चार ग्रेडिएंट: Difference between revisions

From Vigyanwiki
(Created page with "विभेदक ज्यामिति में, चार-ग्रेडिएंट (या 4-ग्रेडिएंट) <math>\boldsymbol{\partial}</math> ग...")
 
No edit summary
Line 1: Line 1:
विभेदक ज्यामिति में, चार-ग्रेडिएंट (या 4-ग्रेडिएंट) <math>\boldsymbol{\partial}</math> [[ ग्रेडियेंट ]] का [[चार-वेक्टर]] एनालॉग है <math>\vec{\boldsymbol{\nabla}}</math> [[ वेक्टर पथरी ]] से।
विभेदक ज्यामिति में, चार-ग्रेडिएंट (या 4-ग्रेडिएंट) <math>\boldsymbol{\partial}</math> [[ वेक्टर पथरी | सदिश कलन]] से  <math>\vec{\boldsymbol{\nabla}}</math> [[चार-वेक्टर|चार- सदिश]] रेखीय [[ ग्रेडियेंट |ग्रेडिएंट है।]]


[[विशेष सापेक्षता]] और [[क्वांटम यांत्रिकी]] में, चार-ढाल का उपयोग विभिन्न भौतिक चार-वैक्टर और [[टेंसर]] के बीच गुणों और संबंधों को परिभाषित करने के लिए किया जाता है।
[[विशेष सापेक्षता]] और [[क्वांटम यांत्रिकी]] में, चार-ग्रेडिएंट का उपयोग विभिन्न भौतिक चार-सदिश और [[टेंसर]] के बीच गुणों और संबंधों को परिभाषित करने के लिए किया जाता है।


== नोटेशन ==
== संकेतन ==


यह लेख उपयोग करता है {{math|(+ − − −)}} [[मीट्रिक हस्ताक्षर]]
यह लेख {{math|(+ − − −)}} [[मीट्रिक हस्ताक्षर]] उपयोग करता है।


एसआर और जीआर क्रमशः विशेष सापेक्षता और [[सामान्य सापेक्षता]] के संक्षिप्त रूप हैं।
SR और GR क्रमशः विशेष सापेक्षता और [[सामान्य सापेक्षता]] के संक्षिप्त रूप हैं।


<math>c</math> निर्वात में [[प्रकाश की गति]] को दर्शाता है।
<math>c</math> निर्वात में [[प्रकाश की गति]] को दर्शाता है।


<math>\eta_{\mu\nu} = \operatorname{diag}[1,-1,-1,-1]</math> SR का फ्लैट [[ अंतरिक्ष समय ]] [[मीट्रिक टेंसर]] है।
<math>\eta_{\mu\nu} = \operatorname{diag}[1,-1,-1,-1]</math> SR का फ्लैट[[ अंतरिक्ष समय | स्पेसटाइम]] [[मीट्रिक टेंसर]] है।


भौतिकी में चार-वेक्टर व्यंजकों को लिखने के वैकल्पिक तरीके हैं:
भौतिकी में चार-सदिश व्यंजकों को लिखने के वैकल्पिक तरीके हैं:
* चार-वेक्टर शैली का उपयोग किया जा सकता है: <math>\mathbf{A} \cdot \mathbf{B}</math>, जो आमतौर पर अधिक कॉम्पैक्ट होता है और [[ वेक्टर अंकन ]] का उपयोग कर सकता है, (जैसे कि आंतरिक उत्पाद डॉट), हमेशा चार-वेक्टर का प्रतिनिधित्व करने के लिए बोल्ड अपरकेस का उपयोग करता है, और बोल्ड लोअरकेस का उपयोग 3-स्पेस वैक्टर का प्रतिनिधित्व करने के लिए करता है, उदा। <math>\vec{\mathbf{a}} \cdot \vec{\mathbf{b}}</math>. अधिकांश 3-स्पेस वेक्टर नियमों में चार-वेक्टर गणित में अनुरूप हैं।
* चार-सदिश शैली का उपयोग किया जा सकता है: <math>\mathbf{A} \cdot \mathbf{B}</math>, जो आमतौर पर अधिक कॉम्पैक्ट होता है और [[ वेक्टर अंकन | सदिश अंकन]] का उपयोग कर सकता है, (जैसे कि आंतरिक उत्पाद डॉट), हमेशा चार-सदिश का प्रतिनिधित्व करने के लिए बोल्ड अपरकेस का उपयोग करता है, और बोल्ड लोअरकेस का उपयोग 3-स्पेस सदिश का प्रतिनिधित्व करने के लिए करता है, उदा। <math>\vec{\mathbf{a}} \cdot \vec{\mathbf{b}}</math>. अधिकांश 3-स्पेस सदिश नियमों में चार-सदिश गणित में अनुरूप हैं।
* [[घुंघराले पथरी]] शैली का उपयोग किया जा सकता है: <math>A^\mu \eta_{\mu\nu} B^\nu</math>, जो टेन्सर [[ सूचकांक अंकन ]] का उपयोग करता है और अधिक जटिल एक्सप्रेशन के लिए उपयोगी है, विशेष रूप से वे जिसमें एक से अधिक इंडेक्स वाले टेंसर शामिल हैं, जैसे <math>F^{\mu\nu} = \partial^\mu A^\nu - \partial^\nu A^\mu</math>.
* [[घुंघराले पथरी]] शैली का उपयोग किया जा सकता है: <math>A^\mu \eta_{\mu\nu} B^\nu</math>, जो टेन्सर [[ सूचकांक अंकन ]] का उपयोग करता है और अधिक जटिल एक्सप्रेशन के लिए उपयोगी है, विशेष रूप से वे जिसमें एक से अधिक इंडेक्स वाले टेंसर शामिल हैं, जैसे <math>F^{\mu\nu} = \partial^\mu A^\nu - \partial^\nu A^\mu</math>.


लैटिन टेंसर इंडेक्स रेंज में है {{nowrap|{1, 2, 3},}} और एक 3-स्पेस वेक्टर का प्रतिनिधित्व करता है, उदा। <math>A^i = \left(a^1, a^2, a^3\right) = \vec{\mathbf{a}}</math>.
लैटिन टेंसर इंडेक्स रेंज में है {{nowrap|{1, 2, 3},}} और एक 3-स्पेस सदिश का प्रतिनिधित्व करता है, उदा। <math>A^i = \left(a^1, a^2, a^3\right) = \vec{\mathbf{a}}</math>.


ग्रीक टेंसर इंडेक्स की सीमा होती है {{nowrap|{0, 1, 2, 3},}} और 4-वेक्टर का प्रतिनिधित्व करता है, उदा। <math>A^\mu = \left(a^0, a^1, a^2, a^3\right) = \mathbf{A}</math>.
ग्रीक टेंसर इंडेक्स की सीमा होती है {{nowrap|{0, 1, 2, 3},}} और 4-सदिश का प्रतिनिधित्व करता है, उदा। <math>A^\mu = \left(a^0, a^1, a^2, a^3\right) = \mathbf{A}</math>.


एसआर भौतिकी में, आमतौर पर संक्षिप्त मिश्रण का उपयोग किया जाता है, उदा। <math>\mathbf{A} = \left(a^0, \vec{\mathbf{a}}\right)</math>, कहाँ <math>a^0</math> लौकिक घटक का प्रतिनिधित्व करता है और <math>\vec{\mathbf{a}}</math> स्थानिक 3-घटक का प्रतिनिधित्व करता है।
एसआर भौतिकी में, आमतौर पर संक्षिप्त मिश्रण का उपयोग किया जाता है, उदा। <math>\mathbf{A} = \left(a^0, \vec{\mathbf{a}}\right)</math>, कहाँ <math>a^0</math> लौकिक घटक का प्रतिनिधित्व करता है और <math>\vec{\mathbf{a}}</math> स्थानिक 3-घटक का प्रतिनिधित्व करता है।
Line 31: Line 31:
== परिभाषा ==
== परिभाषा ==


चार-वेक्टर और रिक्की कैलकुलस नोटेशन में कॉम्पैक्ट रूप से लिखे गए 4-ग्रेडिएंट सहसंयोजक घटक हैं:<ref name="Cambridge9780521575072">The Cambridge Handbook of Physics Formulas, G. Woan, Cambridge University Press, 2010, {{ISBN|978-0-521-57507-2}}</ref><ref name="Kane0201624605">{{cite book | title=Modern Elementary Particle Physics: The Fundamental Particles and Forces | edition=Updated | first1=Gordon | last1=Kane | publisher=Addison-Wesley Publishing Co. | year=1994 | isbn=0-201-62460-5}}</ref>{{rp|page=16}}
चार-सदिश और रिक्की कैलकुलस नोटेशन में कॉम्पैक्ट रूप से लिखे गए 4-ग्रेडिएंट सहसंयोजक घटक हैं:<ref name="Cambridge9780521575072">The Cambridge Handbook of Physics Formulas, G. Woan, Cambridge University Press, 2010, {{ISBN|978-0-521-57507-2}}</ref><ref name="Kane0201624605">{{cite book | title=Modern Elementary Particle Physics: The Fundamental Particles and Forces | edition=Updated | first1=Gordon | last1=Kane | publisher=Addison-Wesley Publishing Co. | year=1994 | isbn=0-201-62460-5}}</ref>{{rp|page=16}}
<math display="block">\dfrac{\partial}{\partial X^\mu} = \left(\partial_0,\partial_1,\partial_2,\partial_3\right) = \left(\partial_0,\partial_i\right) = \left(\frac{1}{c}\frac{\partial}{\partial t}, \vec{\nabla}\right) = \left(\frac{\partial_t}{c}, \vec{\nabla}\right) = \left(\frac{\partial_t}{c}, \partial_x,\partial_y,\partial_z\right) = \partial_\mu = {}_{,\mu}</math>
<math display="block">\dfrac{\partial}{\partial X^\mu} = \left(\partial_0,\partial_1,\partial_2,\partial_3\right) = \left(\partial_0,\partial_i\right) = \left(\frac{1}{c}\frac{\partial}{\partial t}, \vec{\nabla}\right) = \left(\frac{\partial_t}{c}, \vec{\nabla}\right) = \left(\frac{\partial_t}{c}, \partial_x,\partial_y,\partial_z\right) = \partial_\mu = {}_{,\mu}</math>
ऊपर पिछले भाग में अल्पविराम <math>{}_{,\mu}</math> 4-स्थिति के संबंध में आंशिक विभेदन का तात्पर्य है <math>X^\mu</math>.
ऊपर पिछले भाग में अल्पविराम <math>{}_{,\mu}</math> 4-स्थिति के संबंध में आंशिक विभेदन का तात्पर्य है <math>X^\mu</math>.
Line 39: Line 39:
वैकल्पिक प्रतीक <math>\partial_\alpha</math> हैं <math>\Box</math> और डी (हालांकि <math>\Box</math> भी संकेत कर सकता है <math>\partial^\mu \partial_\mu</math> डी'अलेम्बर्ट ऑपरेटर के रूप में)।
वैकल्पिक प्रतीक <math>\partial_\alpha</math> हैं <math>\Box</math> और डी (हालांकि <math>\Box</math> भी संकेत कर सकता है <math>\partial^\mu \partial_\mu</math> डी'अलेम्बर्ट ऑपरेटर के रूप में)।


जीआर में, किसी को अधिक सामान्य मीट्रिक टेन्सर (सामान्य सापेक्षता) का उपयोग करना चाहिए <math>g^{\alpha \beta}</math> और टेन्सर [[सहपरिवर्ती व्युत्पन्न]] <math>\nabla_{\mu} = {}_{;\mu}</math> (वेक्टर 3-ढाल के साथ भ्रमित न हों <math>\vec{\nabla}</math>).
जीआर में, किसी को अधिक सामान्य मीट्रिक टेन्सर (सामान्य सापेक्षता) का उपयोग करना चाहिए <math>g^{\alpha \beta}</math> और टेन्सर [[सहपरिवर्ती व्युत्पन्न]] <math>\nabla_{\mu} = {}_{;\mu}</math> (सदिश 3-ग्रेडिएंट के साथ भ्रमित न हों <math>\vec{\nabla}</math>).


