क्वांटम समूह: Difference between revisions

From Vigyanwiki
Line 84: Line 84:




:*<गणित>c_0 = 1,</गणित>
:*<math>c_0 = 1,</math>
:*<गणित>c_\lambda c_\mu = c_{\lambda + \mu},</math> सभी भार ''λ'' और ''μ'' के लिए,
:*<math>c_\lambda c_\mu = c_{\lambda + \mu},</math> सभी भारों के लिए λ और μ,
:*<गणित>c_{2\alpha_i} = 1</गणित> सभी ''i'' के लिए
:*<math>c_{2\alpha_i} = 1</math> सभी के लिए ''i''.
 


विशेष रुचि के उच्चतम-भार वाले अभ्यावेदन और संबंधित उच्चतम-भार वाले अनुखण्ड  हैं। उच्चतम भार अनुखण्ड  एक भार  सदिश v द्वारा उत्पन्न अनुखण्ड  है, जो k के अधीन है<sub>''λ''</sub> · में = डी<sub>λ</sub>v सभी भारों के लिए μ, और e<sub>i</sub>· सभी i के लिए v = 0. इसी तरह, एक क्वांटम समूह में सबसे कम भार प्रतिनिधित्व और सबसे कम भार अनुखण्ड  हो सकता है, यानी एक भार  सदिश वी द्वारा उत्पन्न अनुखण्ड  , के अधीन<sub>λ</sub>· में = डी<sub>λ</sub>v सभी भारों के लिए λ, और f<sub>i</sub>· सभी i के लिए v = 0.
विशेष रुचि के उच्चतम-भार वाले अभ्यावेदन और संबंधित उच्चतम-भार वाले अनुखण्ड  हैं। उच्चतम भार अनुखण्ड  एक भार  सदिश v द्वारा उत्पन्न अनुखण्ड  है, जो k के अधीन है<sub>''λ''</sub> · में = डी<sub>λ</sub>v सभी भारों के लिए μ, और e<sub>i</sub>· सभी i के लिए v = 0. इसी तरह, एक क्वांटम समूह में सबसे कम भार प्रतिनिधित्व और सबसे कम भार अनुखण्ड  हो सकता है, यानी एक भार  सदिश वी द्वारा उत्पन्न अनुखण्ड  , के अधीन<sub>λ</sub>· में = डी<sub>λ</sub>v सभी भारों के लिए λ, और f<sub>i</sub>· सभी i के लिए v = 0.
Line 109: Line 110:
उच्चतम भार वाले अनुखण्ड  के टेंसर उत्पाद के मामले में, सबअनुखण्ड  में इसका अपघटन केएसी-मूडी बीजगणित के संबंधित अनुखण्ड  के टेंसर उत्पाद के समान होता है (उच्चतम भार समान होते हैं, जैसे उनकी बहुलताएं होती हैं)।
उच्चतम भार वाले अनुखण्ड  के टेंसर उत्पाद के मामले में, सबअनुखण्ड  में इसका अपघटन केएसी-मूडी बीजगणित के संबंधित अनुखण्ड  के टेंसर उत्पाद के समान होता है (उच्चतम भार समान होते हैं, जैसे उनकी बहुलताएं होती हैं)।


[[Category:All articles with unsourced statements|Quantum Group]]
[[Category:Articles with hatnote templates targeting a nonexistent page|Quantum Group]]
[[Category:Articles with invalid date parameter in template|Quantum Group]]
[[Category:Articles with unsourced statements from July 2016|Quantum Group]]
[[Category:Collapse templates|Quantum Group]]
[[Category:Created On 09/07/2023|Quantum Group]]
[[Category:Machine Translated Page|Quantum Group]]
[[Category:Mathematics sidebar templates|Quantum Group]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists|Quantum Group]]


====केस 2: क्यू एकता की जड़ है====
====केस 2: क्यू एकता की जड़ है====
Line 149: Line 140:
उपरोक्त यू जैसे क्वांटम समूहों के परिमित भागफल का वर्णन करने में काफी प्रगति हुई है<sub>q</sub>('जी') क्यू के लिए<sup>n</sup> = 1; कोई सामान्यतः 'नुकीले' [[हॉपफ बीजगणित]] के वर्ग पर विचार करता है, जिसका अर्थ है कि सभी उप-आकार 1-आयामी हैं और इस प्रकार उनका योग एक समूह बनता है जिसे 'कोरैडिकल' कहा जाता है:
उपरोक्त यू जैसे क्वांटम समूहों के परिमित भागफल का वर्णन करने में काफी प्रगति हुई है<sub>q</sub>('जी') क्यू के लिए<sup>n</sup> = 1; कोई सामान्यतः 'नुकीले' [[हॉपफ बीजगणित]] के वर्ग पर विचार करता है, जिसका अर्थ है कि सभी उप-आकार 1-आयामी हैं और इस प्रकार उनका योग एक समूह बनता है जिसे 'कोरैडिकल' कहा जाता है:


