूर्ण उपकरण बन गया है, विशेष रूप से बीजगणितीय चक्र के अध्ययन के संबंध में है।

जबकि हॉज सिद्धांत वास्तविक और जटिल संख्याओं पर आंतरिक रूप से निर्भर है, इसे संख्या सिद्धांत में प्रश्नों पर प्रयुक्त किया जा सकता है। अंकगणितीय स्थितियों में, p-एडिक हॉज सिद्धांत के उपकरणों ने शास्त्रीय हॉज सिद्धांत के वैकल्पिक प्रमाण, या अनुरूप परिणाम दिए हैं।

इतिहास

1920 के दशक में बीजगणितीय टोपोलॉजी का क्षेत्र अभी भी नवजात था। इसने अभी तक सह-समरूपता की धारणा विकसित नहीं की थी, और विभेदक रूपों और टोपोलॉजी के मध्य के सम्बन्ध को व्यर्थ विधियों द्वारा अध्ययन किया गया था। 1928 में, एली कार्टन ने सुर लेस नॉम्ब्रेस डी बेट्टी डेस एस्पेसेस डी ग्रुप्स क्लोस शीर्षक से नोट प्रकाशित किया, जिसमें उन्होंने विचार दिया, किंतु यह सिद्ध नहीं किया कि अंतर रूपों और टोपोलॉजी को जोड़ा जाना चाहिए। इसे पढ़ने के पश्चात, उस समय छात्र, जॉर्जेस डी राम प्रेरणा से प्रभावित हुए। 1931 की अपनी थीसिस में, उन्होंने शोभनीय परिणाम सिद्ध किये जिसे अब डी राम की प्रमेय कहा जाता है। स्टोक्स के प्रमेय के अनुसार, किसी भी कॉम्पैक्ट स्मूथ मैनिफोल्ड M, बिलिनियर पेयरिंग के लिए, एकवचन समरूपता श्रृंखलाओं के साथ विभेदक रूपों का एकीकरण है:

जैसा कि मूल रूप से कहा गया है, डी राम के प्रमेय का आशय है कि यह आदर्श युग्मन है, और इसलिए बाईं ओर प्रत्येक शब्द एक दूसरे के सदिश क्षेत्र दोहरे हैं। समकालीन भाषा में, डी राम के प्रमेय को अधिकांशतः कथन के रूप में अभिव्यक्त किया जाता है कि वास्तविक गुणांक के साथ एकवचन सह-समरूपता डी राम सह-समरूपता के लिए आइसोमॉर्फिक है:

डी राम का मूल कथन पोंकारे द्वंद्व का परिणाम है।[1]

भिन्न से, सोलोमन लेफशेट्ज़ के 1927 के पेपर ने बर्नहार्ड रीमैन के प्रमेयों को त्रुटिपूर्ण सिद्ध करने के लिए सामयिक विधियों का प्रयोग किया।[2] आधुनिक भाषा में, यदि ω1 और ω2 बीजगणितीय वक्र C पर होलोमोर्फिक अंतर हैं, तो उनका वेज उत्पाद आवश्यक रूप से शून्य है क्योंकि C का केवल जटिल आयाम है; परिणामस्वरूप, उनके सह-समरूपता वर्गों का कप उत्पाद शून्य है, और जब इसे स्पष्ट किया गया, तो इसने लेफशेट्ज़ को रीमैन संबंध का नया प्रमाण दिया। इसके अतिरिक्त, यदि ω अशून्य होलोमॉर्फिक अंतर है, तब धनात्मक आयतन रूप है, जिससे लेफ्शेट्ज़ रीमैन की असमानताओं को फिर से प्राप्त करने में सक्षम था। 1929 में, डब्ल्यू वी डी. हॉज ने लेफशेट्ज़ के पेपर के बारे में सीखा। उन्होंने देखा कि इसी प्रकार के सिद्धांत बीजगणितीय सतहों पर प्रयुक्त होते हैं। अधिक त्रुटिहीन रूप से, यदि ω बीजगणितीय सतह पर अशून्य होलोमोर्फिक रूप है, तो सकारात्मक है, इसलिए कप उत्पाद और अशून्य होना चाहिए। यह इस प्रकार है कि ω स्वयं को अशून्य सह-समरूपता वर्ग का प्रतिनिधित्व करना चाहिए, इसलिए इसकी अवधि शून्य नहीं हो सकती। इससे सेवरी के प्रश्न का समाधान हो गया।[3]