सहपरिवर्ती व्युत्पन्न <math>\nabla_{\nu}</math> 4-ढाल शामिल है <math>\partial_\nu</math> साथ ही क्रिस्टोफेल प्रतीकों के माध्यम से स्पेसटाइम [[वक्रता]] प्रभाव <math> \Gamma^{\mu}{}_{\sigma \nu} </math>
सहपरिवर्ती व्युत्पन्न <math>\nabla_{\nu}</math> 4-ग्रेडिएंट शामिल है <math>\partial_\nu</math> साथ ही क्रिस्टोफेल प्रतीकों के माध्यम से स्पेसटाइम [[वक्रता]] प्रभाव <math> \Gamma^{\mu}{}_{\sigma \nu} </math>
[[मजबूत तुल्यता सिद्धांत]] के रूप में कहा जा सकता है:<ref name="Shultz0521277035">{{cite book | title=सामान्य सापेक्षता में पहला कोर्स| edition=1st | first1=Bernard F. | last1=Shultz | publisher=Cambridge University Press | year=1985 | isbn=0-521-27703-5}}</ref>{{rp|page=184}}
[[मजबूत तुल्यता सिद्धांत]] के रूप में कहा जा सकता है:<ref name="Shultz0521277035">{{cite book | title=सामान्य सापेक्षता में पहला कोर्स| edition=1st | first1=Bernard F. | last1=Shultz | publisher=Cambridge University Press | year=1985 | isbn=0-521-27703-5}}</ref>{{rp|page=184}}


Line 48: Line 48:
तो, उदाहरण के लिए, अगर <math>T^{\mu\nu}{}_{,\mu} = 0</math> एसआर में, फिर <math>T^{\mu\nu}{}_{;\mu} = 0</math> जीआर में।
तो, उदाहरण के लिए, अगर <math>T^{\mu\nu}{}_{,\mu} = 0</math> एसआर में, फिर <math>T^{\mu\nu}{}_{;\mu} = 0</math> जीआर में।


(1,0)-टेंसर या 4-वेक्टर पर यह होगा:<ref name="Shultz0521277035"/>{{rp|pages=136–139}}
(1,0)-टेंसर या 4-सदिश पर यह होगा:<ref name="Shultz0521277035"/>{{rp|pages=136–139}}
<math display="block">\begin{align}
<math display="block">\begin{align}
   \nabla_\beta V^\alpha &= \partial_\beta V^\alpha + V^\mu \Gamma^{\alpha}{}_{\mu\beta} \\
   \nabla_\beta V^\alpha &= \partial_\beta V^\alpha + V^\mu \Gamma^{\alpha}{}_{\mu\beta} \\
Line 66: Line 66:


=== 4-[[विचलन]] और संरक्षण कानूनों के स्रोत के रूप में ===
=== 4-[[विचलन]] और संरक्षण कानूनों के स्रोत के रूप में ===
विचलन एक [[वेक्टर ऑपरेटर]] है जो एक हस्ताक्षरित स्केलर फ़ील्ड उत्पन्न करता है जो [[वेक्टर क्षेत्र]] के वर्तमान स्रोतों की मात्रा देता है और प्रत्येक बिंदु पर डूब जाता है। ध्यान दें कि इस मीट्रिक हस्ताक्षर [+,−,−,−] में 4-ग्रेडिएंट में एक नकारात्मक स्थानिक घटक है। 4डी डॉट उत्पाद लेते समय यह रद्द हो जाता है क्योंकि मिंकोव्स्की मेट्रिक विकर्ण [+1,−1,−1,−1] है।
विचलन एक [[वेक्टर ऑपरेटर|सदिश ऑपरेटर]] है जो एक हस्ताक्षरित स्केलर फ़ील्ड उत्पन्न करता है जो [[वेक्टर क्षेत्र|सदिश क्षेत्र]] के वर्तमान स्रोतों की मात्रा देता है और प्रत्येक बिंदु पर डूब जाता है। ध्यान दें कि इस मीट्रिक हस्ताक्षर [+,−,−,−] में 4-ग्रेडिएंट में एक नकारात्मक स्थानिक घटक है। 4डी डॉट उत्पाद लेते समय यह रद्द हो जाता है क्योंकि मिंकोव्स्की मेट्रिक विकर्ण [+1,−1,−1,−1] है।


[[4-स्थिति]] का 4-विचलन <math>X^\mu = \left(ct, \vec{\mathbf{x}}\right)</math> स्पेसटाइम का [[आयाम]] देता है:
[[4-स्थिति]] का 4-विचलन <math>X^\mu = \left(ct, \vec{\mathbf{x}}\right)</math> स्पेसटाइम का [[आयाम]] देता है:
Line 95: Line 95:
इसे अक्सर इस प्रकार लिखा जाता है:
इसे अक्सर इस प्रकार लिखा जाता है:
<math display="block">\partial_{\nu} T^{\mu \nu} = T^{\mu \nu}{}_{,\nu} = 0</math>
<math display="block">\partial_{\nu} T^{\mu \nu} = T^{\mu \nu}{}_{,\nu} = 0</math>
जहाँ यह समझा जाता है कि एकल शून्य वास्तव में 4-वेक्टर शून्य है <math>0^\mu = (0,0,0,0)</math>.
जहाँ यह समझा जाता है कि एकल शून्य वास्तव में 4-सदिश शून्य है <math>0^\mu = (0,0,0,0)</math>.


जब तनाव-ऊर्जा टेंसर का संरक्षण {{nowrap|(<math>\partial_{\nu} T^{\mu \nu} = 0^\mu </math>)}} एक आदर्श द्रव के लिए कण संख्या घनत्व के संरक्षण के साथ संयुक्त है (<math>\boldsymbol{\partial} \cdot \mathbf{N} = 0</math>), दोनों 4-ग्रेडिएंट का उपयोग करते हुए, आपेक्षिकीय यूलर समीकरण प्राप्त कर सकते हैं, जो [[द्रव यांत्रिकी]] और [[खगोल भौतिकी]] में यूलर समीकरणों (द्रव गतिकी) का एक सामान्यीकरण है जो विशेष सापेक्षता के प्रभावों के लिए खाता है।
जब तनाव-ऊर्जा टेंसर का संरक्षण {{nowrap|(<math>\partial_{\nu} T^{\mu \nu} = 0^\mu </math>)}} एक आदर्श द्रव के लिए कण संख्या घनत्व के संरक्षण के साथ संयुक्त है (<math>\boldsymbol{\partial} \cdot \mathbf{N} = 0</math>), दोनों 4-ग्रेडिएंट का उपयोग करते हुए, आपेक्षिकीय यूलर समीकरण प्राप्त कर सकते हैं, जो [[द्रव यांत्रिकी]] और [[खगोल भौतिकी]] में यूलर समीकरणों (द्रव गतिकी) का एक सामान्यीकरण है जो विशेष सापेक्षता के प्रभावों के लिए खाता है।
Line 107: Line 107:
जेकोबियन मैट्रिक्स सदिश-मूल्यवान फ़ंक्शन के सभी प्रथम-क्रम आंशिक डेरिवेटिव का [[मैट्रिक्स (गणित)]] है।
जेकोबियन मैट्रिक्स सदिश-मूल्यवान फ़ंक्शन के सभी प्रथम-क्रम आंशिक डेरिवेटिव का [[मैट्रिक्स (गणित)]] है।


4-ढाल <math>\partial^\mu</math> 4-स्थिति पर अभिनय <math>X^\nu</math> SR Minkowski अंतरिक्ष मीट्रिक देता है <math>\eta^{\mu\nu}</math>:<ref name="Kane0201624605"/>{{rp|page=16}}
4-ग्रेडिएंट <math>\partial^\mu</math> 4-स्थिति पर अभिनय <math>X^\nu</math> SR Minkowski अंतरिक्ष मीट्रिक देता है <math>\eta^{\mu\nu}</math>:<ref name="Kane0201624605"/>{{rp|page=16}}
<math display="block">\begin{align}
<math display="block">\begin{align}
   \boldsymbol{\partial} [\mathbf{X}] = \partial^\mu[X^\nu] = X^{\nu_,\mu}
   \boldsymbol{\partial} [\mathbf{X}] = \partial^\mu[X^\nu] = X^{\nu_,\mu}
Line 137: Line 137:
और तबसे <math>\Lambda^{\mu'}_\nu</math> बस स्थिरांक हैं, फिर
और तबसे <math>\Lambda^{\mu'}_\nu</math> बस स्थिरांक हैं, फिर
<math display="block">\dfrac{\partial X^{\mu'} }{ \partial X^\nu} = \Lambda^{\mu'}_\nu</math>
<math display="block">\dfrac{\partial X^{\mu'} }{ \partial X^\nu} = \Lambda^{\mu'}_\nu</math>
इस प्रकार, 4-ढाल की परिभाषा के अनुसार
इस प्रकार, 4-ग्रेडिएंट की परिभाषा के अनुसार
<math display="block"> \partial_\nu \left[X^{\mu'}\right] = \left(\dfrac{\partial}{\partial X^\nu}\right)\left[X^{\mu'}\right] = \dfrac{\partial X^{\mu'}}{\partial X^\nu} = \Lambda^{\mu'}_\nu </math>
<math display="block"> \partial_\nu \left[X^{\mu'}\right] = \left(\dfrac{\partial}{\partial X^\nu}\right)\left[X^{\mu'}\right] = \dfrac{\partial X^{\mu'}}{\partial X^\nu} = \Lambda^{\mu'}_\nu </math>
यह पहचान मौलिक है। 4-वैक्टर के घटकों के व्युत्क्रम के अनुसार 4-ढाल परिवर्तन के घटक। तो 4-ढाल एक प्रारूपिक एक-रूप है।
यह पहचान मौलिक है। 4-सदिश के घटकों के व्युत्क्रम के अनुसार 4-ग्रेडिएंट परिवर्तन के घटक। तो 4-ग्रेडिएंट एक प्रारूपिक एक-रूप है।


=== कुल उचित समय व्युत्पन्न === के हिस्से के रूप में
=== कुल उचित समय व्युत्पन्न === के हिस्से के रूप में
[[4-वेग]] का अदिश गुणनफल <math>U^\mu</math> 4-ढाल के साथ [[उचित समय]] के संबंध में [[कुल व्युत्पन्न]] देता है <math>\frac{d}{d\tau}</math>:<ref name="Rindler0198539525"/>{{rp|pages=58–59}}
[[4-वेग]] का अदिश गुणनफल <math>U^\mu</math> 4-ग्रेडिएंट के साथ [[उचित समय]] के संबंध में [[कुल व्युत्पन्न]] देता है <math>\frac{d}{d\tau}</math>:<ref name="Rindler0198539525"/>{{rp|pages=58–59}}
<math display="block">\begin{align}
<math display="block">\begin{align}
   \mathbf{U} \cdot \boldsymbol{\partial}
   \mathbf{U} \cdot \boldsymbol{\partial}
Line 181: Line 181:
* इलेक्ट्रोमैग्नेटिक फोर-पोटेंशियल|इलेक्ट्रोमैग्नेटिक 4-पोटेंशियल <math>A^\mu = \mathbf{A} = \left(\frac{\phi}{c}, \vec{\mathbf{a}}\right)</math>, 4-त्वरण से भ्रमित न हों <math>\mathbf{A} = \gamma \left(c \dot{\gamma}, \dot{\gamma} \vec{u} + \gamma \dot{\vec{u}}\right)</math>
* इलेक्ट्रोमैग्नेटिक फोर-पोटेंशियल|इलेक्ट्रोमैग्नेटिक 4-पोटेंशियल <math>A^\mu = \mathbf{A} = \left(\frac{\phi}{c}, \vec{\mathbf{a}}\right)</math>, 4-त्वरण से भ्रमित न हों <math>\mathbf{A} = \gamma \left(c \dot{\gamma}, \dot{\gamma} \vec{u} + \gamma \dot{\vec{u}}\right)</math>
* विद्युत क्षमता [[अदिश क्षमता]] है <math>\phi</math>
* विद्युत क्षमता [[अदिश क्षमता]] है <math>\phi</math>
* चुंबकीय वेक्टर संभावित [[वेक्टर क्षमता]] | 3-स्पेस वेक्टर क्षमता है <math>\vec{\mathbf{a}}</math>
* चुंबकीय सदिश संभावित [[वेक्टर क्षमता|सदिश क्षमता]] | 3-स्पेस सदिश क्षमता है <math>\vec{\mathbf{a}}</math>
4-ग्रेडिएंट को फिर से लागू करके, और फोर-करंट|4-करंट डेंसिटी को इस रूप में परिभाषित करना <math>J^{\beta} = \mathbf{J} = \left(c\rho, \vec{\mathbf{j}}\right)</math> कोई [[मैक्सवेल समीकरण]]ों के टेन्सर रूप को प्राप्त कर सकता है:
4-ग्रेडिएंट को फिर से लागू करके, और फोर-करंट|4-करंट डेंसिटी को इस रूप में परिभाषित करना <math>J^{\beta} = \mathbf{J} = \left(c\rho, \vec{\mathbf{j}}\right)</math> कोई [[मैक्सवेल समीकरण]]ों के टेन्सर रूप को प्राप्त कर सकता है:
<math display="block">\partial_{\alpha} F^{\alpha\beta} = \mu_o J^{\beta}</math>
<math display="block">\partial_{\alpha} F^{\alpha\beta} = \mu_o J^{\beta}</math>
Line 189: Line 189:
=== [[4-[[ wavevector ]]]] === को परिभाषित करने के तरीके के रूप में
=== [[4-[[ wavevector ]]]] === को परिभाषित करने के तरीके के रूप में