* 2002 में एच.-जे. श्नाइडर और एन. एंड्रुस्किवित्च <ref>Andruskiewitsch, Schneider: Pointed Hopf algebras, New directions in Hopf algebras, 1–68, Math. Sci. Res. Inst. Publ., 43, Cambridge Univ. Press, Cambridge, 2002.</ref> एबेलियन सह-कट्टरपंथी समूह (अभाज्य 2, 3, 5, 7 को छोड़कर) के साथ नुकीले हॉपफ बीजगणित के अपने वर्गीकरण को समाप्त किया, विशेष रूप से यू के उपरोक्त परिमित भागफल के रूप में<sub>q</sub>('g') सामान्य सेमीसिम्पल लाई बीजगणित की तरह E′s (बोरेल भाग), दोहरे F′s और K′s (कार्टन बीजगणित) में विघटित होता है:
*2002 में एच.-जे. श्नाइडर और एन. एंड्रुस्किवित्च <ref>Andruskiewitsch, Schneider: Pointed Hopf algebras, New directions in Hopf algebras, 1–68, Math. Sci. Res. Inst. Publ., 43, Cambridge Univ. Press, Cambridge, 2002.</ref> एबेलियन सह-कट्टरपंथी समूह (अभाज्य 2, 3, 5, 7 को छोड़कर) के साथ नुकीले हॉपफ बीजगणित के अपने वर्गीकरण को समाप्त किया, विशेष रूप से यू के उपरोक्त परिमित भागफल के रूप में<sub>q</sub>('g') सामान्य सेमीसिम्पल लाई बीजगणित की तरह E′s (बोरेल भाग), दोहरे F′s और K′s (कार्टन बीजगणित) में विघटित होता है:
::<math>\left(\mathfrak{B}(V)\otimes k[\mathbf{Z}^n]\otimes\mathfrak{B}(V^*)\right)^\sigma</math>
::<math>\left(\mathfrak{B}(V)\otimes k[\mathbf{Z}^n]\otimes\mathfrak{B}(V^*)\right)^\sigma</math>
:यहां, जैसा कि शास्त्रीय सिद्धांत में V, E's द्वारा फैलाए गए आयाम n का एक [[ब्रेडेड वेक्टर स्पेस|ब्रेडेड  सदिश स्पेस]] है, और σ (एक तथाकथित कोसिलस ट्विस्ट) E's और F's के बीच गैर-तुच्छ 'लिंकिंग' बनाता है। ध्यान दें कि शास्त्रीय सिद्धांत के विपरीत, दो से अधिक जुड़े हुए घटक प्रकट हो सकते हैं। 'क्वांटम बोरेल बीजगणित' की भूमिका निकोलस बीजगणित द्वारा ली गई है <math>\mathfrak{B}(V)</math> of the braided vectorspace. [[File:Dynkin4A3lift.png|thumb|चार A3 प्रतियों को जोड़ने वाले नुकीले हॉपफ बीजगणित के लिए सामान्यीकृत डायनकिन आरेख]]* सामान्यीकृत डायनकिन आरेखों के संदर्भ में एबेलियन समूहों के लिए आई. हेकेनबर्गर का निकोल्स बीजगणित एक महत्वपूर्ण घटक था।<ref>Heckenberger: Nichols algebras of diagonal type and arithmetic root systems, Habilitation thesis 2005.</ref> जब छोटे अभाज्य संख्याएँ मौजूद होती हैं, तो कुछ विदेशी उदाहरण, जैसे कि त्रिभुज, घटित होते हैं (रैंक 3 डंकिन आरेख का चित्र भी देखें)।
: यहां, जैसा कि शास्त्रीय सिद्धांत में V, E's द्वारा फैलाए गए आयाम n का एक [[ब्रेडेड वेक्टर स्पेस|ब्रेडेड  सदिश स्पेस]] है, और σ (एक तथाकथित कोसिलस ट्विस्ट) E's और F's के बीच गैर-तुच्छ 'लिंकिंग' बनाता है। ध्यान दें कि शास्त्रीय सिद्धांत के विपरीत, दो से अधिक जुड़े हुए घटक प्रकट हो सकते हैं। 'क्वांटम बोरेल बीजगणित' की भूमिका निकोलस बीजगणित द्वारा ली गई है <math>\mathfrak{B}(V)</math> of the braided vectorspace. [[File:Dynkin4A3lift.png|thumb|चार A3 प्रतियों को जोड़ने वाले नुकीले हॉपफ बीजगणित के लिए सामान्यीकृत डायनकिन आरेख]]* सामान्यीकृत डायनकिन आरेखों के संदर्भ में एबेलियन समूहों के लिए आई. हेकेनबर्गर का निकोल्स बीजगणित एक महत्वपूर्ण घटक था।<ref>Heckenberger: Nichols algebras of diagonal type and arithmetic root systems, Habilitation thesis 2005.</ref> जब छोटे अभाज्य संख्याएँ मौजूद होती हैं, तो कुछ विदेशी उदाहरण, जैसे कि त्रिभुज, घटित होते हैं (रैंक 3 डंकिन आरेख का चित्र भी देखें)।
[[File:Dynkin Diagram Triangle.jpg|thumb|एक परिमित-आयामी निकोल्स बीजगणित से संबंधित रैंक 3 डायनकिन आरेख]]* इस बीच, श्नाइडर और हेकेनबर्गर<ref>Heckenberger, Schneider: Root system and Weyl gruppoid for Nichols algebras, 2008.</ref> आम तौर पर नॉनबेलियन मामले में भी एक अंकगणितीय जड़ प्रणाली के अस्तित्व को साबित किया है, जिससे पोंकारे-बिरखॉफ-विट प्रमेय का निर्माण होता है, जैसा कि एबेलियन मामले में खारचेको द्वारा सिद्ध किया गया है (परिमित आयाम पर धारणा के बिना)। इसका उपयोग किया जा सकता है<ref>Heckenberger, Schneider: Right coideal subalgebras of Nichols algebras and the Duflo order of the Weyl grupoid, 2009.</ref> विशिष्ट मामलों पर यू<sub>q</sub>('जी') और उदाहरण के लिए समझाता है इन क्वांटम समूहों के कुछ सहबद्ध उपबीजगणित और ली बीजगणित 'जी' के वेइल समूह के क्रम के बीच संख्यात्मक संयोग।
[[File:Dynkin Diagram Triangle.jpg|thumb|एक परिमित-आयामी निकोल्स बीजगणित से संबंधित रैंक 3 डायनकिन आरेख]]* इस बीच, श्नाइडर और हेकेनबर्गर<ref>Heckenberger, Schneider: Root system and Weyl gruppoid for Nichols algebras, 2008.</ref> आम तौर पर नॉनबेलियन मामले में भी एक अंकगणितीय जड़ प्रणाली के अस्तित्व को साबित किया है, जिससे पोंकारे-बिरखॉफ-विट प्रमेय का निर्माण होता है, जैसा कि एबेलियन मामले में खारचेको द्वारा सिद्ध किया गया है (परिमित आयाम पर धारणा के बिना)। इसका उपयोग किया जा सकता है<ref>Heckenberger, Schneider: Right coideal subalgebras of Nichols algebras and the Duflo order of the Weyl grupoid, 2009.</ref> विशिष्ट मामलों पर यू<sub>q</sub>('जी') और उदाहरण के लिए समझाता है इन क्वांटम समूहों के कुछ सहबद्ध उपबीजगणित और ली बीजगणित 'जी' के वेइल समूह के क्रम के बीच संख्यात्मक संयोग।


Line 193: Line 184:


===उदाहरण===
===उदाहरण===
कॉम्पैक्ट आव्यूह क्वांटम समूह का एक उदाहरण एसयू है<sub>μ</sub>(2), जहां पैरामीटर μ एक सकारात्मक वास्तविक संख्या है। तो एसयू<sub>μ</sub>(2) = (सी(एसयू<sub>μ</sub>(2)), यू), जहां सी(एसयू<sub>μ</sub>(2)) α और γ द्वारा उत्पन्न C*-बीजगणित है, जिसके अधीन है
कॉम्पैक्ट आव्यूह क्वांटम समूह का एक उदाहरण एसयू है<sub>μ</sub>(2), जहां पैरामीटर μ एक सकारात्मक वास्तविक संख्या है। तो एसयू<sub>μ</sub>(2) = (सी(एसयू<sub>μ</sub>(2)), यू), जहां सी(एसयू<sub>μ</sub>(2)) α और γ द्वारा उत्पन्न C*-बीजगणित है, जिसके अधीन है  