हॉज ने अनुभव किया कि ये तकनीकें उच्च आयामों पर भी प्रयुक्त होनी चाहिए। उनके सहयोगी पीटर फ्रेजर ने उन्हें डी राम की थीसिस का अनुरोध किया। डी राम की थीसिस को पढ़ने में, हॉज ने अनुभव किया कि रीमैन सतह पर होलोमोर्फिक 1-रूप के वास्तविक और काल्पनिक भाग कुछ अर्थों में एक दूसरे के लिए दोहरे थे। उन्हें संदेह था कि उच्च आयामों में समान द्वैत होना चाहिए; इस द्वंद्व को अब हॉज स्टार ऑपरेटर के रूप में जाना जाता है। उन्होंने आगे अनुमान लगाया कि प्रत्येक सह-समरूपता वर्ग के पास गुण के साथ विशिष्ट प्रतिनिधि होना चाहिए जिसमें यह गुण हो कि वह और उसका दोहरा दोनों बाहरी व्युत्पन्न ऑपरेटर के अंतर्गत लुप्त हो जाएं; इन्हें अब हार्मोनिक रूप कहा जाता है। हॉज ने 1930 के अधिकांश समय को इस समस्या के लिए समर्पित किया। प्रमाण पर उनका सबसे प्रथम प्रकाशित प्रयास 1933 में सामने आया, किंतु उन्होंने इसे शीर्ष पर अपरिष्कृत माना। युग के सबसे शोभनीय गणितज्ञों में से हरमन वेइल ने स्वयं को यह निर्धारित करने में असमर्थ पाया कि हॉज का प्रमाण सही था या नहीं। 1936 में, हॉज ने नया प्रमाण प्रकाशित किया। जबकि हॉज ने नए प्रमाण को अधिक उत्तम माना, बोहेनब्लस्ट द्वारा सरल दोष का परिक्षण किया गया। स्वतंत्र रूप से, हरमन वेइल और कुनिहिको कोडैरा ने त्रुटि को सुधारने के लिए हॉज के प्रमाण को संशोधित किया। इसने हार्मोनिक रूपों और सह-समरूपता वर्गों के मध्य हॉज की आवश्यकता वाली समरूपता की स्थापना की।

पूर्व-निरीक्षण में यह स्पष्ट है कि अस्तित्व प्रमेय में तकनीकी कठिनाइयों के लिए वास्तव में किसी महत्वपूर्ण नए विचार की आवश्यकता नहीं थी, अन्यथा शास्त्रीय विधियों का सावधानीपूर्वक विस्तार था। वास्तविक नवीनता, जो हॉज का प्रमुख योगदान था, हार्मोनिक इंटीग्रल की अवधारणा और बीजगणितीय ज्यामिति के लिए उनकी प्रासंगिकता थी। तकनीक पर अवधारणा की यह विजय हॉज के महान पूर्ववर्ती बर्नहार्ड रीमैन के कार्य में समान प्रकरण का स्मरण करती है।

एम. एफ अतियाह, विलियम वैलेंस डगलस हॉज, 17 जून 1903 - 7 जुलाई 1975, रॉयल सोसाइटी के फेलो के जीवनी संबंधी संस्मरण, वॉल्यूम 22, 1976, पीपी 169-192 है।

