पोंट्रीगिन वर्ग: Difference between revisions

From Vigyanwiki
Line 13: Line 13:
कुल पोंट्रीगिन वर्ग
कुल पोंट्रीगिन वर्ग
:<math>p(E)=1+p_1(E)+p_2(E)+\cdots\in H^*(M,\Z),</math>
:<math>p(E)=1+p_1(E)+p_2(E)+\cdots\in H^*(M,\Z),</math>
(मॉड्यूलो 2-टोरसन) के संबंध में गुणक है
(मॉड्यूलो 2-टोरसन) सदिश समूहों के विटनी योग के सम्बन्ध में गुणक हैं, अर्थात
विभेदक ज्यामिति और टोपोलॉजी की शब्दावली#वेक्टर बंडलों की, यानी,
:<math>2p(E\oplus F)=2p(E)\smile p(F)</math>
:<math>2p(E\oplus F)=2p(E)\smile p(F)</math>
एम के ऊपर दो वेक्टर बंडल ई और एफ के लिए। व्यक्तिगत पोंट्रीगिन वर्गों पी के संदर्भ में<sub>k</sub>,  
M के ऊपर दो सदिश समूह E और F के लिए होता हैं। एकल पोंट्रीगिन वर्गों P<sub>k</sub> के सम्बन्ध में,
:<math>2p_1(E\oplus F)=2p_1(E)+2p_1(F),</math>
:<math>2p_1(E\oplus F)=2p_1(E)+2p_1(F),</math>
:<math>2p_2(E\oplus F)=2p_2(E)+2p_1(E)\smile p_1(F)+2p_2(F)</math>
:<math>2p_2(E\oplus F)=2p_2(E)+2p_1(E)\smile p_1(F)+2p_2(F)</math>
और इसी तरह।
और इसी प्रकार होता हैं।


वेक्टर बंडल के पोंट्रीगिन वर्गों और स्टिफ़ेल-व्हिटनी वर्गों का लुप्त होना यह गारंटी नहीं देता है कि वेक्टर बंडल तुच्छ है। उदाहरण के लिए, वेक्टर बंडल#वेक्टर बंडल मॉर्फिज्म तक, एक अद्वितीय गैर-तुच्छ रैंक 10 वेक्टर बंडल है <math>E_{10}</math> N-गोले|9-गोले के ऊपर। ([[क्लचिंग निर्माण]] के लिए <math>E_{10}</math> ऑर्थोगोनल समूह#होमोटोपी समूहों से उत्पन्न होता है <math>\pi_8(\mathrm{O}(10)) = \Z/2\Z</math>.) पोंट्रीगिन कक्षाएं और स्टिफ़ेल-व्हिटनी कक्षाएं सभी गायब हो जाती हैं: पोंट्रीगिन कक्षाएं 9 डिग्री में मौजूद नहीं हैं, और स्टिफ़ेल-व्हिटनी कक्षा डब्ल्यू<sub>9</sub> का<sub>10</sub> स्टिफ़ेल-व्हिटनी वर्ग द्वारा गायब हो जाता है#स्टीनरोड बीजगणित पर संबंध<sub>9</sub> = डब्ल्यू<sub>1</sub>w<sub>8</sub> + वर्ग<sup>1</sup>(v<sub>8</sub>). इसके अलावा, यह वेक्टर बंडल निश्चित रूप से गैर-तुच्छ है, यानी अंतर ज्यामिति और टोपोलॉजी की शब्दावली # ई का डब्ल्यू<sub>10</sub> किसी भी तुच्छ बंडल के साथ गैर-तुच्छ रहता है। {{Harv|Hatcher|2009|p=76}}
सदिश समूहों के पोंट्रीगिन वर्गों और स्टिफ़ेल-व्हिटनी वर्गों का लुप्त होना यह निश्चितता नहीं देता है कि सदिश समूह नगण्य हैं। उदाहरण के लिए, सदिश समूह समरूपता तक, एक अद्वितीय स्तर 10 सदिश समूह है <math>E_{10}</math> N-गोले, 9-गोले के ऊपर नगण्य नहीं हैं। ([[क्लचिंग निर्माण|क्लचिंग फलन]] के लिए <math>E_{10}</math> समस्थेय समूहों <math>\pi_8(\mathrm{O}(10)) = \Z/2\Z</math>) से उत्पन्न होता है। पोंट्रीगिन वर्ग और स्टिफ़ेल-व्हिटनी वर्ग सभी समाप्त हो जाती हैं: पोंट्रीगिन वर्ग  9 अंश में उपस्थित नहीं हैं, और स्टिफ़ेल-व्हिटनी वर्ग E<sub>10</sub> का w<sub>9</sub> वू सूत्र w<sub>9</sub> = w<sub>1</sub>w<sub>8</sub> + Sq<sup>1</sup>(w<sub>8</sub>) द्वारा समाप्त हो जाता है। इसके अतिरिक्त, यह सदिश समूह निश्चित रूप से नगण्य नहीं हैं, अर्थात E<sub>10</sub> के साथ कोई भी नगण्य समूह का व्हिटनी योग नगण्य नहीं रहता हैं। {{Harv|Hatcher|2009|p=76}}