:<math>\gamma \gamma^* = \gamma^* \gamma, </math>
:<math>\gamma \gamma^* = \gamma^* \gamma, </math>
Line 221: Line 212:
जबकि कॉम्पैक्ट आव्यूह स्यूडोग्रुप सामान्यतः दोहरे फ़ंक्शन बीजगणित फॉर्मूलेशन में ड्रिनफेल्ड-जिम्बो क्वांटम समूहों के संस्करण होते हैं, अतिरिक्त संरचना के साथ, बाइक्रोसप्रोडक्ट क्वांटम समूहों का एक अलग दूसरा परिवार है, जो अर्ध-सरल झूठ समूहों के बजाय हल करने योग्य विकृतियों के रूप में बढ़ते महत्व के हैं। वे लाई बीजगणित के लाई विभाजन या लाई समूहों के स्थानीय गुणनखंडन से जुड़े हुए हैं और इन्हें बीजगणित के लिए दूसरे पर कार्य करने वाले कारकों में से एक के क्रॉस उत्पाद या मैके परिमाणीकरण के रूप में देखा जा सकता है और दूसरे कारक के साथ सहउत्पाद Δ के लिए एक समान कहानी है। पहले पर वापस अभिनय करना।
जबकि कॉम्पैक्ट आव्यूह स्यूडोग्रुप सामान्यतः दोहरे फ़ंक्शन बीजगणित फॉर्मूलेशन में ड्रिनफेल्ड-जिम्बो क्वांटम समूहों के संस्करण होते हैं, अतिरिक्त संरचना के साथ, बाइक्रोसप्रोडक्ट क्वांटम समूहों का एक अलग दूसरा परिवार है, जो अर्ध-सरल झूठ समूहों के बजाय हल करने योग्य विकृतियों के रूप में बढ़ते महत्व के हैं। वे लाई बीजगणित के लाई विभाजन या लाई समूहों के स्थानीय गुणनखंडन से जुड़े हुए हैं और इन्हें बीजगणित के लिए दूसरे पर कार्य करने वाले कारकों में से एक के क्रॉस उत्पाद या मैके परिमाणीकरण के रूप में देखा जा सकता है और दूसरे कारक के साथ सहउत्पाद Δ के लिए एक समान कहानी है। पहले पर वापस अभिनय करना।


सबसे सरल गैर-तुच्छ उदाहरण स्थानीय रूप से एक-दूसरे पर कार्य करने वाली आर की दो प्रतियों से मेल खाता है और जनरेटर ''पी'', ''के'', ''के'' के साथ एक क्वांटम समूह (यहां बीजगणितीय रूप में दिया गया) में परिणत होता है।<sup>−1</sup>, कहते हैं, और सहउत्पाद
सबसे सरल गैर-तुच्छ उदाहरण स्थानीय रूप से एक-दूसरे पर कार्य करने वाली आर की दो प्रतियों से मेल खाता है और जनरेटर ''पी'', ''के'', ''के'' के साथ एक क्वांटम समूह (यहां बीजगणितीय रूप में दिया गया) में परिणत होता है।<sup>−1</sup>, कहते हैं, और सहउत्पाद  


:<math>[p, K]=h K(K-1)</math>
:<math>[p, K]=h K(K-1)</math>
Line 232: Line 223:
==यह भी देखें==
==यह भी देखें==
* हॉपफ बीजगणित
* हॉपफ बीजगणित
* बायलजेब्रा झूठ बोलना
*बायलजेब्रा झूठ बोलना
* पॉइसन-लाई समूह
*पॉइसन-लाई समूह
* क्वांटम एफ़िन बीजगणित
*क्वांटम एफ़िन बीजगणित


==टिप्पणियाँ==
==टिप्पणियाँ==
<references/>
<references />




Line 244: Line 235:
*{{cite arXiv |last= Jagannathan |first= R. |author-link= Ramaswamy Jagannathan |year= 2001 |title= Some introductory notes on quantum groups, quantum algebras, and their applications |eprint=math-ph/0105002}}
*{{cite arXiv |last= Jagannathan |first= R. |author-link= Ramaswamy Jagannathan |year= 2001 |title= Some introductory notes on quantum groups, quantum algebras, and their applications |eprint=math-ph/0105002}}
* {{Citation | last1=Kassel | first1=Christian | title=Quantum groups | publisher=Springer-Verlag | location=Berlin, New York | series=Graduate Texts in Mathematics | isbn=978-0-387-94370-1 | mr=1321145 | year=1995 | volume=155 | doi=10.1007/978-1-4612-0783-2 | url-access=registration | url=https://archive.org/details/quantumgroups0000kass }}
* {{Citation | last1=Kassel | first1=Christian | title=Quantum groups | publisher=Springer-Verlag | location=Berlin, New York | series=Graduate Texts in Mathematics | isbn=978-0-387-94370-1 | mr=1321145 | year=1995 | volume=155 | doi=10.1007/978-1-4612-0783-2 | url-access=registration | url=https://archive.org/details/quantumgroups0000kass }}
* {{cite book |last= Lusztig |first= George |year= 2010 |orig-year= 1993 |title= Introduction to Quantum Groups |url= https://books.google.com/books?id=HKPjCUiOUQ0C |location= Cambridge,&nbsp;MA |publisher= Birkhäuser |isbn= 978-0-817-64716-2 }}
*{{cite book |last= Lusztig |first= George |year= 2010 |orig-year= 1993 |title= Introduction to Quantum Groups |url= https://books.google.com/books?id=HKPjCUiOUQ0C |location= Cambridge,&nbsp;MA |publisher= Birkhäuser |isbn= 978-0-817-64716-2 }}
* {{Citation | last1=Majid | first1=Shahn | title=A quantum groups primer | publisher=Cambridge University Press | series=London Mathematical Society Lecture Note Series | isbn=978-0-521-01041-2 |mr=1904789 | year=2002 | volume=292 | doi=10.1017/CBO9780511549892}}
*{{Citation | last1=Majid | first1=Shahn | title=A quantum groups primer | publisher=Cambridge University Press | series=London Mathematical Society Lecture Note Series | isbn=978-0-521-01041-2 |mr=1904789 | year=2002 | volume=292 | doi=10.1017/CBO9780511549892}}
* {{ citation
*{{citation
   | last = Majid
   | last = Majid
   | first = Shahn
   | first = Shahn
Line 257: Line 248:
   | url = https://www.ams.org/notices/200601/what-is.pdf
   | url = https://www.ams.org/notices/200601/what-is.pdf
   | access-date = 2008-01-16 }}
   | access-date = 2008-01-16 }}
* {{citation|title=Introduction to quantum groups|journal=Reviews in Mathematical Physics|volume=10|issue=4|first1=P.|last1=Podles|first2=E.|last2=Muller|arxiv=q-alg/9704002|bibcode = 1997q.alg.....4002P|year=1998|pages=511–551|doi=10.1142/S0129055X98000173|s2cid=2596718}}
*{{citation|title=Introduction to quantum groups|journal=Reviews in Mathematical Physics|volume=10|issue=4|first1=P.|last1=Podles|first2=E.|last2=Muller|arxiv=q-alg/9704002|bibcode = 1997q.alg.....4002P|year=1998|pages=511–551|doi=10.1142/S0129055X98000173|s2cid=2596718}}
* {{cite book |last1= Shnider |first1= Steven |author1-link= Steve Shnider |last2= Sternberg |first2= Shlomo |year= 1993 |title= Quantum groups: From coalgebras to Drinfeld algebras |series= Graduate Texts in Mathematical Physics |volume= 2 |location= Cambridge,&nbsp;MA |publisher= International Press }}
* {{cite book |last1= Shnider |first1= Steven |author1-link= Steve Shnider |last2= Sternberg |first2= Shlomo |year= 1993 |title= Quantum groups: From coalgebras to Drinfeld algebras |series= Graduate Texts in Mathematical Physics |volume= 2 |location= Cambridge,&nbsp;MA |publisher= International Press }}
* {{Citation | last1=Street | first1=Ross | author1-link=Ross Street | title=Quantum groups | publisher=Cambridge University Press | series=Australian Mathematical Society Lecture Series | isbn=978-0-521-69524-4|mr=2294803 | year=2007 | volume=19 | doi=10.1017/CBO9780511618505}}
*{{Citation | last1=Street | first1=Ross | author1-link=Ross Street | title=Quantum groups | publisher=Cambridge University Press | series=Australian Mathematical Society Lecture Series | isbn=978-0-521-69524-4|mr=2294803 | year=2007 | volume=19 | doi=10.1017/CBO9780511618505}}