वास्तविक मैनिफोल्ड के लिए हॉज सिद्धांत

डी राम सह-समरूपता

हॉज सिद्धांत डी राम सह-समरूपता का संदर्भ देता है। माना M सहज मैनिफोल्ड है। गैर-ऋणात्मक पूर्णांक k के लिए, मान लीजिए कि Ωk(M) M पर डिग्री k के सहज अंतर रूपों का वास्तविक संख्या सदिश स्थान है। डी राम कॉम्प्लेक्स अंतर ऑपरेटरों का अनुक्रम है:

जहां dk , Ωk(M) पर बाह्य अवकलज को दर्शाता है यह इस अर्थ में कोचेन कॉम्प्लेक्स है कि dk+1dk = 0 (d2 = 0 लिखा भी है)। डी राम के प्रमेय का कहना है कि वास्तविक गुणांक वाले M के एकवचन सह-समरूपता की गणना डी राम परिसर द्वारा की जाती है:

हॉज सिद्धांत में ऑपरेटर

M पर रिमेंनियन मीट्रिक g चयन करें और स्मरण रखें कि:

मीट्रिक प्रत्येक फाइबर पर आंतरिक उत्पाद उत्पन्न करता है प्रत्येक कोटैंजेंट फाइबर से g द्वारा प्रेरित आंतरिक उत्पाद को विस्तारित करके (ग्रामियन मैट्रिक्स देखें) को h बाहरी उत्पाद: . आंतरिक उत्पाद को वॉल्यूम रूप के संबंध में M के ऊपर दिए गए k- रूपों के जोड़े के बिंदुवार आंतरिक उत्पाद के अभिन्न अंग के रूप में परिभाषित किया गया है। , g से जुड़ा हुआ है। स्पष्ट रूप से, कुछ दिए गए हमारे पास है:

स्वाभाविक रूप से उपरोक्त आंतरिक उत्पाद आदर्श को प्रेरित करता है, जब वह पैरामीटर कुछ निश्चित k-रूप पर परिमित होता है:

तब समाकलन M पर वास्तविक मूल्यवान, वर्ग समाकलनीय फलन है, जिसका मूल्यांकन किसी दिए गए बिंदु पर उसके बिंदु-वार पैरामीटरों के माध्यम से किया जाता है,

इन आंतरिक उत्पादों के संबंध में d के सहायक संचालिका पर विचार करें:

फिर रूपों पर लाप्लासियन द्वारा परिभाषित किया गया है:

यह दूसरे क्रम का रेखीय अंतर संचालिका है, जो Rn पर कार्यों के लिए लाप्लासियन का सामान्यीकरण करता है। परिभाषा के अनुसार, M पर रूप 'हार्मोनिक' है यदि इसका लाप्लासियन शून्य है:

लाप्लासियन गणितीय भौतिकी में सबसे पहले प्रकट हुए। विशेष रूप से, विभेदक रूप भौतिक विज्ञान में अनुप्रयोग मैक्सवेल के समीकरण कहते हैं कि निर्वात में विद्युत चुम्बकीय क्षमता 1-रूप a है जिसका बाहरी व्युत्पन्न dA = F है, जहां F विद्युत चुम्बकीय क्षेत्र का प्रतिनिधित्व करने वाला 2-रूप है जैसे कि स्पेसटाइम पर ΔA = 0 अंतरिक्ष-समय पर, आयाम 4 के मिन्कोवस्की अंतरिक्ष के रूप में देखा गया।

संवृत रीमैनियन मैनिफोल्ड पर प्रत्येक हार्मोनिक रूप α संवृत और त्रुटिहीन अंतर रूप है, जिसका अर्थ = 0 है। परिणामस्वरूप, कैनोनिकल मानचित्र है, हॉज प्रमेय कहता है कि वेक्टर रिक्त स्थान का समरूपता है।[4] दूसरे शब्दों में, M पर प्रत्येक वास्तविक सह-समरूपता वर्ग में अद्वितीय हार्मोनिक प्रतिनिधि होता है। ठोस रूप से, हार्मोनिक प्रतिनिधि न्यूनतम L2 का अद्वितीय संवृत रूप है पैरामीटर जो किसी दिए गए सह-समरूपता वर्ग का प्रतिनिधित्व करता है। हॉज प्रमेय को अण्डाकार ऑपरेटर आंशिक अंतर समीकरणों के सिद्धांत का उपयोग करके सिद्ध किया गया था, हॉज के प्रारंभिक तर्कों को 1940 के दशक में कुनिहिको कोडायरा और अन्य लोगों द्वारा पूर्ण किया गया था।