वेववेक्टर एक [[वेक्टर (ज्यामितीय)]] है जो एक तरंग का वर्णन करने में मदद करता है। किसी भी वेक्टर की तरह, इसका एक [[यूक्लिडियन वेक्टर]] है, जो दोनों महत्वपूर्ण हैं: इसका परिमाण या तो [[लहर]] की तरंग संख्या या [[कोणीय तरंग संख्या]] है ([[तरंग दैर्ध्य]] के व्युत्क्रमानुपाती), और इसकी दिशा सामान्य रूप से तरंग प्रसार की दिशा है
वेवसदिश एक [[वेक्टर (ज्यामितीय)|सदिश (ज्यामितीय)]] है जो एक तरंग का वर्णन करने में मदद करता है। किसी भी सदिश की तरह, इसका एक [[यूक्लिडियन वेक्टर|यूक्लिडियन सदिश]] है, जो दोनों महत्वपूर्ण हैं: इसका परिमाण या तो [[लहर]] की तरंग संख्या या [[कोणीय तरंग संख्या]] है ([[तरंग दैर्ध्य]] के व्युत्क्रमानुपाती), और इसकी दिशा सामान्य रूप से तरंग प्रसार की दिशा है


4-वेववेक्टर <math>K^\mu</math> नकारात्मक चरण का 4-ढाल है <math>\Phi</math> मिन्कोवस्की अंतरिक्ष में एक लहर की (या चरण की ऋणात्मक 4-ढाल):<ref name="Carroll0805387323"/>{{rp|page=387}}
4-वेवसदिश <math>K^\mu</math> नकारात्मक चरण का 4-ग्रेडिएंट है <math>\Phi</math> मिन्कोवस्की अंतरिक्ष में एक लहर की (या चरण की ऋणात्मक 4-ग्रेडिएंट):<ref name="Carroll0805387323"/>{{rp|page=387}}
<math display="block">K^\mu = \mathbf{K} = \left(\frac{\omega}{c}, \vec{\mathbf{k}}\right) = \boldsymbol{\partial} [-\Phi] = -\boldsymbol{\partial} [\Phi]</math>
<math display="block">K^\mu = \mathbf{K} = \left(\frac{\omega}{c}, \vec{\mathbf{k}}\right) = \boldsymbol{\partial} [-\Phi] = -\boldsymbol{\partial} [\Phi]</math>
यह गणितीय रूप से एक तरंग (या अधिक विशेष रूप से एक समतल तरंग) के चरण (तरंगों) की परिभाषा के बराबर है:
यह गणितीय रूप से एक तरंग (या अधिक विशेष रूप से एक समतल तरंग) के चरण (तरंगों) की परिभाषा के बराबर है:
<math display="block">\mathbf{K} \cdot \mathbf{X} = \omega t - \vec{\mathbf{k}} \cdot \vec{\mathbf{x}} = -\Phi</math>
<math display="block">\mathbf{K} \cdot \mathbf{X} = \omega t - \vec{\mathbf{k}} \cdot \vec{\mathbf{x}} = -\Phi</math>
जहां 4-स्थिति <math>\mathbf{X} = \left(ct, \vec{\mathbf{x}}\right)</math>, <math>\omega</math> लौकिक कोणीय आवृत्ति है, <math>\vec{\mathbf{k}}</math> स्थानिक 3-स्पेस वेववेक्टर है, और <math>\Phi</math> लोरेंट्ज़ स्केलर अपरिवर्तनीय चरण है।
जहां 4-स्थिति <math>\mathbf{X} = \left(ct, \vec{\mathbf{x}}\right)</math>, <math>\omega</math> लौकिक कोणीय आवृत्ति है, <math>\vec{\mathbf{k}}</math> स्थानिक 3-स्पेस वेवसदिश है, और <math>\Phi</math> लोरेंट्ज़ स्केलर अपरिवर्तनीय चरण है।


<math display="block">\partial [\mathbf{K} \cdot \mathbf{X}] = \partial \left[\omega t - \vec{\mathbf{k}} \cdot \vec{\mathbf{x}}\right] = \left(\frac{\partial_t}{c}, -\nabla\right)\left[\omega t - \vec{\mathbf{k}} \cdot \vec{\mathbf{x}}\right] = \left(\frac{\partial_t}{c}\left[\omega t - \vec{\mathbf{k}} \cdot \vec{\mathbf{x}}\right], -\nabla\left[\omega t - \vec{\mathbf{k}} \cdot \vec{\mathbf{x}}\right]\right) = \left(\frac{\partial_t}{c}[\omega t], -\nabla\left[- \vec{\mathbf{k}} \cdot \vec{\mathbf{x}}\right]\right) = \left(\frac{\omega}{c}, \vec{\mathbf{k}}\right) = \mathbf{K}
<math display="block">\partial [\mathbf{K} \cdot \mathbf{X}] = \partial \left[\omega t - \vec{\mathbf{k}} \cdot \vec{\mathbf{x}}\right] = \left(\frac{\partial_t}{c}, -\nabla\right)\left[\omega t - \vec{\mathbf{k}} \cdot \vec{\mathbf{x}}\right] = \left(\frac{\partial_t}{c}\left[\omega t - \vec{\mathbf{k}} \cdot \vec{\mathbf{x}}\right], -\nabla\left[\omega t - \vec{\mathbf{k}} \cdot \vec{\mathbf{x}}\right]\right) = \left(\frac{\partial_t}{c}[\omega t], -\nabla\left[- \vec{\mathbf{k}} \cdot \vec{\mathbf{x}}\right]\right) = \left(\frac{\omega}{c}, \vec{\mathbf{k}}\right) = \mathbf{K}
Line 218: Line 218:


<math display="block">\boldsymbol{\partial} \cdot \boldsymbol{\partial} = \partial^\mu \cdot \partial^\nu =  \partial^\mu \eta_{\mu\nu} \partial^\nu = \partial_\nu \partial^\nu = \frac{1}{c^2}\frac{\partial^2}{\partial t^2} - \vec{\nabla}^2 = \left(\frac{\partial_t}{c}\right)^2 - \vec{\nabla}^2.</math>
<math display="block">\boldsymbol{\partial} \cdot \boldsymbol{\partial} = \partial^\mu \cdot \partial^\nu =  \partial^\mu \eta_{\mu\nu} \partial^\nu = \partial_\nu \partial^\nu = \frac{1}{c^2}\frac{\partial^2}{\partial t^2} - \vec{\nabla}^2 = \left(\frac{\partial_t}{c}\right)^2 - \vec{\nabla}^2.</math>
जैसा कि यह दो 4-वैक्टरों का [[डॉट उत्पाद]] है, डी'अलेम्बर्टियन एक [[लोरेंत्ज़ अपरिवर्तनीय]] स्केलर है।
जैसा कि यह दो 4-सदिशों का [[डॉट उत्पाद]] है, डी'अलेम्बर्टियन एक [[लोरेंत्ज़ अपरिवर्तनीय]] स्केलर है।


कभी-कभी, 3-आयामी संकेतन के अनुरूप, प्रतीक <math>\Box</math> और <math>\Box^2</math> क्रमशः 4-ग्रेडिएंट और डी'अलेम्बर्टियन के लिए उपयोग किया जाता है। अधिक सामान्यतः हालांकि, प्रतीक <math>\Box</math> डी'अलेम्बर्टियन के लिए आरक्षित है।
कभी-कभी, 3-आयामी संकेतन के अनुरूप, प्रतीक <math>\Box</math> और <math>\Box^2</math> क्रमशः 4-ग्रेडिएंट और डी'अलेम्बर्टियन के लिए उपयोग किया जाता है। अधिक सामान्यतः हालांकि, प्रतीक <math>\Box</math> डी'अलेम्बर्टियन के लिए आरक्षित है।
Line 231: Line 231:
* स्पिन के प्रभाव सहित [[क्वांटम इलेक्ट्रोडायनामिक्स]] स्रोत के साथ: <math display="block">(\boldsymbol{\partial} \cdot \boldsymbol{\partial}) \mathbf{A} = (\boldsymbol{\partial} \cdot \boldsymbol{\partial}) A^{\alpha} = e\bar{\psi} \gamma^{\alpha} \psi</math>
* स्पिन के प्रभाव सहित [[क्वांटम इलेक्ट्रोडायनामिक्स]] स्रोत के साथ: <math display="block">(\boldsymbol{\partial} \cdot \boldsymbol{\partial}) \mathbf{A} = (\boldsymbol{\partial} \cdot \boldsymbol{\partial}) A^{\alpha} = e\bar{\psi} \gamma^{\alpha} \psi</math>
कहाँ:
कहाँ:
* इलेक्ट्रोमैग्नेटिक फोर-पोटेंशियल|इलेक्ट्रोमैग्नेटिक 4-पोटेंशियल <math>\mathbf{A} = A^{\alpha} = \left(\frac{\phi}{c}, \mathbf{\vec{a}}\right)</math> एक विद्युत चुम्बकीय वेक्टर क्षमता है
* इलेक्ट्रोमैग्नेटिक फोर-पोटेंशियल|इलेक्ट्रोमैग्नेटिक 4-पोटेंशियल <math>\mathbf{A} = A^{\alpha} = \left(\frac{\phi}{c}, \mathbf{\vec{a}}\right)</math> एक विद्युत चुम्बकीय सदिश क्षमता है
* 4-वर्तमान |4-वर्तमान घनत्व <math>\mathbf{J} = J^{\alpha} = \left(\rho c, \mathbf{\vec{j}}\right)</math> एक विद्युत चुम्बकीय वर्तमान घनत्व है
* 4-वर्तमान |4-वर्तमान घनत्व <math>\mathbf{J} = J^{\alpha} = \left(\rho c, \mathbf{\vec{j}}\right)</math> एक विद्युत चुम्बकीय वर्तमान घनत्व है
* डिराक [[गामा मैट्रिसेस]] <math>\gamma^\alpha = \left(\gamma^0, \gamma^1, \gamma^2, \gamma^3\right) </math> स्पिन के प्रभाव प्रदान करें
* डिराक [[गामा मैट्रिसेस]] <math>\gamma^\alpha = \left(\gamma^0, \gamma^1, \gamma^2, \gamma^3\right) </math> स्पिन के प्रभाव प्रदान करें
Line 250: Line 250:


=== 4डी गॉस प्रमेय / स्टोक्स प्रमेय / [[विचलन प्रमेय]] के एक घटक के रूप में ===
=== 4डी गॉस प्रमेय / स्टोक्स प्रमेय / [[विचलन प्रमेय]] के एक घटक के रूप में ===
सदिश कलन में, विचलन प्रमेय, जिसे गॉस के प्रमेय या ओस्ट्रोग्रैडस्की के प्रमेय के रूप में भी जाना जाता है, एक परिणाम है जो [[सतह (गणित)]] के माध्यम से सदिश क्षेत्र के प्रवाह (अर्थात् प्रवाह) को सतह के अंदर सदिश क्षेत्र के व्यवहार से संबंधित करता है। . अधिक सटीक रूप से, विचलन प्रमेय बताता है कि एक बंद सतह के माध्यम से एक सदिश क्षेत्र का बाहरी प्रवाह सतह के अंदर के क्षेत्र में विचलन के आयतन अभिन्न के बराबर है। सहज रूप से, यह बताता है कि सभी स्रोतों का योग घटाकर सभी सिंकों का योग एक क्षेत्र से शुद्ध प्रवाह देता है। वेक्टर कलन में, और अधिक आम तौर पर अंतर ज्यामिति, स्टोक्स प्रमेय (सामान्यीकृत स्टोक्स प्रमेय भी कहा जाता है) कई गुना पर अंतर रूपों के एकीकरण के बारे में एक बयान है, जो वेक्टर कैलकुस से कई प्रमेयों को सरल और सामान्यीकृत करता है।
सदिश कलन में, विचलन प्रमेय, जिसे गॉस के प्रमेय या ओस्ट्रोग्रैडस्की के प्रमेय के रूप में भी जाना जाता है, एक परिणाम है जो [[सतह (गणित)]] के माध्यम से सदिश क्षेत्र के प्रवाह (अर्थात् प्रवाह) को सतह के अंदर सदिश क्षेत्र के व्यवहार से संबंधित करता है। . अधिक सटीक रूप से, विचलन प्रमेय बताता है कि एक बंद सतह के माध्यम से एक सदिश क्षेत्र का बाहरी प्रवाह सतह के अंदर के क्षेत्र में विचलन के आयतन अभिन्न के बराबर है। सहज रूप से, यह बताता है कि सभी स्रोतों का योग घटाकर सभी सिंकों का योग एक क्षेत्र से शुद्ध प्रवाह देता है। सदिश कलन में, और अधिक आम तौर पर अंतर ज्यामिति, स्टोक्स प्रमेय (सामान्यीकृत स्टोक्स प्रमेय भी कहा जाता है) कई गुना पर अंतर रूपों के एकीकरण के बारे में एक बयान है, जो सदिश कैलकुस से कई प्रमेयों को सरल और सामान्यीकृत करता है।