{{Quantum mechanics topics}}
{{Quantum mechanics topics}}
{{Authority control}}
{{Authority control}}
{{DEFAULTSORT:Quantum Group}}[[Category: क्वांटम समूह| क्वांटम समूह]] [[Category: गणितीय परिमाणीकरण]]  
{{DEFAULTSORT:Quantum Group}}
 
[[index.php?title=Category:क्वांटम समूह| क्वांटम समूह]]  
 
[[Category: गणितीय परिमाणीकरण]]  


[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 09/07/2023]]
[[Category:Created On 09/07/2023]]

Revision as of 23:14, 22 July 2023

गणित और सैद्धांतिक भौतिकी में, "क्वांटम समूह" शब्द एक ऐसे कई भिन्न प्रकार के गैर-सामयिक बीजगणितीय समूहों का संक्षेपण करता है जिनमें अतिरिक्त संरचना होती है। ये क्वांटम समूह नामक गणितीय संरचनाएँ सम्मिलित हैं, जिनमें ड्रिंफेल्ड-जिम्बो प्रकार के क्वांटम समूह, संक्षिप्त आव्यूह क्वांटम समूह, और बाईक्रॉसप्रोडक्ट क्वांटम समूह सम्मिलित होते हैं। अपने नाम के अतिरिक्त, उनके पास स्वयं एक प्राकृतिक समूह संरचना नहीं है, यद्यपि वे किसी रूप में 'समूह' के नज़दीक होते हैं।

"क्वांटम समूह" शब्द पहले क्वांटम एकीकरणीय प्रणालियों के सिद्धांत में प्रकट हुआ था, जिसे फिर व्लादिमीर ड्रिनफेल्ड और मिचियो जिम्बो ने एक विशेष प्रकार के हॉप्फ़ बीजगणित के रूप में सार्वजनिक बनाया गया। यही शब्द दूसरी भी हॉप्फ़ बीजगणितओं के लिए उपयोग किया जाता है जो गणितीय लिए समान्तर रूप से या क्लासिकल ली समूहों या ली बीजगणितओं के निग्रानीयता से अलग होते हैं, जैसे एक "बाईक्रॉसप्रोडक्ट" क्वांटम समूह जिसे शाहन मजिद ने ड्रिंफेल्ड और जिम्बो के काम के बाद थोड़ी देर बाद प्रस्तुत किया गया था।

ड्रिंफेल्ड के दृष्टिकोण से, क्वांटम समूह हॉप्फ़ बीजगणित के रूप में उत्पन्न होते हैं जो एक सहायक पैरामीटर q या h पर निर्भर करते हैं, जो q = 1 या h = 0 होने पर एक विशेष प्रकार के ली बीजगणित के सार्वभौमिक आच्छादक बीजगणित बन जाते हैं। ये ली बीजगणितएं प्रायः अर्धसरल या अफाइन होती हैं। इनसे जुड़े कुछ संबंधित दोहरे विषय भी होते हैं, जो भी हॉप्फ़ बीजगणितएं होते हैं और जिन्हें क्वांटम समूह के रूप में जाना जाता है। इन्हें भी हम क्वांटम समूह कहते हैं। ये संबंधित सेमीसिम्पल बीजगणितीय बीजगणित या एक सुसम्बद्ध ली समूह पर फलन के बीजगणित को विकृत करते हैं।

सहज अर्थ

क्वांटम समूह की खोज बहुत अप्रत्याशित थी क्योंकि यह लंबे समय से ज्ञात था कि सघन समूह और अर्धसरल ली बीजगणित "कठोर" वस्तुएं हैं, अर्थात उन्हें "विकृत" नहीं किया जा सकता। क्वांटम समूह के पीछे एक विचार था कि यदि हम एक ऐसी संरचना का विचार करें जो एक विधि से समान परंतु बड़ी हो, जैसे समूह बीजगणित सार्वभौमिक समूह का बीजगणित, तो एक समूह या आवरण बीजगणित को विकृत किया जा सकता है, यद्यपि विरूपण अब एक समूह या घेरने वाला बीजगणित नहीं रहेगा। अधिक सटीक रूप से, विरूपण को हॉपफ बीजगणित की श्रेणी के भीतर पूरा किया जा सकता है, जिन्हें क्रमविनिमेय या सहअनुक्रमिक होना आवश्यक नहीं है। एलेन कोन्स की गैर-अनुवांशिक ज्यामिति के अनुसार, विकृत वस्तु को एक गैर-अनुवांशिक यह सूचना लेनिनग्राद स्कूल द्वारा विकसित क्वांटम यांग-बैक्स्टर समीकरण और क्वांटम उलटी छिन्नन में क्वांटम समूहों की विशेष श्रेणियों के प्रयोगी होने का प्रमुख कारण था। उस समय कोई भी सहज,ज्ञान नहीं थी[1] कि ये क्वांटम समूह अन्य भी क्षेत्रों में उपयुक्त होंगे। दूसरे तरफ, बाईक्रॉसप्रोडक्ट क्वांटम समूह की श्रेणी की पहचान भिन्न थी और इसे क्वांटम भूगोल के रूप में क्वांटम गुरुत्व-समा समाधान के लिए आत्म-द्वित्वीय वस्तुएं की खोज से प्राप्त किया गया था।[2]