उदाहरण के लिए, हॉज प्रमेय का अर्थ है कि संवृत मैनिफोल्ड के वास्तविक गुणांक वाले सह-समरूपता समूह परिमित-आयामी हैं। (प्रमाणित है, इसे सिद्ध करने के अन्य विधियों हैं।) वास्तव में, ऑपरेटर Δ अंडाकार होते हैं, और संवृत मैनिफोल्ड अंडाकार ऑपरेटर के कर्नेल (बीजगणित) सदैव परिमित-आयामी वेक्टर स्थान होता है। हॉज प्रमेय का अन्य परिणाम यह है कि संवृत मैनिफोल्ड M पर रिमेंनियन मीट्रिक M मॉड्यूलो टोरसन उपसमूह के अभिन्न सह-समरूपता पर वास्तविक मूल्यवान आंतरिक उत्पाद निर्धारित करता है। यह इस प्रकार है, उदाहरण के लिए, सामान्य रैखिक समूह में M के आइसोमेट्री समूह की छवि GL(H(M, Z)) परिमित है (क्योंकि जाली (समूह) के आइसोमेट्री का समूह परिमित है)।

हॉज प्रमेय का प्रकार हॉज अपघटन है। यह कहता है कि रूप में तीन भागों के योग के रूप में संवृत रिमेंनियन मैनिफोल्ड पर किसी भी विभेदक रूप ω का अद्वितीय अपघटन है:

जिसमें γ हार्मोनिक है: Δγ = 0 विभेदक रूपों पर[5]L2 के संदर्भ मे विभेदक रूपों पर मीट्रिक, यह ऑर्थोगोनल प्रत्यक्ष योग अपघटन देता है:

हॉज अपघटन डी राम कॉम्प्लेक्स के लिए हेल्महोल्ट्ज़ अपघटन का सामान्यीकरण है।

अण्डाकार संकुलों का हॉज सिद्धांत

माइकल अतियाह और राउल बॉटल ने अण्डाकार परिसरों को डी राम कॉम्प्लेक्स के सामान्यीकरण के रूप में परिभाषित किया। हॉज प्रमेय इस समुच्चयिंग तक विस्तारित है, निम्नानुसार है:

मान लीजिये वॉल्यूम रूप dV के साथ संवृत स्मूथ मैनिफोल्ड M पर मेट्रिक्स से लैस वेक्टर बंडल बनें। लगता है कि:

इन वेक्टर बंडलों के C अनुभागों और प्रेरित अनुक्रम पर कार्य करने वाले रैखिक अंतर ऑपरेटर हैं:

अण्डाकार सम्मिश्र है, प्रत्यक्ष योगों का परिचय दें:

और L L का जोड़ है। अण्डाकार संकारक Δ = LL + LL को परिभाषित करें। जैसा कि डी राम स्तिथि में, इससे हार्मोनिक अनुभागों का सदिश स्थान प्राप्त होता है:

माना ओर्थोगोनल प्रोजेक्शन हो, और G को Δ के लिए ग्रीन का ऑपरेटर होने दें। हॉज प्रमेय निम्नलिखित पर बल देता है:[6]

  1. H और G उत्तम प्रकार से परिभाषित हैं।
  2. Id = H + ΔG = H + GΔ
  3. LG = GL, LG = GL
  4. कॉम्प्लेक्स की सह-समरूपता हार्मोनिक वर्गों के स्थान के लिए विहित रूप से समरूपी है, , इस अर्थ में कि प्रत्येक कोहोमोलॉजी वर्ग में अद्वितीय हार्मोनिक प्रतिनिधि होता है।