<math display="block">\int_\Omega d^4X \left(\partial_\mu V^\mu\right) = \oint_{\partial \Omega} dS \left(V^\mu N_\mu\right)</math>
<math display="block">\int_\Omega d^4X \left(\partial_\mu V^\mu\right) = \oint_{\partial \Omega} dS \left(V^\mu N_\mu\right)</math>
Line 256: Line 256:
<math display="block">\int_\Omega d^4X \left(\boldsymbol{\partial} \cdot \mathbf{V}\right) = \oint_{\partial \Omega} dS \left(\mathbf{V} \cdot \mathbf{N}\right)</math>
<math display="block">\int_\Omega d^4X \left(\boldsymbol{\partial} \cdot \mathbf{V}\right) = \oint_{\partial \Omega} dS \left(\mathbf{V} \cdot \mathbf{N}\right)</math>
कहाँ
कहाँ
*<math>\mathbf{V} = V^\mu</math> में परिभाषित एक 4-वेक्टर क्षेत्र है <math>\Omega</math>
*<math>\mathbf{V} = V^\mu</math> में परिभाषित एक 4-सदिश क्षेत्र है <math>\Omega</math>
*<math>\boldsymbol{\partial}\cdot\mathbf{V} = \partial_\mu V^\mu</math> का 4-विचलन है <math>V</math>
*<math>\boldsymbol{\partial}\cdot\mathbf{V} = \partial_\mu V^\mu</math> का 4-विचलन है <math>V</math>
*<math>\mathbf{V}\cdot\mathbf{N} = V^\mu N_\mu</math> का अंग है <math>V</math> दिशा के साथ <math>N</math>
*<math>\mathbf{V}\cdot\mathbf{N} = V^\mu N_\mu</math> का अंग है <math>V</math> दिशा के साथ <math>N</math>
Line 270: Line 270:
<math display="block">\mathbf{P_T} = \mathbf{P} + q\mathbf{A}</math>
<math display="block">\mathbf{P_T} = \mathbf{P} + q\mathbf{A}</math>
कहाँ <math>\mathbf{P} = \left(\frac{E}{c}, \vec{\mathbf{p}}\right)</math> और <math>\mathbf{A} = \left(\frac{\phi}{c}, \vec{\mathbf{a}}\right)</math>
कहाँ <math>\mathbf{P} = \left(\frac{E}{c}, \vec{\mathbf{p}}\right)</math> और <math>\mathbf{A} = \left(\frac{\phi}{c}, \vec{\mathbf{a}}\right)</math>
यह अनिवार्य रूप से 4-कुल गति है <math>\mathbf{P_T} = \left(\frac{E_T}{c}, \vec{\mathbf{p_T}}\right)</math> प्रणाली में; [[न्यूनतम युग्मन]] नियम का उपयोग करके एक [[क्षेत्र (भौतिकी)]] में एक [[परीक्षण कण]]। कण का अंतर्निहित संवेग है <math>\mathbf{P}</math>, साथ ही ईएम 4-वेक्टर क्षमता के साथ बातचीत के कारण गति <math>\mathbf{A}</math> कण आवेश द्वारा <math>q</math>.
यह अनिवार्य रूप से 4-कुल गति है <math>\mathbf{P_T} = \left(\frac{E_T}{c}, \vec{\mathbf{p_T}}\right)</math> प्रणाली में; [[न्यूनतम युग्मन]] नियम का उपयोग करके एक [[क्षेत्र (भौतिकी)]] में एक [[परीक्षण कण]]। कण का अंतर्निहित संवेग है <math>\mathbf{P}</math>, साथ ही ईएम 4-सदिश क्षमता के साथ बातचीत के कारण गति <math>\mathbf{A}</math> कण आवेश द्वारा <math>q</math>.


सापेक्षवादी हैमिल्टन-जैकोबी समीकरण [[क्रिया (भौतिकी)]] के नकारात्मक 4-ढाल के बराबर कुल गति को निर्धारित करके प्राप्त किया जाता है। <math>S</math>.
सापेक्षवादी हैमिल्टन-जैकोबी समीकरण [[क्रिया (भौतिकी)]] के नकारात्मक 4-ग्रेडिएंट के बराबर कुल गति को निर्धारित करके प्राप्त किया जाता है। <math>S</math>.
<math display="block">\mathbf{P_T} = -\boldsymbol{\partial} [S] = \left(\frac{E_T}{c}, \vec{\mathbf{p_T}}\right) = \left(\frac{H}{c}, \vec{\mathbf{p_T}}\right) = -\boldsymbol{\partial} [S] = -\left(\frac{\partial_t}{c}, -\vec{\boldsymbol{\nabla}}\right)[S]</math>
<math display="block">\mathbf{P_T} = -\boldsymbol{\partial} [S] = \left(\frac{E_T}{c}, \vec{\mathbf{p_T}}\right) = \left(\frac{H}{c}, \vec{\mathbf{p_T}}\right) = -\boldsymbol{\partial} [S] = -\left(\frac{\partial_t}{c}, -\vec{\boldsymbol{\nabla}}\right)[S]</math>
लौकिक घटक देता है: <math>E_T = H = -\partial_t[S]</math>
लौकिक घटक देता है: <math>E_T = H = -\partial_t[S]</math>
Line 278: Line 278:
कहाँ <math>H</math> हैमिल्टनियन है।
कहाँ <math>H</math> हैमिल्टनियन है।


यह वास्तव में 4-वेववेक्टर से संबंधित है जो ऊपर से चरण के नकारात्मक 4-ढाल के बराबर है।
यह वास्तव में 4-वेवसदिश से संबंधित है जो ऊपर से चरण के नकारात्मक 4-ग्रेडिएंट के बराबर है।
<math>K^\mu = \mathbf{K} = \left(\frac{\omega}{c}, \vec{\mathbf{k}}\right) = -\boldsymbol{\partial} [\Phi]</math>
<math>K^\mu = \mathbf{K} = \left(\frac{\omega}{c}, \vec{\mathbf{k}}\right) = -\boldsymbol{\partial} [\Phi]</math>
एचजेई प्राप्त करने के लिए, पहले 4-मोमेंटम पर लोरेंत्ज़ स्केलर इनवेरिएंट नियम का उपयोग करता है:
एचजेई प्राप्त करने के लिए, पहले 4-मोमेंटम पर लोरेंत्ज़ स्केलर इनवेरिएंट नियम का उपयोग करता है:
Line 309: Line 309:
पहला:<ref name="Rindler0198539525"/>{{rp|pages=82–84}}
पहला:<ref name="Rindler0198539525"/>{{rp|pages=82–84}}


<math display="block">\mathbf{P} = \left(\frac{E}{c},\vec{p}\right) = \hbar \mathbf{K} = \hbar \left(\frac{\omega}{c},\vec{k}\right)</math> जो का पूर्ण 4-वेक्टर संस्करण है:
<math display="block">\mathbf{P} = \left(\frac{E}{c},\vec{p}\right) = \hbar \mathbf{K} = \hbar \left(\frac{\omega}{c},\vec{k}\right)</math> जो का पूर्ण 4-सदिश संस्करण है:


(अस्थायी घटक) प्लैंक-आइंस्टीन संबंध <math>E = \hbar \omega</math>
(अस्थायी घटक) प्लैंक-आइंस्टीन संबंध <math>E = \hbar \omega</math>
Line 329: Line 329:
* तब से <math>[a, b] = -[b, a]</math>, <math display="block">\left[x^k, p^j\right] = i \hbar \delta^{k j}</math>
* तब से <math>[a, b] = -[b, a]</math>, <math display="block">\left[x^k, p^j\right] = i \hbar \delta^{k j}</math>
* और, पुन: लेबलिंग सूचकांक सामान्य क्वांटम कम्यूटेशन नियम देता है: <math display="block">\left[x^j, p^k\right] = i \hbar \delta^{j k}</math>
* और, पुन: लेबलिंग सूचकांक सामान्य क्वांटम कम्यूटेशन नियम देता है: <math display="block">\left[x^j, p^k\right] = i \hbar \delta^{j k}</math>




=== आपेक्षिक क्वांटम यांत्रिकी === में तरंग समीकरणों और प्रायिकता धाराओं के एक घटक के रूप में
=== आपेक्षिक क्वांटम यांत्रिकी === में तरंग समीकरणों और प्रायिकता धाराओं के एक घटक के रूप में
4-ढाल सापेक्षतावादी तरंग समीकरणों में से कई में एक घटक है:<ref name="Sudbury0521277655"/>{{rp|pages=[https://archive.org/details/quantummechanics00sudb/page/300 300–309]}}<ref name="Kane0201624605"/>{{rp|pages=25,30–31,55–69}}
4-ग्रेडिएंट सापेक्षतावादी तरंग समीकरणों में से कई में एक घटक है:<ref name="Sudbury0521277655"/>{{rp|pages=[https://archive.org/details/quantummechanics00sudb/page/300 300–309]}}<ref name="Kane0201624605"/>{{rp|pages=25,30–31,55–69}}


क्लेन-गॉर्डन समीकरण में। स्पिन-0 कणों के लिए क्लेन-गॉर्डन सापेक्षतावादी क्वांटम तरंग समीकरण (उदा। हिग्स बोसोन):<ref name="Greiner3540674578"/>{{rp|page=5}}
क्लेन-गॉर्डन समीकरण में। स्पिन-0 कणों के लिए क्लेन-गॉर्डन सापेक्षतावादी क्वांटम तरंग समीकरण (उदा। हिग्स बोसोन):<ref name="Greiner3540674578"/>{{rp|page=5}}
Line 353: Line 354:


=== विशेष आपेक्षिकता से क्वांटम यांत्रिकी और आपेक्षिकीय क्वांटम तरंग समीकरण प्राप्त करने में एक प्रमुख घटक के रूप में ===
=== विशेष आपेक्षिकता से क्वांटम यांत्रिकी और आपेक्षिकीय क्वांटम तरंग समीकरण प्राप्त करने में एक प्रमुख घटक के रूप में ===
सहसंयोजक होने के लिए [[सापेक्षवादी तरंग समीकरण]] 4-वैक्टर का उपयोग करते हैं।<ref name="Kane0201624605"/><ref name="Greiner3540674578"/>
सहसंयोजक होने के लिए [[सापेक्षवादी तरंग समीकरण]] 4-सदिश का उपयोग करते हैं।<ref name="Kane0201624605"/><ref name="Greiner3540674578"/>


मानक SR 4-वैक्टर से प्रारंभ करें:<ref name="Rindler0198539525"/>*4-स्थिति <math>\mathbf{X} = \left(ct, \vec{\mathbf{x}}\right)</math>
मानक SR 4-सदिश से प्रारंभ करें:<ref name="Rindler0198539525"/>*4-स्थिति <math>\mathbf{X} = \left(ct, \vec{\mathbf{x}}\right)</math>
*4- वेग <math>\mathbf{U} = \gamma\left(c, \vec{\mathbf{u}}\right)</math>
*4- वेग <math>\mathbf{U} = \gamma\left(c, \vec{\mathbf{u}}\right)</math>
*4-गति <math>\mathbf{P} = \left(\frac{E}{c}, \vec{\mathbf{p}}\right)</math>
*4-गति <math>\mathbf{P} = \left(\frac{E}{c}, \vec{\mathbf{p}}\right)</math>
*4-वेववेक्टर <math>\mathbf{K} = \left(\frac{\omega}{c}, \vec{\mathbf{k}}\right)</math>
*4-वेवसदिश <math>\mathbf{K} = \left(\frac{\omega}{c}, \vec{\mathbf{k}}\right)</math>
*4-ढाल <math>\boldsymbol{\partial} = \left(\frac{\partial_t}{c}, -\vec{\boldsymbol{\nabla}}\right)</math>
*4-ग्रेडिएंट <math>\boldsymbol{\partial} = \left(\frac{\partial_t}{c}, -\vec{\boldsymbol{\nabla}}\right)</math>
पिछले अनुभागों से निम्नलिखित सरल संबंधों पर ध्यान दें, जहां प्रत्येक 4-वेक्टर लोरेंत्ज़ स्केलर द्वारा दूसरे से संबंधित है:
पिछले अनुभागों से निम्नलिखित सरल संबंधों पर ध्यान दें, जहां प्रत्येक 4-सदिश लोरेंत्ज़ स्केलर द्वारा दूसरे से संबंधित है:
*4- वेग <math>\mathbf{U} = \frac{d}{d\tau} \mathbf{X}</math>, कहाँ <math>\tau</math> उचित समय है
*4- वेग <math>\mathbf{U} = \frac{d}{d\tau} \mathbf{X}</math>, कहाँ <math>\tau</math> उचित समय है
*4-गति <math>\mathbf{P} = m_0 \mathbf{U}</math>, कहाँ <math>m_0</math> शेष द्रव्यमान है
*4-गति <math>\mathbf{P} = m_0 \mathbf{U}</math>, कहाँ <math>m_0</math> शेष द्रव्यमान है
*4-वेववेक्टर <math>\mathbf{K} = \frac{1}{\hbar} \mathbf{P}</math>, जो प्लैंक-आइंस्टीन संबंध और डी ब्रोगली पदार्थ तरंग संबंध का [[4-वेक्टर]] संस्करण है
*4-वेवसदिश <math>\mathbf{K} = \frac{1}{\hbar} \mathbf{P}</math>, जो प्लैंक-आइंस्टीन संबंध और डी ब्रोगली पदार्थ तरंग संबंध का [[4-वेक्टर|4-सदिश]] संस्करण है
*4-ढाल <math>\boldsymbol{\partial} = -i \mathbf{K}</math>, जो जटिल-मूल्यवान समतल तरंगों का 4-ग्रेडिएंट संस्करण है
*4-ग्रेडिएंट <math>\boldsymbol{\partial} = -i \mathbf{K}</math>, जो जटिल-मूल्यवान समतल तरंगों का 4-ग्रेडिएंट संस्करण है