ड्रिनफेल्ड-जिम्बो प्रकार के क्वांटम समूह

एक प्रकार की संरचना जिसे सामान्यतः "क्वांटम समूह" कहा जाता है, व्लादिमीर ड्रिंफेल्ड और मिचिओ जिम्बो के काम में प्रकट हुई जो हॉप्फ़ बीजगणितके वर्ग में एक अर्धसरल ली बीजगणितय, और अधिक सामान्य रूप में, एक कैक-मूडी बीजगणित के सार्वभौमिक आच्छादक बीजगणित का विकृतिकरण था। उत्पन्न बीजगणित में अतिरिक्त संरचना होती है, जिससे यह एक क्वासित्रिकोण हॉपफ बीजगणित बन जाता है।

यदि A = (aij) कार्टन आव्यूह है केएसी-मूडी बीजगणित की, और q ≠ 0, 1 एक जटिल संख्या है, तो क्वांटम समूह Uq(G), जहां G वह ली बीजगणित है जिसकी कार्तन आव्यूह A है, निम्नलिखित रूप में परिभाषित होता है:

यह एक एककीय एसोसिएटिव बीजगणित है जिसमें जनित्र kλ जहां λ भार जाली का एक तत्व है, अर्थात् सभी i के लिए 2(λ, αi)/(αi, αi) एक पूर्णांक है, और सरल मूल αi के लिए ei और fi होते हैं, जो निम्नलिखित संबंधों के अधीन होते हैं:

और i ≠ j के लिए हमारे पास q-सेरे संबंध हैं, जो जीन पियरे सेरे संबंधों की विकृति हैं:

जहां q-कारख़ाने का , सामान्य फैक्टोरियल का q-एनालॉग, q-संख्या का उपयोग करके पुनरावर्ती रूप से परिभाषित किया गया है:

q → 1 जैसी सीमा में, ये संबंध सार्वभौमिक आवरण बीजगणित U(G) के संबंधों तक पहुंचते हैं, जहां

और tλ कार्टन उप-बीजगणित का तत्व है जो कार्टन उप-बीजगणित में सभी h के लिए (tλ, h) = λ(h) को संतुष्ट करता है।

ऐसे विभिन्न सहसंबंधी सहउत्पाद हैं जिनके अंतर्गत ये बीजगणित हॉपफ बीजगणित हैं, उदाहरण के लिए,

जहां आवश्यकता हो, वहां जनित्रो का समुच्चय विस्तारित किया गया है जिससे इसमें kλ भी सम्मिलित हो, जहां λ भार जाली के तत्व और रूट जाली के आधे तत्व के योग से व्यक्त किया जा सकता है।

इसके अतिरिक्त, कोई भी हॉपफ बीजगणित उलटे सहउत्पाद T o Δ के साथ दूसरे की ओर ले जाता है, जहां T को T(x ⊗ y) = y ⊗ x द्वारा दिया जाता है, जिससे तीन और संभावित संस्करण मिलते हैं।

इन सभी सह-उत्पादों के लिए Uq(A) पर गणक समान है: ε(kλ) = 1, ε(ei) = ε(fi) = 0, और उपरोक्त सह-उत्पादों के लिए संबंधित प्रतिध्रुव इस प्रकार दिए गए हैं

वैकल्पिक रूप से, क्वांटम समूह Uq(G) को क्षेत्र C(q) पर एक बीजगणित के रूप में माना जा सकता है, जो C पर एक अनिश्चित q के सभी तर्कसंगत कार्यों का क्षेत्र है।

इसी प्रकार, क्वांटम समूह Uq(G) को क्षेत्र Q(q) पर एक बीजगणित के रूप में माना जा सकता है, जो Q पर एक अनिश्चित q के सभी तर्कसंगत कार्यों का क्षेत्र है। क्वांटम समूह के केंद्र को क्वांटम निर्धारक द्वारा वर्णित किया जा सकता है।

प्रतिनिधित्व सिद्धांत

जिस तरह केएसी-मूडी बीजगणित और उनके सार्वभौमिक आवरण बीजगणित के लिए कई अलग-अलग प्रकार के प्रतिनिधित्व हैं, उसी तरह क्वांटम समूहों के लिए भी कई अलग-अलग प्रकार के प्रतिनिधित्व हैं।

जैसा कि सभी हॉपफ बीजगणित के मामले में है, Uq(G) के पास एक अनुखण्ड के रूप में स्वयं पर एक सहायक प्रतिनिधित्व है, जिसके द्वारा अनुयोजन दी जा रही है

जहाँ


केस 1: q एकता की जड़ नहीं है

एक महत्वपूर्ण प्रकार की प्रतिनिधि है एक भार प्रतिनिधि, और इससे संबंधित अनुखण्ड को भार अनुखण्ड कहते हैं। भार अनुखण्ड एक अनुखण्ड है जिसमें भार सदिशो के आधार से बना होता है। भार सदिश एक गैर-शून्य सदिश v है जिसके लिए सभी भार λ के लिए kλ · v = dλv होता है, जहां dλ सभी भार λ के लिए एक मिश्रित संख्या होता है, जैसा कि dλ के सभी भार λ के लिए होता है।

सभी भारों के लिए λ और μ।

वजन अनुखण्ड को "संयुक्त" कहा जाता है यदि ei और fi के क्रियाएँ स्थानिक शून्य हों अर्थात अनुखण्ड में किसी भी सदिश v के लिए, v पर निर्भर करते हुए एक सकारात्मक पूर्णांक k होता है, जो संभवतः v पर निर्भर करता है, ऐसा कि होता है सभी i के लिए)। संयुक्त अनुखण्ड के विषय में, भार सदिश के साथ जुड़े जटिल संख्याएँ dλ निम्नलिखित रूप में होती हैं:


  • सभी भारों के लिए λ और μ,
  • सभी के लिए i.


विशेष रुचि के उच्चतम-भार वाले अभ्यावेदन और संबंधित उच्चतम-भार वाले अनुखण्ड हैं। उच्चतम भार अनुखण्ड एक भार सदिश v द्वारा उत्पन्न अनुखण्ड है, जो k के अधीन हैλ · में = डीλv सभी भारों के लिए μ, और ei· सभी i के लिए v = 0. इसी तरह, एक क्वांटम समूह में सबसे कम भार प्रतिनिधित्व और सबसे कम भार अनुखण्ड हो सकता है, यानी एक भार सदिश वी द्वारा उत्पन्न अनुखण्ड , के अधीनλ· में = डीλv सभी भारों के लिए λ, और fi· सभी i के लिए v = 0.