इस स्थिति में हॉज अपघटन भी है, जो डी राम कॉम्प्लेक्स के लिए उपरोक्त कथन को सामान्य बनाता है।

जटिल प्रक्षेप्य के लिए हॉज सिद्धांत

माना X सुचारु जटिल प्रक्षेप्य मैनिफोल्ड है, जिसका अर्थ है कि चाउ के प्रमेय के अनुसार, जटिल प्रक्षेप्य मैनिफ़ोल्ड स्वचालित रूप से बीजगणितीय होते हैं: उन्हें 'CPN' पर सजातीय बहुपद समीकरणों के लुप्त होने से परिभाषित किया जाता है। 'CPN' पर मानक रीमैनियन मीट्रिक X पर रीमैनियन मीट्रिक प्रेरित करता है जिसमें जटिल संरचना के साथ स्थिर संगतता होती है, जिससे X काहलर मैनिफोल्ड बन जाता है।

जटिल मैनिफोल्ड x और प्राकृतिक संख्या r के लिए, सभी सुचारू फलन C r--रूप x पर (जटिल गुणांकों के साथ) विशिष्ट रूप से जटिल अंतर रूप के योग के रूप में लिखा जा सकता है। type (p, q) साथ p + q = r, जिसका अर्थ है कि स्थानीय रूप से शब्दों के परिमित योग के रूप में लिखा जा सकता है, प्रत्येक शब्द के रूप में इस प्रकार है:

f a C के साथ फलन और zs और ws होलोमॉर्फिक फलन काहलर मैनिफोल्ड पर, (p, q) हार्मोनिक रूप के घटक फिर से हार्मोनिक होते हैं। इसलिए, किसी भी कॉम्पैक्ट स्थान केहलर मैनिफोल्ड x के लिए, हॉज प्रमेय जटिल वेक्टर रिक्त स्थान के प्रत्यक्ष योग के रूप में जटिल गुणांक वाले X के सह-समरूपता का अपघटन देता है:[7]

यह अपघटन वास्तव में काहलर मीट्रिक की रूचि से स्वतंत्र है (किंतु सामान्य कॉम्पैक्ट कॉम्प्लेक्स मैनिफोल्ड के लिए कोई समान अपघटन नहीं है)। दूसरी ओर, हॉज अपघटन वास्तव में X की संरचना पर जटिल मैनिफोल्ड के रूप में निर्भर करता है, जबकि समूह Hr(X, C) केवल X के अंतर्निहित टोपोलॉजिकल स्पेस पर निर्भर करता है।

इन हार्मोनिक प्रतिनिधियों के वेज उत्पादों को लेना कोहोमोलॉजी में कप उत्पाद से युग्मित होता है, इसलिए जटिल गुणांक वाला कप उत्पाद हॉज अपघटन के साथ संगत है:

भाग Hp,q(X) हॉज अपघटन को सुसंगत शीफ सह-समरूपता समूह के साथ पहचाना जा सकता है, जो केवल X पर जटिल मैनिफोल्ड के रूप में निर्भर करता है (कहलेर मीट्रिक की रूचि पर नहीं):[8]

जहां Ωp, X पर होलोमॉर्फिक p-रूप के शीफ (गणित) को दर्शाता है। उदाहरण के लिए, Hp,0(X) सभी X पर होलोमोर्फिक p-रूपों का स्थान है। (यदि X प्रक्षेपी है, तो जीन पियरे सेरे के गागा प्रमेय का तात्पर्य है कि सभी X पर होलोमोर्फिक p-रूप वास्तव में बीजगणितीय है।)

दूसरी ओर, इंटीग्रल को Z के होमोलॉजी वर्ग के कैप उत्पाद के रूप में लिखा जा सकता है और सह-समरूपता वर्ग द्वारा दर्शाया गया है . पोनकारे द्वैत द्वारा, Z का समरूपता वर्ग सह-समरूपता वर्ग के लिए दोहरा है जिसे हम [Z] कहेंगे, और कैप उत्पाद की गणना [Z] और α के कप उत्पाद को लेकर और X के मौलिक वर्ग के साथ कैपिंग करके की जा सकती है।