अब, मानक लोरेन्ट्ज़ स्केलर उत्पाद नियम को हर एक पर लागू करें:
अब, मानक लोरेन्ट्ज़ स्केलर उत्पाद नियम को हर एक पर लागू करें:
Line 379: Line 380:
श्रोडिंगर समीकरण कम-वेग [[सीमित मामला (गणित)]] है ({{math|{{abs|''v''}} ≪ ''c''}}) क्लेन-गॉर्डन समीकरण का।<ref name="Greiner3540674578"/>{{rp|pages=7–8}}
श्रोडिंगर समीकरण कम-वेग [[सीमित मामला (गणित)]] है ({{math|{{abs|''v''}} ≪ ''c''}}) क्लेन-गॉर्डन समीकरण का।<ref name="Greiner3540674578"/>{{rp|pages=7–8}}


यदि क्वांटम संबंध को 4-वेक्टर क्षेत्र पर लागू किया जाता है <math>A^\mu</math> लोरेंत्ज़ स्केलर फ़ील्ड के बजाय <math>\psi</math>, तो किसी को [[प्रोका समीकरण]] मिलता है:<ref name="Greiner3540674578"/>{{rp|page=361}}
यदि क्वांटम संबंध को 4-सदिश क्षेत्र पर लागू किया जाता है <math>A^\mu</math> लोरेंत्ज़ स्केलर फ़ील्ड के बजाय <math>\psi</math>, तो किसी को [[प्रोका समीकरण]] मिलता है:<ref name="Greiner3540674578"/>{{rp|page=361}}
<math display="block">\left[\boldsymbol{\partial} \cdot \boldsymbol{\partial} + \left(\frac{m_0 c}{\hbar}\right)^2\right]A^\mu = 0^\mu</math>
<math display="block">\left[\boldsymbol{\partial} \cdot \boldsymbol{\partial} + \left(\frac{m_0 c}{\hbar}\right)^2\right]A^\mu = 0^\mu</math>
यदि बाकी द्रव्यमान शब्द शून्य (प्रकाश जैसे कण) पर सेट है, तो यह मुक्त [[मैक्सवेल समीकरण]] देता है:
यदि बाकी द्रव्यमान शब्द शून्य (प्रकाश जैसे कण) पर सेट है, तो यह मुक्त [[मैक्सवेल समीकरण]] देता है:
Line 405: Line 406:


== व्युत्पत्ति ==
== व्युत्पत्ति ==
तीन आयामों में, ग्रेडियेंट ऑपरेटर स्केलर फ़ील्ड को वेक्टर फ़ील्ड में मैप करता है जैसे कि वेक्टर फ़ील्ड में किसी भी दो बिंदुओं के बीच की रेखा इन दो बिंदुओं पर स्केलर फ़ील्ड के बीच के अंतर के बराबर होती है। इसके आधार पर, यह गलत लग सकता है कि ग्रेडिएंट का 4 आयामों तक प्राकृतिक विस्तार होना चाहिए:
तीन आयामों में, ग्रेडिएंट ऑपरेटर स्केलर फ़ील्ड को सदिश फ़ील्ड में मैप करता है जैसे कि सदिश फ़ील्ड में किसी भी दो बिंदुओं के बीच की रेखा इन दो बिंदुओं पर स्केलर फ़ील्ड के बीच के अंतर के बराबर होती है। इसके आधार पर, यह गलत लग सकता है कि ग्रेडिएंट का 4 आयामों तक प्राकृतिक विस्तार होना चाहिए:
<math display="block">\partial^\alpha \overset{?}{=} \left( \frac{\partial}{\partial t}, \vec{\nabla} \right),</math> जो गलत है।
<math display="block">\partial^\alpha \overset{?}{=} \left( \frac{\partial}{\partial t}, \vec{\nabla} \right),</math> जो गलत है।


हालाँकि, एक लाइन इंटीग्रल में वेक्टर डॉट उत्पाद का अनुप्रयोग शामिल होता है, और जब इसे 4-आयामी स्पेसटाइम तक बढ़ाया जाता है, तो उपयोग किए गए सम्मेलन के आधार पर या तो स्थानिक समन्वय या समय समन्वय के लिए संकेत का परिवर्तन शुरू किया जाता है। यह स्पेसटाइम की गैर-यूक्लिडियन प्रकृति के कारण है। इस लेख में, हम स्थानिक निर्देशांक (समय-सकारात्मक मीट्रिक सम्मेलन) पर एक नकारात्मक चिह्न लगाते हैं <math>\eta^{\mu\nu} = \operatorname{diag}[1,-1,-1,-1]</math>). (1/सी) का कारक सही [[आयामी विश्लेषण]] रखना है, [लंबाई]{{sup|−1}}, 4-वेक्टर और (-1) के सभी घटकों के लिए 4-ग्रेडिएंट [[लोरेंत्ज़ सहप्रसरण]] रखना है। उपरोक्त अभिव्यक्ति में इन दो सुधारों को जोड़ने से 4-ग्रेडिएंट की सही परिभाषा मिलती है:<ref name="Rindler0198539525"/>{{rp|pages=55–56}}<ref name="Kane0201624605"/>{{rp|page=16}}
हालाँकि, एक लाइन इंटीग्रल में सदिश डॉट उत्पाद का अनुप्रयोग शामिल होता है, और जब इसे 4-आयामी स्पेसटाइम तक बढ़ाया जाता है, तो उपयोग किए गए सम्मेलन के आधार पर या तो स्थानिक समन्वय या समय समन्वय के लिए संकेत का परिवर्तन शुरू किया जाता है। यह स्पेसटाइम की गैर-यूक्लिडियन प्रकृति के कारण है। इस लेख में, हम स्थानिक निर्देशांक (समय-सकारात्मक मीट्रिक सम्मेलन) पर एक नकारात्मक चिह्न लगाते हैं <math>\eta^{\mu\nu} = \operatorname{diag}[1,-1,-1,-1]</math>). (1/सी) का कारक सही [[आयामी विश्लेषण]] रखना है, [लंबाई]{{sup|−1}}, 4-सदिश और (-1) के सभी घटकों के लिए 4-ग्रेडिएंट [[लोरेंत्ज़ सहप्रसरण]] रखना है। उपरोक्त अभिव्यक्ति में इन दो सुधारों को जोड़ने से 4-ग्रेडिएंट की सही परिभाषा मिलती है:<ref name="Rindler0198539525"/>{{rp|pages=55–56}}<ref name="Kane0201624605"/>{{rp|page=16}}
<math display="block">\partial^\alpha = \left(\frac{1}{c} \frac{\partial}{\partial t}, -\vec{\nabla} \right)</math>
<math display="block">\partial^\alpha = \left(\frac{1}{c} \frac{\partial}{\partial t}, -\vec{\nabla} \right)</math>


Line 440: Line 441:


=== सन्दर्भों के बारे में नोट ===
=== सन्दर्भों के बारे में नोट ===
भौतिकी में स्केलर, 4-वैक्टर और टेन्सर के उपयोग के संबंध में, विभिन्न लेखक समान समीकरणों के लिए थोड़े भिन्न संकेतन का उपयोग करते हैं। उदाहरण के लिए, कुछ उपयोग <math>m</math> अपरिवर्तनीय विश्राम द्रव्यमान के लिए, अन्य उपयोग करते हैं <math>m_0</math> अपरिवर्तनीय विश्राम द्रव्यमान और उपयोग के लिए <math>m</math> सापेक्ष द्रव्यमान के लिए। कई लेखक के कारक निर्धारित करते हैं <math>c</math> और <math>\hbar</math> और <math>G</math> आयामहीन एकता के लिए। अन्य कुछ या सभी स्थिरांक दिखाते हैं। कुछ लेखक उपयोग करते हैं <math>v</math> वेग के लिए, अन्य उपयोग करते हैं <math>u</math>. कुछ प्रयोग करते हैं <math>K</math> 4-वेववेक्टर के रूप में (एक मनमाना उदाहरण चुनने के लिए)। दूसरे इस्तेमाल करते हैं <math>k</math> या <math>\mathbf{K}</math> या <math>k^\mu</math> या <math>k_\mu</math> या <math>K^\nu</math> या <math>N</math>, आदि कुछ 4-वेववेक्टर लिखते हैं <math>\left(\frac{\omega}{c}, \mathbf{k}\right)</math>, कुछ के रूप में <math>\left(\mathbf{k}, \frac{\omega}{c}\right)</math> या <math>\left(k^0, \mathbf{k}\right)</math> या <math>\left(k^0, k^1, k^2, k^3\right)</math> या <math>\left(k^1, k^2, k^3, k^4\right)</math> या <math>\left(k_t, k_x, k_y, k_z\right)</math> या <math>\left(k^1, k^2, k^3, i k^4\right)</math>. कुछ यह सुनिश्चित करेंगे कि आयामी इकाइयां 4-वेक्टर से मेल खाती हैं, अन्य नहीं। कुछ 4-वेक्टर नाम में अस्थायी घटक को संदर्भित करते हैं, अन्य 4-वेक्टर नाम में स्थानिक घटक को संदर्भित करते हैं। कुछ इसे पूरी किताब में मिलाते हैं, कभी एक का उपयोग करते हैं तो बाद में दूसरे का। कुछ मीट्रिक का उपयोग करते हैं {{nowrap|(+ − − −)}}, अन्य मीट्रिक का उपयोग करते हैं {{nowrap|(− + + +)}}. कुछ 4-वैक्टर का उपयोग नहीं करते हैं, लेकिन सब कुछ पुरानी शैली ई और 3-स्पेस वेक्टर 'पी' के रूप में करते हैं। बात यह है कि, ये सभी केवल सांकेतिक शैली हैं, जिनमें कुछ दूसरों की तुलना में अधिक स्पष्ट और संक्षिप्त हैं। जब तक कोई संपूर्ण व्युत्पत्ति में एक सुसंगत शैली का उपयोग करता है, तब तक भौतिकी समान है।<ref name="Greiner3540674578"/>{{rp|pages=2–4}}
भौतिकी में स्केलर, 4-सदिश और टेन्सर के उपयोग के संबंध में, विभिन्न लेखक समान समीकरणों के लिए थोड़े भिन्न संकेतन का उपयोग करते हैं। उदाहरण के लिए, कुछ उपयोग <math>m</math> अपरिवर्तनीय विश्राम द्रव्यमान के लिए, अन्य उपयोग करते हैं <math>m_0</math> अपरिवर्तनीय विश्राम द्रव्यमान और उपयोग के लिए <math>m</math> सापेक्ष द्रव्यमान के लिए। कई लेखक के कारक निर्धारित करते हैं <math>c</math> और <math>\hbar</math> और <math>G</math> आयामहीन एकता के लिए। अन्य कुछ या सभी स्थिरांक दिखाते हैं। कुछ लेखक उपयोग करते हैं <math>v</math> वेग के लिए, अन्य उपयोग करते हैं <math>u</math>. कुछ प्रयोग करते हैं <math>K</math> 4-वेवसदिश के रूप में (एक मनमाना उदाहरण चुनने के लिए)। दूसरे इस्तेमाल करते हैं <math>k</math> या <math>\mathbf{K}</math> या <math>k^\mu</math> या <math>k_\mu</math> या <math>K^\nu</math> या <math>N</math>, आदि कुछ 4-वेवसदिश लिखते हैं <math>\left(\frac{\omega}{c}, \mathbf{k}\right)</math>, कुछ के रूप में <math>\left(\mathbf{k}, \frac{\omega}{c}\right)</math> या <math>\left(k^0, \mathbf{k}\right)</math> या <math>\left(k^0, k^1, k^2, k^3\right)</math> या <math>\left(k^1, k^2, k^3, k^4\right)</math> या <math>\left(k_t, k_x, k_y, k_z\right)</math> या <math>\left(k^1, k^2, k^3, i k^4\right)</math>. कुछ यह सुनिश्चित करेंगे कि आयामी इकाइयां 4-सदिश से मेल खाती हैं, अन्य नहीं। कुछ 4-सदिश नाम में अस्थायी घटक को संदर्भित करते हैं, अन्य 4-सदिश नाम में स्थानिक घटक को संदर्भित करते हैं। कुछ इसे पूरी किताब में मिलाते हैं, कभी एक का उपयोग करते हैं तो बाद में दूसरे का। कुछ मीट्रिक का उपयोग करते हैं {{nowrap|(+ − − −)}}, अन्य मीट्रिक का उपयोग करते हैं {{nowrap|(− + + +)}}. कुछ 4-सदिश का उपयोग नहीं करते हैं, लेकिन सब कुछ पुरानी शैली ई और 3-स्पेस सदिश 'पी' के रूप में करते हैं। बात यह है कि, ये सभी केवल सांकेतिक शैली हैं, जिनमें कुछ दूसरों की तुलना में अधिक स्पष्ट और संक्षिप्त हैं। जब तक कोई संपूर्ण व्युत्पत्ति में एक सुसंगत शैली का उपयोग करता है, तब तक भौतिकी समान है।<ref name="Greiner3540674578"/>{{rp|pages=2–4}}