हमारे पास 2k-आयामी वेक्टर बंडल E दिया गया है
दिया हैं की हमारे पास 2k-आयामी सदिश समूह E है
:<math>p_k(E)=e(E)\smile e(E),</math>
:<math>p_k(E)=e(E)\smile e(E),</math>
जहां e(E) E के [[यूलर वर्ग]] को दर्शाता है, और <math>\smile</math> कोहोमोलॉजी कक्षाओं के [[कप उत्पाद]] को दर्शाता है।
जहां e(E) E के [[यूलर वर्ग]] को दर्शाता है, और <math>\smile</math> समरूप समूहों के [[कप उत्पाद|कप गुणन]] को दर्शाता है।


=== पोंट्रीगिन कक्षाएं और वक्रता ===
=== पोंट्रीगिन कक्षाएं और वक्रता ===

Revision as of 11:04, 13 July 2023

गणित में, पोंट्रीगिन वर्ग, जिनका नाम लेव पोंट्रीगिन के नाम पर रखा गया है, वास्तविक सदिश समूह के कुछ विशिष्ट वर्ग हैं। पोंट्रीगिन वर्ग चार के गुणज अंश वाले सह समरूप समूहों में स्थित हैं।

परिभाषा

M के ऊपर एक वास्तविक सदिश समूह E दिया गया है, यह k-th पोंट्रीगिन वर्ग से परिभाषित किया जाता है

जहाँ:

  • के रूपरेखा का -वाँ चेर्न वर्ग ,E को दर्शाता है,
  • -पूर्णांक गुणांक के साथ M का सह-समरूपता समूह है।

परिमेय पोंट्रीगिन वर्ग , में की चित्र के रूप में परिभाषित किया गया है, -परिमेय संख्या गुणांक के साथ M का सह-समरूप समूह हैं।

गुण

कुल पोंट्रीगिन वर्ग

(मॉड्यूलो 2-टोरसन) सदिश समूहों के विटनी योग के सम्बन्ध में गुणक हैं, अर्थात

M के ऊपर दो सदिश समूह E और F के लिए होता हैं। एकल पोंट्रीगिन वर्गों Pk के सम्बन्ध में,