क्योंकि [Z] सह-समरूपता वर्ग है, इसमें हॉज अपघटन है। उपरोक्त गणना के अनुसार, यदि हम इस वर्ग को किसी भी प्रकार के वर्ग के साथ जोड़ते हैं , तो हमें शून्य मिलता है। क्योंकि , से हम यह निष्कर्ष निकालते हैं कि [Z] को के अंदर होना चाहिए।

हॉज नंबर hp,q(X) का अर्थ जटिल वेक्टर स्पेस H का आयाम है ये सुचारु जटिल प्रक्षेप्य के महत्वपूर्ण अपरिवर्तनीय हैं; जब X की जटिल संरचना निरंतर परिवर्तित होती रहती है तो वे नहीं परिवर्तित होते हैं, और फिर भी वे सामान्य रूप से टोपोलॉजिकल इनवेरिएंट नहीं होते हैं। हॉज संख्या के गुणों में 'हॉज समरूपता' हैं hp,q = hq,p (क्योंकि Hp,q(X) H का सम्मिश्र संयुग्म Hq,p(X)) और hp,q = hnp,nq (सेरे द्वैत द्वारा) है।

सुचारु जटिल प्रक्षेपी विविधता (या कॉम्पैक्ट काहलर मैनिफोल्ड) की हॉज संख्या को होमोलॉजिकल मिरर समरूपता हॉज डायमंड में (जटिल आयाम 2 के स्थितियों में दिखाया गया) सूचीबद्ध किया जा सकता है:

h2,2
h2,1h1,2
h2,0h1,1h0,2
h1,0h0,1
h0,0

उदाहरण के लिए, जीनस (गणित) g के प्रत्येक सुचारु प्रक्षेपी बीजगणितीय वक्र में हॉज डायमंड होता है:

1
gg
1

दूसरे उदाहरण के लिए, प्रत्येक K3 सतह में हॉज डायमंड होता है:

1
00
1201
00
1

X की बेट्टी संख्याएँ दी गई पंक्ति में हॉज संख्याओं का योग हैं। हॉज सिद्धांत का मूलभूत अनुप्रयोग तो यह है कि विषम बेट्टी संख्या b2a+1 हॉज समरूपता द्वारा सुचारु जटिल प्रोजेक्टिव विविधता (या कॉम्पैक्ट काहलर मैनिफोल्ड) भी हैं। यह सामान्य रूप से कॉम्पैक्ट कॉम्प्लेक्स मैनिफोल्ड्स के लिए सही नहीं है, जैसा कि हॉफ सतह के उदाहरण द्वारा दिखाया गया है, जो कि भिन्न-भिन्न है S1 × S3 और इसलिए b1 = 1 है।

काहलर पैकेज हॉज सिद्धांत पर निर्मित, सुचारु जटिल प्रोजेक्टिव (या कॉम्पैक्ट काहलर मैनिफोल्ड्स) के सह-समरूपता पर प्रतिबंधों का शक्तिशाली समुच्चय है। परिणामों में लेफ्शेट्ज़ हाइपरप्लेन प्रमेय, जटिल लेफ़्सचेट्ज़ प्रमेय और हॉज-रीमैन द्विरेखीय संबंध सम्मिलित हैं।[9] इनमें से कई परिणाम मौलिक तकनीकी उपकरणों से आते हैं, जो हॉज सिद्धांत का उपयोग करके कॉम्पैक्ट काहलर मैनिफोल्ड के लिए सिद्ध हो सकते हैं, जिसमें काहलर पहचान और डडबार लेम्मा सम्मिलित हैं।

हॉज सिद्धांत और गैर-एबेलियन हॉज सिद्धांत जैसे विस्तार भी कॉम्पैक्ट काहलर मैनिफोल्ड्स के संभावित मौलिक समूहों पर स्थिर प्रतिबंध देते हैं।