यदि भार ν हो तो एक सदिश v को परिभाषित करें भार जाली में सभी λ के लिए।

यदि G एक Kac-Moody बीजगणित है, तो U के किसी भी अघुलनशील उच्चतम भार प्रतिनिधित्व मेंq(जी), उच्चतम भार ν के साथ, भार की बहुलता समान उच्चतम भार के साथ यू (जी) के अपरिवर्तनीय प्रतिनिधित्व में उनकी बहुलता के बराबर होती है। यदि उच्चतम भार प्रमुख और अभिन्न है (एक भार μ प्रमुख और अभिन्न है यदि μ इस शर्त को पूरा करता है कि सभी i के लिए एक गैर-नकारात्मक पूर्णांक है), तो जी के लिए वेइल समूह के तहत अपरिवर्तनीय प्रतिनिधित्व का भार स्पेक्ट्रम अपरिवर्तनीय है, और प्रतिनिधित्व पूर्णांक है।

इसके विपरीत, यदि उच्चतम भार अनुखण्ड पूर्णांकीय है, तो इसका उच्चतम भार सदिश v संतुष्ट करता है , जहां सीλ · में = डीλv ऐसी सम्मिश्र संख्याएँ हैं

  • सभी भारों के लिए λ और μ,
  • मैं सबके लिए,

और ν प्रमुख और अभिन्न है।

जैसा कि सभी हॉपफ बीजगणित के मामले में है, दो अनुखण्ड का टेंसर उत्पाद एक अन्य अनुखण्ड है। U के एक तत्व x के लिएq(जी), और संबंधित अनुखण्ड में वैक्टर वी और डब्ल्यू के लिए, x ⋅ (v ⊗ w) = Δ(x) ⋅ (v ⊗ w), ताकि , और सहउत्पाद के मामले में Δ1, और ऊपर वर्णित एकीकृत उच्चतम भार अनुखण्ड एक-आयामी अनुखण्ड का एक टेंसर उत्पाद है (जिस पर kλ = सीλ सभी λ के लिए, और ईi= एफi= 0 सभी के लिए i) और एक गैर-शून्य सदिश v द्वारा उत्पन्न उच्चतम भार अनुखण्ड 0, का विषय है सभी भारों के लिए λ, और सबके लिए मैं

विशिष्ट मामले में जहां G एक परिमित-आयामी झूठ बीजगणित है (Kac-Moody बीजगणित के एक विशेष मामले के रूप में), तो प्रमुख अभिन्न उच्चतम भार के साथ अघुलनशील प्रतिनिधित्व भी परिमित-आयामी हैं।

उच्चतम भार वाले अनुखण्ड के टेंसर उत्पाद के मामले में, सबअनुखण्ड में इसका अपघटन केएसी-मूडी बीजगणित के संबंधित अनुखण्ड के टेंसर उत्पाद के समान होता है (उच्चतम भार समान होते हैं, जैसे उनकी बहुलताएं होती हैं)।


केस 2: क्यू एकता की जड़ है

अर्धत्रिकोणीयता

केस 1: क्यू एकता की जड़ नहीं है

सख्ती से, क्वांटम समूह यूq(जी) अर्धत्रिकोणीय नहीं है, परंतु इसे लगभग अर्धत्रिकोणीय माना जा सकता है क्योंकि इसमें एक अनंत औपचारिक योग मौजूद है जो आर-आव्यूह|आर-आव्यूह की भूमिका निभाता है। यह अनंत औपचारिक योग जेनरेटर ई के संदर्भ में व्यक्त किया जा सकता हैiऔर एफi, और कार्टन जनरेटर टीλ, जहां केλऔपचारिक रूप से q से पहचाना जाता हैtλ</सुपर>. अनंत औपचारिक योग दो कारकों का गुणनफल है,[citation needed]

और एक अनंत औपचारिक योग, जहां λj कार्टन उपबीजगणित और μ के दोहरे स्थान का आधार हैj दोहरा आधार है, और η = ±1.

औपचारिक अनंत योग जो आर-आव्यूह | आर-आव्यूह का हिस्सा निभाता है, दो अपरिवर्तनीय उच्चतम भार अनुखण्ड के टेंसर उत्पाद पर और दो सबसे कम भार वाले अनुखण्ड के टेंसर उत्पाद पर एक अच्छी तरह से परिभाषित कार्रवाई करता है। विशेष रूप से, यदि v का भार α है और w का भार β है, तो

और तथ्य यह है कि अनुखण्ड दोनों उच्चतम भार वाले अनुखण्ड हैं या दोनों सबसे कम भार वाले अनुखण्ड v ⊗ W पर अन्य कारक की कार्रवाई को एक सीमित योग तक कम कर देते हैं।

विशेष रूप से, यदि वी एक उच्चतम भार अनुखण्ड है, तो औपचारिक अनंत योग, आर, में वी ⊗ वी पर एक अच्छी तरह से परिभाषित, और उलटा कार्रवाई है, और आर का यह मान (अंत के एक तत्व के रूप में (वी ⊗ वी)) यांग-बैक्सटर समीकरण को संतुष्ट करता है, और इसलिए हमें ब्रैड समूह का प्रतिनिधित्व निर्धारित करने और गाँठ (गणित), लिंक (गाँठ सिद्धांत) और ब्रैड सिद्धांत के लिए अर्ध-अपरिवर्तनीय को परिभाषित करने की अनुमति देता है।

केस 2: क्यू एकता की जड़ है

===क्वांटम समूह q = 0=== पर

मसाकी काशीवारा ने क्यू → 0 के रूप में क्वांटम समूहों के सीमित व्यवहार पर शोध किया है, और एक विशेष रूप से अच्छा व्यवहार वाला आधार पाया है जिसे क्रिस्टल आधार कहा जाता है।

रूट-सिस्टम और डायनकिन आरेख द्वारा विवरण और वर्गीकरण

उपरोक्त यू जैसे क्वांटम समूहों के परिमित भागफल का वर्णन करने में काफी प्रगति हुई हैq('जी') क्यू के लिएn = 1; कोई सामान्यतः 'नुकीले' हॉपफ बीजगणित के वर्ग पर विचार करता है, जिसका अर्थ है कि सभी उप-आकार 1-आयामी हैं और इस प्रकार उनका योग एक समूह बनता है जिसे 'कोरैडिकल' कहा जाता है:

  • 2002 में एच.-जे. श्नाइडर और एन. एंड्रुस्किवित्च [3] एबेलियन सह-कट्टरपंथी समूह (अभाज्य 2, 3, 5, 7 को छोड़कर) के साथ नुकीले हॉपफ बीजगणित के अपने वर्गीकरण को समाप्त किया, विशेष रूप से यू के उपरोक्त परिमित भागफल के रूप मेंq('g') सामान्य सेमीसिम्पल लाई बीजगणित की तरह E′s (बोरेल भाग), दोहरे F′s और K′s (कार्टन बीजगणित) में विघटित होता है:
यहां, जैसा कि शास्त्रीय सिद्धांत में V, E's द्वारा फैलाए गए आयाम n का एक ब्रेडेड सदिश स्पेस है, और σ (एक तथाकथित कोसिलस ट्विस्ट) E's और F's के बीच गैर-तुच्छ 'लिंकिंग' बनाता है। ध्यान दें कि शास्त्रीय सिद्धांत के विपरीत, दो से अधिक जुड़े हुए घटक प्रकट हो सकते हैं। 'क्वांटम बोरेल बीजगणित' की भूमिका निकोलस बीजगणित द्वारा ली गई है of the braided vectorspace.
चार A3 प्रतियों को जोड़ने वाले नुकीले हॉपफ बीजगणित के लिए सामान्यीकृत डायनकिन आरेख
* सामान्यीकृत डायनकिन आरेखों के संदर्भ में एबेलियन समूहों के लिए आई. हेकेनबर्गर का निकोल्स बीजगणित एक महत्वपूर्ण घटक था।[4] जब छोटे अभाज्य संख्याएँ मौजूद होती हैं, तो कुछ विदेशी उदाहरण, जैसे कि त्रिभुज, घटित होते हैं (रैंक 3 डंकिन आरेख का चित्र भी देखें)।
एक परिमित-आयामी निकोल्स बीजगणित से संबंधित रैंक 3 डायनकिन आरेख

* इस बीच, श्नाइडर और हेकेनबर्गर[5] आम तौर पर नॉनबेलियन मामले में भी एक अंकगणितीय जड़ प्रणाली के अस्तित्व को साबित किया है, जिससे पोंकारे-बिरखॉफ-विट प्रमेय का निर्माण होता है, जैसा कि एबेलियन मामले में खारचेको द्वारा सिद्ध किया गया है (परिमित आयाम पर धारणा के बिना)। इसका उपयोग किया जा सकता है[6] विशिष्ट मामलों पर यूq('जी') और उदाहरण के लिए समझाता है इन क्वांटम समूहों के कुछ सहबद्ध उपबीजगणित और ली बीजगणित 'जी' के वेइल समूह के क्रम के बीच संख्यात्मक संयोग।

कॉम्पैक्ट आव्यूह क्वांटम समूह

एस. एल. वोरोनोविज़ ने कॉम्पैक्ट आव्यूह क्वांटम समूहों की शुरुआत की। कॉम्पैक्ट आव्यूह क्वांटम समूह अमूर्त संरचनाएं हैं जिन पर संरचना पर निरंतर कार्य C*-बीजगणित के तत्वों द्वारा दिए जाते हैं। एक कॉम्पैक्ट आव्यूह क्वांटम समूह की ज्यामिति एक गैर-अनुवांशिक ज्यामिति का एक विशेष मामला है।

कॉम्पैक्ट हॉसडॉर्फ़ टोपोलॉजिकल स्पेस पर निरंतर जटिल-मूल्यवान फ़ंक्शन एक क्रमविनिमेय C*-बीजगणित बनाते हैं। गेलफैंड प्रतिनिधित्व के अनुसार, एक कम्यूटेटिव सी*-बीजगणित एक कॉम्पैक्ट हॉसडॉर्फ टोपोलॉजिकल स्पेस पर निरंतर जटिल-मूल्य वाले कार्यों के सी*-बीजगणित के लिए आइसोमोर्फिक है, और टोपोलॉजिकल स्पेस को होमियोमोर्फिज्म तक सी*-बीजगणित द्वारा विशिष्ट रूप से निर्धारित किया जाता है।

एक कॉम्पैक्ट टोपोलॉजिकल समूह, जी के लिए, एक सी*-बीजगणित समरूपता मौजूद है Δ: सी(जी) → सी(जी) ⊗ सी(जी) (जहां सी(जी) ⊗ सी(जी) सी*-बीजगणित टेंसर है उत्पाद - C(G) और C(G) के बीजगणितीय टेंसर उत्पाद का पूरा होना, जैसे कि Δ(f)(x, y) = f(xy) सभी f ∈ C(G) के लिए, और सभी x के लिए , y ∈ G (जहां (f ⊗ g)(x, y) = f(x)g(y) सभी f, g ∈ C(G) और सभी x, y ∈ G के लिए)। एक रैखिक गुणात्मक मानचित्रण भी मौजूद है κ: C(G) → C(G), जैसे कि κ(f)(x) = f(x)−1) सभी f ∈ C(G) और सभी x ∈ G के लिए। सख्ती से, यह C(G) को एक हॉपफ बीजगणित नहीं बनाता है, जब तक कि G परिमित न हो। दूसरी ओर, G के एक परिमित-आयामी समूह प्रतिनिधित्व का उपयोग C(G) का *-उप-बीजगणित उत्पन्न करने के लिए किया जा सकता है जो कि एक Hopf *-बीजगणित भी है। विशेष रूप से, यदि G का n-आयामी प्रतिनिधित्व है, तो सभी i, j u के लिएij∈ सी(जी) और

इससे यह पता चलता है कि आपके द्वारा उत्पन्न *-बीजगणितijसभी i, j और κ(u) के लिएij) सभी i के लिए, j एक Hopf *-बीजगणित है: गिनती ε(u) द्वारा निर्धारित की जाती हैij) = डीij सभी के लिए i, j (जहाँ δij क्रोनकर डेल्टा है), एंटीपोड κ है, और इकाई द्वारा दी गई है


सामान्य परिभाषा

सामान्यीकरण के रूप में, एक कॉम्पैक्ट आव्यूह क्वांटम समूह को एक जोड़ी (सी, यू) के रूप में परिभाषित किया गया है, जहां सी एक सी*-बीजगणित है और C में प्रविष्टियों वाला एक आव्यूह है जैसे कि

  • द *-उपबीजगणित, सी0, C का, जो u के आव्यूह तत्वों द्वारा उत्पन्न होता है, C में सघन है;
  • एक C*-बीजगणित समरूपता मौजूद है जिसे सहगुणन Δ कहा जाता है: C → C ⊗ C (जहाँ C ⊗ C, C*-बीजगणित टेंसर उत्पाद है - C और C के बीजगणितीय टेंसर उत्पाद का पूरा होना) जैसे कि सभी के लिए मैं, जे हमारे पास है:
  • एक रेखीय प्रतिगुणात्मक मानचित्र मौजूद है κ: C0 → सी0 (संगत विपरीत) इस प्रकार कि κ(κ(v*)*) = v सभी v ∈ C के लिए0 और

जहां I, C का पहचान तत्व है। चूँकि κ प्रतिगुणक है, तो C में सभी v, w के लिए κ(vw) = κ(w) κ(v)0.