{{reflist}}
{{reflist}}

Revision as of 14:17, 14 June 2023

विभेदक ज्यामिति में, चार-ग्रेडिएंट (या 4-ग्रेडिएंट) सदिश कलन से चार- सदिश रेखीय ग्रेडिएंट है।

विशेष सापेक्षता और क्वांटम यांत्रिकी में, चार-ग्रेडिएंट का उपयोग विभिन्न भौतिक चार-सदिश और टेंसर के बीच गुणों और संबंधों को परिभाषित करने के लिए किया जाता है।

संकेतन

यह लेख (+ − − −) मीट्रिक हस्ताक्षर उपयोग करता है।

SR और GR क्रमशः विशेष सापेक्षता और सामान्य सापेक्षता के संक्षिप्त रूप हैं।

निर्वात में प्रकाश की गति को दर्शाता है।

SR का फ्लैट स्पेसटाइम मीट्रिक टेंसर है।

भौतिकी में चार-सदिश व्यंजकों को लिखने के वैकल्पिक तरीके हैं:

  • चार-सदिश शैली का उपयोग किया जा सकता है: , जो आमतौर पर अधिक कॉम्पैक्ट होता है और सदिश अंकन का उपयोग कर सकता है, (जैसे कि आंतरिक उत्पाद डॉट), हमेशा चार-सदिश का प्रतिनिधित्व करने के लिए बोल्ड अपरकेस का उपयोग करता है, और बोल्ड लोअरकेस का उपयोग 3-स्पेस सदिश का प्रतिनिधित्व करने के लिए करता है, उदा। . अधिकांश 3-स्पेस सदिश नियमों में चार-सदिश गणित में अनुरूप हैं।
  • घुंघराले पथरी शैली का उपयोग किया जा सकता है: , जो टेन्सर सूचकांक अंकन का उपयोग करता है और अधिक जटिल एक्सप्रेशन के लिए उपयोगी है, विशेष रूप से वे जिसमें एक से अधिक इंडेक्स वाले टेंसर शामिल हैं, जैसे .

लैटिन टेंसर इंडेक्स रेंज में है {1, 2, 3}, और एक 3-स्पेस सदिश का प्रतिनिधित्व करता है, उदा। .

ग्रीक टेंसर इंडेक्स की सीमा होती है {0, 1, 2, 3}, और 4-सदिश का प्रतिनिधित्व करता है, उदा। .

एसआर भौतिकी में, आमतौर पर संक्षिप्त मिश्रण का उपयोग किया जाता है, उदा। , कहाँ लौकिक घटक का प्रतिनिधित्व करता है और स्थानिक 3-घटक का प्रतिनिधित्व करता है।

SR में टेंसर आमतौर पर 4D होते हैं -टेंसर, के साथ ऊपरी सूचकांक और निम्न सूचकांक, 4D के साथ 4 आयाम दर्शाता है = प्रत्येक सूचकांक द्वारा लिए जा सकने वाले मानों की संख्या।

Minkowski स्पेस#Minkowski मेट्रिक में प्रयुक्त टेन्सर संकुचन किसी भी तरफ जा सकता है (आइंस्टीन संकेतन देखें):[1]: 56, 151–152, 158–161 


परिभाषा

चार-सदिश और रिक्की कैलकुलस नोटेशन में कॉम्पैक्ट रूप से लिखे गए 4-ग्रेडिएंट सहसंयोजक घटक हैं:[2][3]: 16 

ऊपर पिछले भाग में अल्पविराम 4-स्थिति के संबंध में आंशिक विभेदन का तात्पर्य है .

प्रतिपरिवर्ती घटक हैं:[2][3]: 16 

वैकल्पिक प्रतीक हैं और डी (हालांकि भी संकेत कर सकता है डी'अलेम्बर्ट ऑपरेटर के रूप में)।

जीआर में, किसी को अधिक सामान्य मीट्रिक टेन्सर (सामान्य सापेक्षता) का उपयोग करना चाहिए और टेन्सर सहपरिवर्ती व्युत्पन्न (सदिश 3-ग्रेडिएंट के साथ भ्रमित न हों ).

सहपरिवर्ती व्युत्पन्न 4-ग्रेडिएंट शामिल है साथ ही क्रिस्टोफेल प्रतीकों के माध्यम से स्पेसटाइम वक्रता प्रभाव मजबूत तुल्यता सिद्धांत के रूप में कहा जा सकता है:[4]: 184 

कोई भी भौतिक नियम जिसे एसआर में टेन्सर नोटेशन में व्यक्त किया जा सकता है, एक घुमावदार स्पेसटाइम के स्थानीय रूप से जड़त्वीय फ्रेम में ठीक उसी रूप में होता है। एसआर में 4-ग्रेडिएंट कॉमा (,) को क्रिस्टोफेल प्रतीकों का उपयोग करके दोनों के बीच संबंध के साथ, जीआर में सहसंयोजक व्युत्पन्न अर्ध-कॉलन (;) में बदल दिया जाता है। इसे सापेक्षता भौतिकी में अर्धविराम नियम के अल्पविराम के रूप में जाना जाता है।

तो, उदाहरण के लिए, अगर एसआर में, फिर जीआर में।

(1,0)-टेंसर या 4-सदिश पर यह होगा:[4]: 136–139 

एक (2,0)-टेंसर पर यह होगा:


उपयोग

विशेष आपेक्षिकता (एसआर) में 4-ग्रेडिएंट का उपयोग कई अलग-अलग तरीकों से किया जाता है:

इस पूरे लेख में एसआर के फ्लैट स्पेसटाइम मिन्कोवस्की अंतरिक्ष के लिए सूत्र सभी सही हैं, लेकिन सामान्य सापेक्षता (जीआर) के अधिक सामान्य घुमावदार अंतरिक्ष निर्देशांक के लिए संशोधित किया जाना है।

4-विचलन और संरक्षण कानूनों के स्रोत के रूप में

विचलन एक सदिश ऑपरेटर है जो एक हस्ताक्षरित स्केलर फ़ील्ड उत्पन्न करता है जो सदिश क्षेत्र के वर्तमान स्रोतों की मात्रा देता है और प्रत्येक बिंदु पर डूब जाता है। ध्यान दें कि इस मीट्रिक हस्ताक्षर [+,−,−,−] में 4-ग्रेडिएंट में एक नकारात्मक स्थानिक घटक है। 4डी डॉट उत्पाद लेते समय यह रद्द हो जाता है क्योंकि मिंकोव्स्की मेट्रिक विकर्ण [+1,−1,−1,−1] है।

4-स्थिति का 4-विचलन स्पेसटाइम का आयाम देता है:

चार-धारा का 4-विचलन|4-वर्तमान घनत्व
एक संरक्षण कानून देता है - आवेश संरक्षण:[1]: 103–107 
इसका मतलब है कि चार्ज घनत्व के परिवर्तन की समय दर वर्तमान घनत्व के नकारात्मक स्थानिक विचलन के बराबर होनी चाहिए .

दूसरे शब्दों में, एक बॉक्स के अंदर का चार्ज केवल मनमाने ढंग से नहीं बदल सकता है, इसे करंट के माध्यम से बॉक्स में प्रवेश करना और छोड़ना होगा। यह एक निरंतरता समीकरण है।

4-संख्या प्रवाह (4-धूल) का 4-विचलन कण संरक्षण में प्रयोग किया जाता है:[4]: 90–110 

यह कण संख्या घनत्व के लिए एक संरक्षण कानून है, आमतौर पर बेरोन संख्या घनत्व जैसा कुछ।

विद्युतचुंबकीय चार-विभव का 4-विचलन|विद्युत चुम्बकीय 4-विभव लॉरेंज गेज स्थिति में प्रयोग किया जाता है:[1]: 105–107 

यह EM 4-क्षमता के लिए एक संरक्षण कानून के बराबर है।

अनुप्रस्थ अनुरेखहीन 4D (2,0)-टेंसर का 4-विचलन कमजोर क्षेत्र की सीमा में गुरुत्वाकर्षण विकिरण का प्रतिनिधित्व करना (यानी स्रोत से दूर स्वतंत्र रूप से प्रचार करना)।

अनुप्रस्थ अवस्था

मुक्त रूप से गुरुत्वाकर्षण तरंगों के प्रसार के लिए एक संरक्षण समीकरण के बराबर है।

तनाव-ऊर्जा टेंसर का 4-विचलन स्पेसटाइम अनुवाद (भौतिकी)भौतिकी) से जुड़े संरक्षित नोएदर के प्रमेय के रूप में, एसआर में चार संरक्षण कानून देता है:[4]: 101–106 

ऊर्जा का संरक्षण (अस्थायी दिशा) और रैखिक गति का संरक्षण (3 अलग-अलग स्थानिक दिशाएँ)।

इसे अक्सर इस प्रकार लिखा जाता है:
जहाँ यह समझा जाता है कि एकल शून्य वास्तव में 4-सदिश शून्य है .

जब तनाव-ऊर्जा टेंसर का संरक्षण () एक आदर्श द्रव के लिए कण संख्या घनत्व के संरक्षण के साथ संयुक्त है (), दोनों 4-ग्रेडिएंट का उपयोग करते हुए, आपेक्षिकीय यूलर समीकरण प्राप्त कर सकते हैं, जो द्रव यांत्रिकी और खगोल भौतिकी में यूलर समीकरणों (द्रव गतिकी) का एक सामान्यीकरण है जो विशेष सापेक्षता के प्रभावों के लिए खाता है। ये समीकरण शास्त्रीय यूलर समीकरणों को कम करते हैं यदि द्रव 3-अंतरिक्ष वेग शास्त्रीय यांत्रिकी है # प्रकाश की गति की तुलना में विशेष सापेक्षता के न्यूटनियन सन्निकटन, दबाव ऊर्जा घनत्व की तुलना में बहुत कम है, और बाद में बाकी द्रव्यमान का प्रभुत्व है घनत्व।

फ्लैट स्पेसटाइम में और कार्टेशियन निर्देशांक का उपयोग करते हुए, यदि कोई इसे तनाव-ऊर्जा टेंसर की समरूपता के साथ जोड़ता है, तो कोई यह दिखा सकता है कि कोणीय गति (सापेक्ष कोणीय गति) भी संरक्षित है:

जहां यह शून्य वास्तव में एक (2,0)-टेंसर शून्य है।

=== SR Minkowski मीट्रिक टेन्सर === के लिए जैकबियन मैट्रिक्स के रूप में जेकोबियन मैट्रिक्स सदिश-मूल्यवान फ़ंक्शन के सभी प्रथम-क्रम आंशिक डेरिवेटिव का मैट्रिक्स (गणित) है।

4-ग्रेडिएंट 4-स्थिति पर अभिनय SR Minkowski अंतरिक्ष मीट्रिक देता है :[3]: 16 

मिन्कोव्स्की मीट्रिक के लिए, घटक ( योग नहीं किया गया), गैर-विकर्ण घटकों के साथ सभी शून्य।

कार्तीय मिन्कोवस्की मीट्रिक के लिए, यह देता है .