बीजगणितीय चक्र और हॉज अनुमान

मान लीजिए कि X सहज जटिल प्रक्षेप्य है। कोडिमेंशन p के x में जटिल उप-विविधता y कोहोमोलॉजी समूह के एलिमेंट्स को परिभाषित करते है इसके अतिरिक्त, परिणामी वर्ग के विशेष गुण है: जटिल सह-समरूपता में इसकी छवि हॉज अपघटन के मध्य भाग में स्थित है, हॉज अनुमान सम्बन्ध की भविष्यवाणी करता है: प्रत्येक एलिमेंट्स जिसकी छवि जटिल कोहोमोलॉजी में उप-स्थान में निहित है में सकारात्मक अभिन्न गुणक होना चाहिए जो कि a है X की जटिल वर्गों का रैखिक संयोजन है। (इस प्रकार के रैखिक संयोजन को X पर 'बीजगणितीय चक्र' कहा जाता है।)

महत्वपूर्ण बिंदु यह है कि हॉज अपघटन जटिल गुणांक वाले सह-समरूपता का अपघटन है जो सामान्यतः अभिन्न (या तर्कसंगत) गुणांक वाले सह-समरूपता के अपघटन से नहीं आता है। परिणामस्वरूप,

पूर्ण समूह की तुलना में अधिक छोटा हो सकता है टोशन, भले ही हॉज नंबर बड़ा है। संक्षेप में, हॉज अनुमान भविष्यवाणी करता है कि X का जटिल आकार (जैसा कि सह-समरूपता द्वारा वर्णित है) X के 'हॉज स्ट्रक्चर' (जटिल सह-समरूपता के हॉज अपघटन के साथ अभिन्न सह-समरूपता का संयोजन) द्वारा निर्धारित किया जाता है।

लेफ़शेट्ज़ (1,1)-प्रमेय कहता है कि हॉज अनुमान p = 1 के लिए सत्य है (यहां तक ​​कि अभिन्न रूप से, अर्थात कथन में सकारात्मक अभिन्न एकाधिक की आवश्यकता के बिना)।

बीजीय फलन विशेष रूप से, बीजगणितीय फलन के निश्चित अभिन्न अंग, जिन्हें अवधि के रूप में जाना जाता है, पारलौकिक संख्या हो सकते हैं। हॉज अनुमान की कठिनाई सामान्य रूप से ऐसे अभिन्नों के अल्पता को दर्शाती है।

उदाहरण: जटिल प्रक्षेपी K3 सतह X के लिए, समूह H2(X, Z) Z22 के लिए आइसोमोर्फिक है, और H1,1 (X) C20 के लिए समरूपी है उनके प्रतिच्छेदन का रैंक 1 और 20 के मध्य कहीं भी हो सकती है; इस रैंक को X की पिकार्ड संख्या कहा जाता है। सभी प्रक्षेप्य K3 सतहों के मोडुली स्पेस में घटकों का अनंत समुच्चय होता है, प्रत्येक जटिल आयाम 19 का होता है। पिकार्ड नंबर a के साथ K3 सतहों के उप-स्थान का आयाम 20−a होता है।[10] (इस प्रकार, अधिकांश प्रक्षेपी K3 सतहों के लिए, प्रतिच्छेदन H2(X, Z) H के साथ 1,1(X) 'Z' के लिए समरूपी है, किंतु विशेष K3 सतहों के लिए प्रतिच्छेदन बड़ा हो सकता है।)