निरंतरता के परिणामस्वरूप, C पर सहगुणन सहसंबद्ध है।

सामान्य तौर पर, C एक द्विफलगणित नहीं है, और C0 एक हॉपफ*-बीजगणित है।

अनौपचारिक रूप से, C को कॉम्पैक्ट आव्यूह क्वांटम समूह पर निरंतर जटिल-मूल्यवान कार्यों के *-बीजगणित के रूप में माना जा सकता है, और u को कॉम्पैक्ट आव्यूह क्वांटम समूह के एक परिमित-आयामी प्रतिनिधित्व के रूप में माना जा सकता है।

अभ्यावेदन

कॉम्पैक्ट आव्यूह क्वांटम समूह का एक प्रतिनिधित्व हॉपफ *-बीजगणित के एक कोलजेब्रा द्वारा दिया गया है (एक कोइनिटल कोअसोसिएटिव कोलजेब्रा ए का एक मुख्य प्रस्तुतीकरण एक वर्ग आव्यूह है) A में प्रविष्टियों के साथ (इसलिए v, M(n, A) से संबंधित है) जैसे कि

सभी i, j और ε(v) के लिएij) = डीij सभी के लिए मैं, जे). इसके अलावा, एक प्रतिनिधित्व v को एकात्मक कहा जाता है यदि v के लिए आव्यूह एकात्मक है (या समकक्ष, यदि κ(v)ij) = वी*ijसभी के लिए मैं, जे).

उदाहरण

कॉम्पैक्ट आव्यूह क्वांटम समूह का एक उदाहरण एसयू हैμ(2), जहां पैरामीटर μ एक सकारात्मक वास्तविक संख्या है। तो एसयूμ(2) = (सी(एसयूμ(2)), यू), जहां सी(एसयूμ(2)) α और γ द्वारा उत्पन्न C*-बीजगणित है, जिसके अधीन है

और

ताकि सहगुणन ∆(α) = α ⊗ α − γ ⊗ γ*, ∆(γ) = α ⊗ γ + γ ⊗ α* द्वारा निर्धारित हो, और संयोग κ(α) = α*, κ द्वारा निर्धारित हो (सी) = −एम−1γ, κ(γ*) = −μγ*, κ(α*) = α. ध्यान दें कि यू एक प्रतिनिधित्व है, परंतु एकात्मक प्रतिनिधित्व नहीं है। यू एकात्मक प्रतिनिधित्व के बराबर है

समतुल्य, एसयूμ(2) = (सी(एसयूμ(2)), डब्ल्यू), जहां सी(एसयूμ(2)) α और β द्वारा उत्पन्न C*-बीजगणित है, जिसके अधीन है

और

ताकि सहगुणन ∆(α) = α ⊗ α − μβ ⊗ β*, Δ(β) = α ⊗ β + β ⊗ α* द्वारा निर्धारित किया जाए, और संयोग व्युत्क्रम κ(α) = α*, κ द्वारा निर्धारित किया जाए (बी) = −एम−1β, κ(β*) = −μβ*, κ(α*) = α. ध्यान दें कि w एक एकात्मक निरूपण है। अहसासों को बराबर करके पहचाना जा सकता है .

जब μ = 1, तो SUμ(2) कंक्रीट कॉम्पैक्ट समूह SU(2) पर कार्यों के बीजगणित C(SU(2)) के बराबर है।

बाइक्रॉसप्रोडक्ट क्वांटम समूह

जबकि कॉम्पैक्ट आव्यूह स्यूडोग्रुप सामान्यतः दोहरे फ़ंक्शन बीजगणित फॉर्मूलेशन में ड्रिनफेल्ड-जिम्बो क्वांटम समूहों के संस्करण होते हैं, अतिरिक्त संरचना के साथ, बाइक्रोसप्रोडक्ट क्वांटम समूहों का एक अलग दूसरा परिवार है, जो अर्ध-सरल झूठ समूहों के बजाय हल करने योग्य विकृतियों के रूप में बढ़ते महत्व के हैं। वे लाई बीजगणित के लाई विभाजन या लाई समूहों के स्थानीय गुणनखंडन से जुड़े हुए हैं और इन्हें बीजगणित के लिए दूसरे पर कार्य करने वाले कारकों में से एक के क्रॉस उत्पाद या मैके परिमाणीकरण के रूप में देखा जा सकता है और दूसरे कारक के साथ सहउत्पाद Δ के लिए एक समान कहानी है। पहले पर वापस अभिनय करना।

सबसे सरल गैर-तुच्छ उदाहरण स्थानीय रूप से एक-दूसरे पर कार्य करने वाली आर की दो प्रतियों से मेल खाता है और जनरेटर पी, के, के के साथ एक क्वांटम समूह (यहां बीजगणितीय रूप में दिया गया) में परिणत होता है।−1, कहते हैं, और सहउत्पाद

जहां h विरूपण पैरामीटर है।

क्वांटम यांत्रिकी के हाइजेनबर्ग बीजगणित के विरूपण के रूप में देखे जाने पर यह क्वांटम समूह बोर्न पारस्परिकता को लागू करने वाले प्लैंक स्केल भौतिकी के एक खिलौना मॉडल से जुड़ा हुआ था। इसके अलावा, अर्धसरल लाई बीजगणित 'जी' के किसी भी कॉम्पैक्ट वास्तविक रूप से शुरू करते हुए, दोगुने आयाम के वास्तविक लाई बीजगणित के रूप में इसकी जटिलता 'जी' और एक निश्चित हल करने योग्य लाई बीजगणित (इवासावा अपघटन) में विभाजित हो जाती है, और यह एक विहित बाइक्रोसप्रोडक्ट प्रदान करता है। 'जी' से संबंधित क्वांटम समूह। 'सु'(2) के लिए 3 आयामों में गतियों के यूक्लिडियन समूह ई(3) का क्वांटम समूह विरूपण प्राप्त होता है।

यह भी देखें

  • हॉपफ बीजगणित
  • बायलजेब्रा झूठ बोलना
  • पॉइसन-लाई समूह
  • क्वांटम एफ़िन बीजगणित

टिप्पणियाँ

  1. Schwiebert, Christian (1994), Generalized quantum inverse scattering, p. 12237, arXiv:hep-th/9412237v3, Bibcode:1994hep.th...12237S
  2. Majid, Shahn (1988), "Hopf algebras for physics at the Planck scale", Classical and Quantum Gravity, 5 (12): 1587–1607, Bibcode:1988CQGra...5.1587M, CiteSeerX 10.1.1.125.6178, doi:10.1088/0264-9381/5/12/010
  3. Andruskiewitsch, Schneider: Pointed Hopf algebras, New directions in Hopf algebras, 1–68, Math. Sci. Res. Inst. Publ., 43, Cambridge Univ. Press, Cambridge, 2002.
  4. Heckenberger: Nichols algebras of diagonal type and arithmetic root systems, Habilitation thesis 2005.
  5. Heckenberger, Schneider: Root system and Weyl gruppoid for Nichols algebras, 2008.
  6. Heckenberger, Schneider: Right coideal subalgebras of Nichols algebras and the Duflo order of the Weyl grupoid, 2009.


संदर्भ

क्वांटम समूह