आम तौर पर, , कहाँ 4D क्रोनकर डेल्टा है।

लोरेंत्ज़ परिवर्तनों को परिभाषित करने के तरीके के रूप में

लोरेंत्ज़ परिवर्तन को टेंसर रूप में लिखा गया है[4]: 69 

और तबसे बस स्थिरांक हैं, फिर
इस प्रकार, 4-ग्रेडिएंट की परिभाषा के अनुसार
यह पहचान मौलिक है। 4-सदिश के घटकों के व्युत्क्रम के अनुसार 4-ग्रेडिएंट परिवर्तन के घटक। तो 4-ग्रेडिएंट एक प्रारूपिक एक-रूप है।

=== कुल उचित समय व्युत्पन्न === के हिस्से के रूप में 4-वेग का अदिश गुणनफल 4-ग्रेडिएंट के साथ उचित समय के संबंध में कुल व्युत्पन्न देता है :[1]: 58–59 

यह तथ्य कि एक लोरेंट्ज़ स्केलर अपरिवर्तनीय दिखाता है कि उचित समय के संबंध में कुल व्युत्पन्न इसी तरह एक लोरेंत्ज़ स्केलर इनवेरिएंट है।

इसलिए, उदाहरण के लिए, 4-वेग 4-स्थिति का व्युत्पन्न है उचित समय के संबंध में:

या
एक अन्य उदाहरण, 4-त्वरण 4-वेग का उचित समय व्युत्पन्न है :
या


=== फैराडे विद्युत चुम्बकीय टेंसर को परिभाषित करने और मैक्सवेल समीकरण === प्राप्त करने के तरीके के रूप में फैराडे इलेक्ट्रोमैग्नेटिक टेंसर एक गणितीय वस्तु है जो एक भौतिक प्रणाली के अंतरिक्ष-समय में विद्युत चुम्बकीय क्षेत्र का वर्णन करती है।[1]: 101–128 [5]: 314[3]: 17–18 [6]: 29–30 [7]: 4 

एक एंटीसिमेट्रिक टेन्सर बनाने के लिए 4-ग्रेडिएंट को लागू करने पर, यह प्राप्त होता है:

कहाँ:

  • इलेक्ट्रोमैग्नेटिक फोर-पोटेंशियल|इलेक्ट्रोमैग्नेटिक 4-पोटेंशियल , 4-त्वरण से भ्रमित न हों
  • विद्युत क्षमता अदिश क्षमता है
  • चुंबकीय सदिश संभावित सदिश क्षमता | 3-स्पेस सदिश क्षमता है

4-ग्रेडिएंट को फिर से लागू करके, और फोर-करंट|4-करंट डेंसिटी को इस रूप में परिभाषित करना कोई मैक्सवेल समीकरणों के टेन्सर रूप को प्राप्त कर सकता है:

जहां दूसरी पंक्ति बियांची पहचान (जैकोबी पहचान) का एक संस्करण है।

=== [[4-wavevector ]] === को परिभाषित करने के तरीके के रूप में

वेवसदिश एक सदिश (ज्यामितीय) है जो एक तरंग का वर्णन करने में मदद करता है। किसी भी सदिश की तरह, इसका एक यूक्लिडियन सदिश है, जो दोनों महत्वपूर्ण हैं: इसका परिमाण या तो लहर की तरंग संख्या या कोणीय तरंग संख्या है (तरंग दैर्ध्य के व्युत्क्रमानुपाती), और इसकी दिशा सामान्य रूप से तरंग प्रसार की दिशा है

4-वेवसदिश नकारात्मक चरण का 4-ग्रेडिएंट है मिन्कोवस्की अंतरिक्ष में एक लहर की (या चरण की ऋणात्मक 4-ग्रेडिएंट):[6]: 387 

यह गणितीय रूप से एक तरंग (या अधिक विशेष रूप से एक समतल तरंग) के चरण (तरंगों) की परिभाषा के बराबर है:
जहां 4-स्थिति , लौकिक कोणीय आवृत्ति है, स्थानिक 3-स्पेस वेवसदिश है, और लोरेंट्ज़ स्केलर अपरिवर्तनीय चरण है।

इस धारणा के साथ कि विमान तरंग और के स्पष्ट कार्य नहीं हैं या .

SR समतल तरंग का स्पष्ट रूप के रूप में लिखा जा सकता है:[7]: 9 

कहाँ एक (संभवतः जटिल संख्या) आयाम है।

एक सामान्य लहर एकाधिक विमान तरंगों का सुपरपोज़िशन सिद्धांत होगा:

फिर से 4-ग्रेडिएंट का उपयोग करके,
या
जो जटिल-मूल्यवान समतल तरंगों का 4-ग्रेडिएंट संस्करण है

=== डी'अलेम्बर्टियन ऑपरेटर === के रूप में विशेष सापेक्षता, विद्युत चुंबकत्व और तरंग सिद्धांत में, डी'अलेम्बर्ट ऑपरेटर, जिसे डी'अलेम्बर्टियन या वेव ऑपरेटर भी कहा जाता है, मिंकोव्स्की अंतरिक्ष का लाप्लास ऑपरेटर है। ऑपरेटर का नाम फ्रांसीसी गणितज्ञ और भौतिक विज्ञानी जीन ले रोंड डी एलेम्बर्ट के नाम पर रखा गया है।

का वर्ग 4-लाप्लासियन है, जिसे डी'अलेम्बर्ट ऑपरेटर कहा जाता है:[5]: 300[3]: 17‒18 [6]: 41 [7]: 4 

जैसा कि यह दो 4-सदिशों का डॉट उत्पाद है, डी'अलेम्बर्टियन एक लोरेंत्ज़ अपरिवर्तनीय स्केलर है।

कभी-कभी, 3-आयामी संकेतन के अनुरूप, प्रतीक और क्रमशः 4-ग्रेडिएंट और डी'अलेम्बर्टियन के लिए उपयोग किया जाता है। अधिक सामान्यतः हालांकि, प्रतीक डी'अलेम्बर्टियन के लिए आरक्षित है।

4-ग्रेडिएंट के कुछ उदाहरण जैसा कि डी'अलेम्बर्टियन में इस्तेमाल किया गया है:

क्लेन-गॉर्डन समीकरण में। स्पिन-0 कणों के लिए क्लेन-गॉर्डन सापेक्षतावादी क्वांटम तरंग समीकरण (उदा। हिग्स बॉसन):

विद्युत चुम्बकीय क्षेत्र के लिए तरंग समीकरण में (लॉरेंज गेज का उपयोग करके ):

  • निर्वात में:
  • 4-वर्तमान स्रोत के साथ, स्पिन के प्रभाव शामिल नहीं हैं:
  • स्पिन के प्रभाव सहित क्वांटम इलेक्ट्रोडायनामिक्स स्रोत के साथ:

कहाँ:

  • इलेक्ट्रोमैग्नेटिक फोर-पोटेंशियल|इलेक्ट्रोमैग्नेटिक 4-पोटेंशियल एक विद्युत चुम्बकीय सदिश क्षमता है
  • 4-वर्तमान |4-वर्तमान घनत्व एक विद्युत चुम्बकीय वर्तमान घनत्व है
  • डिराक गामा मैट्रिसेस स्पिन के प्रभाव प्रदान करें

गुरुत्वाकर्षण तरंग के तरंग समीकरण में (समान लॉरेंज गेज का उपयोग करके )[6]: 274–322 

कहाँ कमजोर क्षेत्र की सीमा में गुरुत्वाकर्षण विकिरण का प्रतिनिधित्व करने वाला अनुप्रस्थ ट्रेसलेस 2-टेंसर है (अर्थात स्रोत से दूर तक स्वतंत्र रूप से प्रचार करना)।

आगे की शर्तें हैं:

  • विशुद्ध रूप से स्थानिक:
  • ट्रेसलेस:
  • अनुप्रस्थ:

ग्रीन के कार्य के 4-आयामी संस्करण में:

जहां 4D डेल्टा समारोह है:


4डी गॉस प्रमेय / स्टोक्स प्रमेय / विचलन प्रमेय के एक घटक के रूप में

सदिश कलन में, विचलन प्रमेय, जिसे गॉस के प्रमेय या ओस्ट्रोग्रैडस्की के प्रमेय के रूप में भी जाना जाता है, एक परिणाम है जो सतह (गणित) के माध्यम से सदिश क्षेत्र के प्रवाह (अर्थात् प्रवाह) को सतह के अंदर सदिश क्षेत्र के व्यवहार से संबंधित करता है। . अधिक सटीक रूप से, विचलन प्रमेय बताता है कि एक बंद सतह के माध्यम से एक सदिश क्षेत्र का बाहरी प्रवाह सतह के अंदर के क्षेत्र में विचलन के आयतन अभिन्न के बराबर है। सहज रूप से, यह बताता है कि सभी स्रोतों का योग घटाकर सभी सिंकों का योग एक क्षेत्र से शुद्ध प्रवाह देता है। सदिश कलन में, और अधिक आम तौर पर अंतर ज्यामिति, स्टोक्स प्रमेय (सामान्यीकृत स्टोक्स प्रमेय भी कहा जाता है) कई गुना पर अंतर रूपों के एकीकरण के बारे में एक बयान है, जो सदिश कैलकुस से कई प्रमेयों को सरल और सामान्यीकृत करता है।

या
कहाँ

  • में परिभाषित एक 4-सदिश क्षेत्र है
  • का 4-विचलन है
  • का अंग है दिशा के साथ
  • Minkowski स्पेसटाइम का एक 4D सरलता से जुड़ा क्षेत्र है
  • अपने स्वयं के 3D आयतन तत्व के साथ इसकी 3D सीमा है
  • बाहर की ओर इशारा करने वाला सामान्य है
  • 4D अंतर आयतन तत्व है

=== सापेक्षतावादी विश्लेषणात्मक यांत्रिकी === में एसआर हैमिल्टन-जैकोबी समीकरण के एक घटक के रूप में हैमिल्टन-जैकोबी समीकरण (HJE) शास्त्रीय यांत्रिकी का एक सूत्रीकरण है, जो न्यूटन के गति के नियमों, लैग्रैंगियन यांत्रिकी और हैमिल्टनियन यांत्रिकी जैसे अन्य योगों के बराबर है। हैमिल्टन-जैकोबी समीकरण यांत्रिक प्रणालियों के लिए संरक्षित मात्राओं की पहचान करने में विशेष रूप से उपयोगी है, जो तब भी संभव हो सकता है जब यांत्रिक समस्या को पूरी तरह से हल नहीं किया जा सकता है। HJE भी यांत्रिकी का एकमात्र सूत्रीकरण है जिसमें एक कण की गति को तरंग के रूप में दर्शाया जा सकता है। इस अर्थ में, HJE ने प्रकाश के प्रसार और एक कण की गति के बीच एक सादृश्य खोजने के लिए सैद्धांतिक भौतिकी (कम से कम 18 वीं शताब्दी में जोहान बर्नौली से डेटिंग) के लंबे समय से चले आ रहे लक्ष्य को पूरा किया।

सामान्यीकृत सापेक्षतावादी गति एक कण के रूप में लिखा जा सकता है[1]: 93–96 

कहाँ और यह अनिवार्य रूप से 4-कुल गति है प्रणाली में; न्यूनतम युग्मन नियम का उपयोग करके एक क्षेत्र (भौतिकी) में एक परीक्षण कण। कण का अंतर्निहित संवेग है , साथ ही ईएम 4-सदिश क्षमता के साथ बातचीत के कारण गति कण आवेश द्वारा .

सापेक्षवादी हैमिल्टन-जैकोबी समीकरण क्रिया (भौतिकी) के नकारात्मक 4-ग्रेडिएंट के बराबर कुल गति को निर्धारित करके प्राप्त किया जाता है। .