यह उदाहरण जटिल बीजगणितीय ज्यामिति में हॉज सिद्धांत द्वारा निभाई गई कई भिन्न-भिन्न भूमिकाओं का विचार देता है। सबसे पहले, हॉज सिद्धांत उन प्रतिबंधों को देता है जिन पर टोपोलॉजिकल रिक्त स्थान सुचारू जटिल प्रोजेक्टिव की संरचना हो सकती हैं। दूसरा, हॉज सिद्धांत दिए गए टोपोलॉजिकल प्रकार के साथ सुचारू जटिल प्रोजेक्टिव के मोडुली स्पेस के बारे में जानकारी देता है। सबसे उत्तम स्थितियाँ तब होती है जब टोरेली प्रमेय धारण करता है, जिसका अर्थ है कि इसकी हॉज संरचना द्वारा आइसोमोर्फिज्म तक की विविधता निर्धारित की जाती है। अंत में, हॉज सिद्धांत किसी दी गई विविधता पर बीजगणितीय चक्रों के चाउ समूह के बारे में जानकारी देता है। हॉज अनुमान चाउ समूह की छवि के बारे में है चाउ समूहों से सामान्य सह-समरूपता के लिए चक्र मानचित्र, किंतु हॉज सिद्धांत चक्र मानचित्र के कर्नेल के बारे में भी जानकारी देता है, उदाहरण के लिए मध्यवर्ती जैकबियन का उपयोग करके जो हॉज संरचना से निर्मित होते हैं।

सामान्यीकरण

मिश्रित हॉज सिद्धांत, पियरे डेलिग्ने द्वारा विकसित, हॉज सिद्धांत को सभी जटिल बीजगणितीय तक विस्तारित है, आवश्यक नहीं कि सुचारू या कॉम्पैक्ट हो। अर्थात्, किसी भी जटिल बीजगणितीय विविधता के सह-समरूपता में अधिक सामान्य प्रकार का अपघटन, मिश्रित हॉज संरचना है।

इंटरसेक्शन समरूपता द्वारा एकवचन के लिए हॉज सिद्धांत का भिन्न सामान्यीकरण प्रदान किया जाता है। अर्थात्, मोरीहिको सैटो ने दिखाया कि किसी भी जटिल प्रक्षेप्य विविधता (आवश्यक रूप से चिकनी नहीं) के प्रतिच्छेदन होमोलॉजी में शुद्ध हॉज संरचना है, जैसे कि सहज स्थितियों में, पूर्ण काहलर पैकेज इंटरसेक्शन होमोलॉजी तक विस्तारित है।

जटिल ज्यामिति का मूलभूत विषय यह है कि गैर-आइसोमॉर्फिक कॉम्प्लेक्स मैनिफोल्ड्स का निरंतर सदस्य हैं (जो वास्तविक मैनिफोल्ड्स के रूप में सभी भिन्न-भिन्न हैं) फिलिप ग्रिफिथ्स की हॉज संरचना की भिन्नता की धारणा बताती है कि कैसे सुचारू जटिल प्रक्षेपी विविधता 'X' की हॉज संरचना परिवर्तित करती है जब 'X' भिन्न होता है। ज्यामितीय शब्दों में, यह सदस्य से संबंधित अवधि मानचित्रण का अध्ययन करने के समान है। सैटो का हॉज मॉड्यूल का सिद्धांत सामान्यीकरण है।

यह भी देखें

टिप्पणियाँ

  1. Chatterji, Srishti; Ojanguren, Manuel (2010), A glimpse of the de Rham era (PDF), working paper, EPFL
  2. Lefschetz, Solomon, "Correspondences Between Algebraic Curves", Ann. of Math. (2), Vol. 28, No. 1, 1927, pp. 342–354.
  3. Michael Atiyah, William Vallance Douglas Hodge, 17 June 1903 – 7 July 1975, Biogr. Mem. Fellows R. Soc., 1976, vol. 22, pp. 169–192.
  4. Warner (1983), Theorem 6.11.
  5. Warner (1983), Theorem 6.8.
  6. Wells (2008), Theorem IV.5.2.
  7. Huybrechts (2005), Corollary 3.2.12.
  8. Huybrechts (2005), Corollary 2.6.21.
  9. Huybrechts (2005), sections 3.3 and 5.2; Griffiths & Harris (1994), sections 0.7 and 1.2; Voisin (2007), v. 1, ch. 6, and v. 2, ch. 1.
  10. Griffiths & Harris (1994), p. 594.


संदर्भ