और इसी प्रकार होता हैं।

सदिश समूहों के पोंट्रीगिन वर्गों और स्टिफ़ेल-व्हिटनी वर्गों का लुप्त होना यह निश्चितता नहीं देता है कि सदिश समूह नगण्य हैं। उदाहरण के लिए, सदिश समूह समरूपता तक, एक अद्वितीय स्तर 10 सदिश समूह है N-गोले, 9-गोले के ऊपर नगण्य नहीं हैं। (क्लचिंग फलन के लिए समस्थेय समूहों ) से उत्पन्न होता है। पोंट्रीगिन वर्ग और स्टिफ़ेल-व्हिटनी वर्ग सभी समाप्त हो जाती हैं: पोंट्रीगिन वर्ग 9 अंश में उपस्थित नहीं हैं, और स्टिफ़ेल-व्हिटनी वर्ग E10 का w9 वू सूत्र w9 = w1w8 + Sq1(w8) द्वारा समाप्त हो जाता है। इसके अतिरिक्त, यह सदिश समूह निश्चित रूप से नगण्य नहीं हैं, अर्थात E10 के साथ कोई भी नगण्य समूह का व्हिटनी योग नगण्य नहीं रहता हैं। (Hatcher 2009, p. 76)

दिया हैं की हमारे पास 2k-आयामी सदिश समूह E है

जहां e(E) E के यूलर वर्ग को दर्शाता है, और समरूप समूहों के कप गुणन को दर्शाता है।

पोंट्रीगिन कक्षाएं और वक्रता

जैसा कि 1948 के आसपास शिंग-शेन चेर्न और आंद्रे वेइल द्वारा दिखाया गया था, तर्कसंगत पोंट्रीगिन कक्षाएं

विभेदक रूपों के रूप में प्रस्तुत किया जा सकता है जो वेक्टर बंडल के वक्रता रूप पर बहुपद रूप से निर्भर करते हैं। इस चेर्न-वेइल सिद्धांत ने बीजगणितीय टोपोलॉजी और वैश्विक अंतर ज्यामिति के बीच एक प्रमुख संबंध का खुलासा किया।

एक कनेक्शन प्रपत्र से सुसज्जित एन-डायमेंशनल विभेदक अनेक गुना एम पर एक वेक्टर बंडल ई के लिए, कुल पोंट्रीगिन वर्ग को इस प्रकार व्यक्त किया गया है

जहां Ω वक्रता रूप को दर्शाता है, और H*dR(एम) डॉ कहलमज गर्भाशय समूहों को दर्शाता है।[1]


मैनिफोल्ड की पोंट्रीगिन कक्षाएं

स्मूथ मैनिफोल्ड के पोंट्रीगिन वर्गों को इसके स्पर्शरेखा बंडल के पोंट्रीगिन वर्गों के रूप में परिभाषित किया गया है।

सर्गेई नोविकोव (गणितज्ञ) ने 1966 में साबित किया कि यदि दो कॉम्पैक्ट, उन्मुख, चिकनी मैनिफोल्ड होमियोमोर्फिज्म हैं तो उनके तर्कसंगत पोंट्रीगिन वर्ग पीk(एम, 'क्यू') एच में4k(M, 'Q') समान हैं।

यदि आयाम कम से कम पांच है, तो दिए गए होमोटोपी#होमोटोपी समतुल्य रिक्त स्थान और पोंट्रीगिन कक्षाओं के साथ अधिकतम सीमित रूप से कई अलग-अलग चिकनी मैनिफोल्ड हैं।

चेर्न कक्षाओं से पोंट्रीगिन कक्षाएं

एक वास्तविक वेक्टर बंडल की पोंट्रीगिन कक्षाएं इसकी जटिलता के चेर्न वर्गों द्वारा पूरी तरह से निर्धारित किया जा सकता है। यह इस तथ्य से पता चलता है कि , व्हिटनी योग सूत्र, और इसके जटिल संयुग्म बंडल के चेर्न वर्गों के गुण। वह है, और . फिर, इसने संबंध <ब्लॉककोट> दिया[2]उदाहरण के लिए, हम एक वक्र और एक सतह पर एक वेक्टर बंडल के पोंट्रीगिन वर्गों को खोजने के लिए इस सूत्र को लागू कर सकते हैं। एक वक्र के लिए, हमारे पास <ब्लॉककोट> हैइसलिए जटिल वेक्टर बंडलों के सभी पोंट्रीगिन वर्ग तुच्छ हैं। एक सतह पर, हमारे पास <ब्लॉककोट> है</ब्लॉकउद्धरण>दिखा रहा है . ऑन लाइन बंडलों से यह और भी सरल हो जाता है आयाम कारणों से.