लौकिक घटक देता है: स्थानिक घटक देते हैं: कहाँ हैमिल्टनियन है।

यह वास्तव में 4-वेवसदिश से संबंधित है जो ऊपर से चरण के नकारात्मक 4-ग्रेडिएंट के बराबर है। एचजेई प्राप्त करने के लिए, पहले 4-मोमेंटम पर लोरेंत्ज़ स्केलर इनवेरिएंट नियम का उपयोग करता है:

लेकिन न्यूनतम युग्मन नियम से:
इसलिए:
लौकिक और स्थानिक घटकों में तोड़ना:
जहां अंतिम सापेक्षवादी हैमिल्टन-जैकोबी समीकरण है।

=== क्वांटम यांत्रिकी === में श्रोडिंगर संबंधों के एक घटक के रूप में 4-ग्रेडिएंट क्वांटम यांत्रिकी से जुड़ा है।

4-गति के बीच संबंध और 4-ग्रेडिएंट श्रोडिंगर समीकरण देता है | श्रोडिंगर क्यूएम संबंध।[7]: 3–5 

लौकिक घटक देता है: स्थानिक घटक देते हैं: यह वास्तव में दो अलग-अलग चरणों से बना हो सकता है।

पहला:[1]: 82–84 

जो का पूर्ण 4-सदिश संस्करण है:

(अस्थायी घटक) प्लैंक-आइंस्टीन संबंध (स्थानिक घटक) ब्रोगली का पदार्थ तरंग संबंध दूसरा:[5]: 300

जो जटिल-मूल्यवान समतल तरंगों के लिए तरंग समीकरण का सिर्फ 4-ग्रेडिएंट संस्करण है

लौकिक घटक देता है: स्थानिक घटक देते हैं:


=== क्वांटम रूपान्तरण संबंध === के सहसंयोजक रूप के एक घटक के रूप में क्वांटम यांत्रिकी (भौतिकी) में, विहित रूपान्तरण संबंध कैनोनिकल कॉन्जुगेट मात्राओं के बीच मूलभूत संबंध है (मात्राएं जो परिभाषा से संबंधित हैं जैसे कि एक दूसरे का फूरियर रूपांतरण है)।

  • के अनुसार:[7]: 4 
  • स्थानिक घटकों को लेना,
  • तब से ,
  • तब से ,
  • और, पुन: लेबलिंग सूचकांक सामान्य क्वांटम कम्यूटेशन नियम देता है:


=== आपेक्षिक क्वांटम यांत्रिकी === में तरंग समीकरणों और प्रायिकता धाराओं के एक घटक के रूप में 4-ग्रेडिएंट सापेक्षतावादी तरंग समीकरणों में से कई में एक घटक है:[5]: 300–309[3]: 25, 30–31, 55–69 

क्लेन-गॉर्डन समीकरण में। स्पिन-0 कणों के लिए क्लेन-गॉर्डन सापेक्षतावादी क्वांटम तरंग समीकरण (उदा। हिग्स बोसोन):[7]: 5 

स्पिन-1/2 कणों (पूर्व इलेक्ट्रॉनों) के लिए डायराक समीकरण में:[7]: 130 
कहाँ डिराक मेट्रिसेस हैं और सापेक्षतावादी तरंग फलन है।

क्लेन-गॉर्डन समीकरण के लिए लोरेंत्ज़ अदिश है, और डायराक समीकरण के लिए एक डिराक स्पिनर है।

यह अच्छा है कि गामा मैट्रिसेस स्वयं एसआर के मूलभूत पहलू, मिंकोव्स्की मीट्रिक को संदर्भित करते हैं:[7]: 130 

4-प्रायिकता वर्तमान घनत्व का संरक्षण निरंतरता समीकरण से होता है:[7]: 6 
प्रायिकता धारा|4-प्रायिकता धारा घनत्व में सापेक्षिक रूप से सहपरिवर्ती व्यंजक होता है:[7]: 6 
4-प्रभारी वर्तमान घनत्व सिर्फ चार्ज है (q) 4-प्रायिकता वर्तमान घनत्व का गुना:[7]: 8 


विशेष आपेक्षिकता से क्वांटम यांत्रिकी और आपेक्षिकीय क्वांटम तरंग समीकरण प्राप्त करने में एक प्रमुख घटक के रूप में

सहसंयोजक होने के लिए सापेक्षवादी तरंग समीकरण 4-सदिश का उपयोग करते हैं।[3][7]

मानक SR 4-सदिश से प्रारंभ करें:[1]*4-स्थिति

  • 4- वेग
  • 4-गति
  • 4-वेवसदिश
  • 4-ग्रेडिएंट

पिछले अनुभागों से निम्नलिखित सरल संबंधों पर ध्यान दें, जहां प्रत्येक 4-सदिश लोरेंत्ज़ स्केलर द्वारा दूसरे से संबंधित है:

  • 4- वेग , कहाँ उचित समय है
  • 4-गति , कहाँ शेष द्रव्यमान है
  • 4-वेवसदिश , जो प्लैंक-आइंस्टीन संबंध और डी ब्रोगली पदार्थ तरंग संबंध का 4-सदिश संस्करण है
  • 4-ग्रेडिएंट , जो जटिल-मूल्यवान समतल तरंगों का 4-ग्रेडिएंट संस्करण है

अब, मानक लोरेन्ट्ज़ स्केलर उत्पाद नियम को हर एक पर लागू करें:

अंतिम समीकरण (4-ग्रेडिएंट स्केलर उत्पाद के साथ) एक मौलिक क्वांटम संबंध है।

जब लोरेंत्ज़ स्केलर फ़ील्ड पर लागू किया जाता है , क्लेन-गॉर्डन समीकरण प्राप्त करता है, जो क्वांटम सापेक्षतावादी तरंग समीकरणों का सबसे बुनियादी है:[7]: 5–8 

श्रोडिंगर समीकरण कम-वेग सीमित मामला (गणित) है (|v| ≪ c) क्लेन-गॉर्डन समीकरण का।[7]: 7–8 

यदि क्वांटम संबंध को 4-सदिश क्षेत्र पर लागू किया जाता है लोरेंत्ज़ स्केलर फ़ील्ड के बजाय , तो किसी को प्रोका समीकरण मिलता है:[7]: 361 

यदि बाकी द्रव्यमान शब्द शून्य (प्रकाश जैसे कण) पर सेट है, तो यह मुक्त मैक्सवेल समीकरण देता है:
न्यूनतम युग्मन नियम का उपयोग करके अधिक जटिल रूपों और अंतःक्रियाओं को प्राप्त किया जा सकता है:

=== RQM सहसंयोजक व्युत्पन्न (आंतरिक कण रिक्त स्थान) === के एक घटक के रूप में आधुनिक प्राथमिक कण कण भौतिकी में, एक गेज सहसंयोजक व्युत्पन्न को परिभाषित किया जा सकता है जो अतिरिक्त आरक्यूएम फ़ील्ड्स (आंतरिक कण रिक्त स्थान) का उपयोग करता है जो अब अस्तित्व में है।

शास्त्रीय ईएम (प्राकृतिक इकाइयों में) से ज्ञात संस्करण है:[3]: 39 

मानक मॉडल की मौलिक बातचीत के लिए पूर्ण सहसंयोजक व्युत्पन्न जिसके बारे में हम वर्तमान में (प्राकृतिक इकाइयों में) जानते हैं:[3]: 35–53 

या
जहां अदिश गुणन योग () यहां आंतरिक रिक्त स्थान देखें, टेंसर इंडेक्स नहीं:

युग्मन स्थिरांक मनमाना संख्याएँ हैं जिन्हें प्रयोग से खोजा जाना चाहिए। यह जोर देने योग्य है कि गैर-अबेलियन गेज सिद्धांत के लिए | गैर-अबेलियन परिवर्तन एक बार एक निरूपण के लिए नियत हैं, वे सभी निरूपणों के लिए जाने जाते हैं।

इन आंतरिक कण स्थानों को आनुभविक रूप से खोजा गया है।[3]: 47 

व्युत्पत्ति

तीन आयामों में, ग्रेडिएंट ऑपरेटर स्केलर फ़ील्ड को सदिश फ़ील्ड में मैप करता है जैसे कि सदिश फ़ील्ड में किसी भी दो बिंदुओं के बीच की रेखा इन दो बिंदुओं पर स्केलर फ़ील्ड के बीच के अंतर के बराबर होती है। इसके आधार पर, यह गलत लग सकता है कि ग्रेडिएंट का 4 आयामों तक प्राकृतिक विस्तार होना चाहिए:

जो गलत है।

हालाँकि, एक लाइन इंटीग्रल में सदिश डॉट उत्पाद का अनुप्रयोग शामिल होता है, और जब इसे 4-आयामी स्पेसटाइम तक बढ़ाया जाता है, तो उपयोग किए गए सम्मेलन के आधार पर या तो स्थानिक समन्वय या समय समन्वय के लिए संकेत का परिवर्तन शुरू किया जाता है। यह स्पेसटाइम की गैर-यूक्लिडियन प्रकृति के कारण है। इस लेख में, हम स्थानिक निर्देशांक (समय-सकारात्मक मीट्रिक सम्मेलन) पर एक नकारात्मक चिह्न लगाते हैं ). (1/सी) का कारक सही आयामी विश्लेषण रखना है, [लंबाई]−1, 4-सदिश और (-1) के सभी घटकों के लिए 4-ग्रेडिएंट लोरेंत्ज़ सहप्रसरण रखना है। उपरोक्त अभिव्यक्ति में इन दो सुधारों को जोड़ने से 4-ग्रेडिएंट की सही परिभाषा मिलती है:[1]: 55–56 [3]: 16 


यह भी देखें

संदर्भ

सन्दर्भों के बारे में नोट

भौतिकी में स्केलर, 4-सदिश और टेन्सर के उपयोग के संबंध में, विभिन्न लेखक समान समीकरणों के लिए थोड़े भिन्न संकेतन का उपयोग करते हैं। उदाहरण के लिए, कुछ उपयोग अपरिवर्तनीय विश्राम द्रव्यमान के लिए, अन्य उपयोग करते हैं अपरिवर्तनीय विश्राम द्रव्यमान और उपयोग के लिए सापेक्ष द्रव्यमान के लिए। कई लेखक के कारक निर्धारित करते हैं और और आयामहीन एकता के लिए। अन्य कुछ या सभी स्थिरांक दिखाते हैं। कुछ लेखक उपयोग करते हैं वेग के लिए, अन्य उपयोग करते हैं . कुछ प्रयोग करते हैं 4-वेवसदिश के रूप में (एक मनमाना उदाहरण चुनने के लिए)। दूसरे इस्तेमाल करते हैं या या या या या , आदि कुछ 4-वेवसदिश लिखते हैं , कुछ के रूप में या या या या या . कुछ यह सुनिश्चित करेंगे कि आयामी इकाइयां 4-सदिश से मेल खाती हैं, अन्य नहीं। कुछ 4-सदिश नाम में अस्थायी घटक को संदर्भित करते हैं, अन्य 4-सदिश नाम में स्थानिक घटक को संदर्भित करते हैं। कुछ इसे पूरी किताब में मिलाते हैं, कभी एक का उपयोग करते हैं तो बाद में दूसरे का। कुछ मीट्रिक का उपयोग करते हैं (+ − − −), अन्य मीट्रिक का उपयोग करते हैं (− + + +). कुछ 4-सदिश का उपयोग नहीं करते हैं, लेकिन सब कुछ पुरानी शैली ई और 3-स्पेस सदिश 'पी' के रूप में करते हैं। बात यह है कि, ये सभी केवल सांकेतिक शैली हैं, जिनमें कुछ दूसरों की तुलना में अधिक स्पष्ट और संक्षिप्त हैं। जब तक कोई संपूर्ण व्युत्पत्ति में एक सुसंगत शैली का उपयोग करता है, तब तक भौतिकी समान है।[7]: 2–4 

  1. 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 Rindler, Wolfgang (1991). विशेष सापेक्षता का परिचय (2nd ed.). Oxford Science Publications. ISBN 0-19-853952-5.
  2. 2.0 2.1 The Cambridge Handbook of Physics Formulas, G. Woan, Cambridge University Press, 2010, ISBN 978-0-521-57507-2
  3. 3.00 3.01 3.02 3.03 3.04 3.05 3.06 3.07 3.08 3.09 3.10 Kane, Gordon (1994). Modern Elementary Particle Physics: The Fundamental Particles and Forces (Updated ed.). Addison-Wesley Publishing Co. ISBN 0-201-62460-5.
  4. 4.0 4.1 4.2 4.3 4.4 Shultz, Bernard F. (1985). सामान्य सापेक्षता में पहला कोर्स (1st ed.). Cambridge University Press. ISBN 0-521-27703-5.
  5. 5.0 5.1 5.2 5.3 Sudbury, Anthony (1986). Quantum mechanics and the particles of nature: An outline for mathematicians (1st ed.). Cambridge University Press. ISBN 0-521-27765-5.
  6. 6.0 6.1 6.2 6.3 Carroll, Sean M. (2004). An Introduction to General Relativity: Spacetime and Geometry (1st ed.). Addison-Wesley Publishing Co. ISBN 0-8053-8732-3.
  7. 7.00 7.01 7.02 7.03 7.04 7.05 7.06 7.07 7.08 7.09 7.10 7.11 7.12 7.13 7.14 7.15 Greiner, Walter (2000). Relativistic Quantum Mechanics: Wave Equations (3rd ed.). Springer. ISBN 3-540-67457-8.

अग्रिम पठन

  • S. Hildebrandt, "Analysis II" (Calculus II), ISBN 3-540-43970-6, 2003
  • L.C. Evans, "Partial differential equations", A.M.Society, Grad.Studies Vol.19, 1988
  • J.D. Jackson, "Classical Electrodynamics" Chapter 11, Wiley ISBN 0-471-30932-X