क्वार्टिक K3 सतह पर पोंट्रीगिन कक्षाएं

उस चतुर्थक बहुपद को याद करें जिसका लुप्त होने वाला स्थान है एक चिकनी उपविविधता K3 सतह है। यदि हम सामान्य अनुक्रम<ब्लॉककोट> का उपयोग करते हैंहम

पा सकते हैं</ब्लॉकउद्धरण>दिखा रहा है और . तब से चार बिंदुओं से मेल खाता है, बेज़ाउट के लेम्मा के कारण, हमारे पास दूसरा चेर्न नंबर है . तब से इस मामले में, हमारे पास है

. इस संख्या का उपयोग गोले के तीसरे स्थिर समरूप समूह की गणना करने के लिए किया जा सकता है।[3]


पोंट्रीगिन संख्या

पोंट्रीगिन संख्याएं स्मूथ कई गुना के कुछ टोपोलॉजिकल अपरिवर्तनीय हैं। यदि एम का आयाम 4 से विभाज्य नहीं है, तो मैनिफोल्ड एम की प्रत्येक पोंट्रीगिन संख्या गायब हो जाती है। इसे मैनिफोल्ड एम के पोंट्रीगिन वर्गों के संदर्भ में निम्नानुसार परिभाषित किया गया है:

एक सहजता दी गई -आयामी मैनिफोल्ड एम और प्राकृतिक संख्याओं का संग्रह

ऐसा है कि ,

पोंट्रीगिन संख्या द्वारा परिभाषित किया गया है

कहाँ के-वें पोंट्रीगिन वर्ग और [एम] एम के मौलिक वर्ग को दर्शाता है।

गुण

  1. पोंट्रीगिन संख्याएं उन्मुख सह-बॉर्डिज्म अपरिवर्तनीय हैं; और स्टिफ़ेल-व्हिटनी संख्याओं के साथ मिलकर वे एक ओरिएंटेड मैनिफोल्ड के ओरिएंटेड कोबॉर्डिज्म वर्ग का निर्धारण करते हैं।

बंद रीमैनियन मैनिफोल्ड्स (साथ ही पोंट्रीगिन वर्गों) की #पोंट्रीगिन संख्याओं की गणना रीमैनियन मैनिफोल्ड के वक्रता टेंसर से कुछ बहुपदों के अभिन्न अंग के रूप में की जा सकती है।

  1. इनवेरिएंट जैसे हस्ताक्षर (टोपोलॉजी) और जीनस|-जीनस को पोंट्रीगिन संख्याओं के माध्यम से व्यक्त किया जा सकता है। हस्ताक्षर देने वाले पोंट्रीगिन संख्याओं के रैखिक संयोजन का वर्णन करने वाले प्रमेय के लिए हिरज़ेब्रुक हस्ताक्षर प्रमेय देखें।

सामान्यीकरण

चतुर्धातुक संरचना वाले वेक्टर बंडलों के लिए एक चतुर्धातुक पोंट्रीगिन वर्ग भी है।

यह भी देखें

  • चेर्न-साइमन्स फॉर्म
  • हिर्ज़ेब्रुच हस्ताक्षर प्रमेय

संदर्भ

  1. "De Rham Cohomology - an overview | ScienceDirect Topics". www.sciencedirect.com. Retrieved 2022-02-02.
  2. Mclean, Mark. "पोंट्रीगिन क्लासेस" (PDF). Archived (PDF) from the original on 2016-11-08.
  3. "क्षेत्रों और सह-बॉर्डिज्म के समरूप समूहों की संगणना का एक सर्वेक्षण" (PDF). p. 16. Archived (PDF) from the original on 2016-01-22.


बाहरी संबंध