क्वांटम समूह: Difference between revisions
Line 194: | Line 194: | ||
===अभ्यावेदन=== | ===अभ्यावेदन=== | ||
संक्षिप्त | संक्षिप्त आव्यूह क्वांटम समूह का एक प्रतिनिधित्व हॉपफ *-बीजगणित के एक कोलजेब्रा द्वारा दिया गया है (एक कोइनिटल कोअसोसिएटिव कोलजेब्रा ए का एक मुख्य प्रस्तुतीकरण एक वर्ग आव्यूह है) <math>v = (v_{ij})_{i,j = 1,\dots,n}</math> A में प्रविष्टियों के साथ (इसलिए v, M(n, A) से संबंधित है) जैसे कि | ||
:<math>\Delta(v_{ij}) = \sum_{k=1}^n v_{ik} \otimes v_{kj}</math> | :<math>\Delta(v_{ij}) = \sum_{k=1}^n v_{ik} \otimes v_{kj}</math> |
Revision as of 10:31, 23 July 2023
बीजगणितीय संरचना → 'समूह सिद्धांत' समूह सिद्धांत |
---|
गणित और सैद्धांतिक भौतिकी में, "क्वांटम समूह" शब्द एक ऐसे कई भिन्न प्रकार के गैर-सामयिक बीजगणितीय समूहों का संक्षेपण करता है जिनमें अतिरिक्त संरचना होती है। ये क्वांटम समूह नामक गणितीय संरचनाएँ सम्मिलित हैं, जिनमें ड्रिंफेल्ड-जिम्बो प्रकार के क्वांटम समूह, संक्षिप्त आव्यूह क्वांटम समूह, और बाईक्रॉसप्रोडक्ट क्वांटम समूह सम्मिलित होते हैं। अपने नाम के अतिरिक्त, उनके पास स्वयं एक प्राकृतिक समूह संरचना नहीं है, यद्यपि वे किसी रूप में 'समूह' के नज़दीक होते हैं।
शब्द "क्वांटम समूह" पहली बार क्वांटम इंटीग्रेबल सिस्टम के सिद्धांत में दिखाई दिया, जिसे तब व्लादिमीर ड्रिनफेल्ड और मिचियो जिम्बो द्वारा हॉपफ बीजगणित के एक विशेष वर्ग के रूप में औपचारिक रूप दिया गया था। इसी शब्द का उपयोग अन्य हॉपफ बीजगणितों के लिए भी किया जाता है जो विकृत हैं या ली बीजगणित के नज़दीक हैं, जैसे कि ड्रिनफेल्ड और जिम्बो के काम के कुछ समय बाद शाहन माजिद द्वारा शुरू किए गए क्वांटम समूहों का "बाइक्रॉसप्रोडक्ट" वर्ग।
ड्रिनफेल्ड के दृष्टिकोण में, क्वांटम समूह हॉप्फ़ बीजगणित के रूप में उत्पन्न होते हैं जो एक सहायक पैरामीटर q या h पर निर्भर करते हैं, जो q = 1 या h = 0 होने पर एक विशेष प्रकार के ली बीजगणित के सार्वभौमिक आच्छादक बीजगणित बन जाते हैं। ये ली बीजगणितएं प्रायः अर्धसरल या अफाइन होती हैं। इनसे जुड़े कुछ संबंधित दोहरे विषय भी होते हैं, जो भी हॉप्फ़ बीजगणितएं होते हैं और जिन्हें क्वांटम समूह के रूप में जाना जाता है। इन्हें भी हम क्वांटम समूह कहते हैं। ये संबंधित अर्धसरल बीजगणित या एक सुसम्बद्ध ली समूह पर फलन के बीजगणित को विकृत करते हैं।
सहज अर्थ
क्वांटम समूह की खोज बहुत अप्रत्याशित थी क्योंकि यह लंबे समय से ज्ञात था कि सघन समूह और अर्धसरल ली बीजगणित "कठोर" वस्तुएं हैं, अर्थात उन्हें "विकृत" नहीं किया जा सकता। क्वांटम समूह के पीछे एक विचार था कि यदि हम एक ऐसी संरचना का विचार करें जो एक विधि से समान परंतु बड़ी हो, जैसे समूह बीजगणित सार्वभौमिक समूह का बीजगणित, तो एक समूह या आवरण बीजगणित को विकृत किया जा सकता है, यद्यपि विरूपण अब एक समूह या घेरने वाला बीजगणित नहीं रहेगा। अधिक सटीक रूप से, विरूपण को हॉपफ बीजगणित की श्रेणी के भीतर पूरा किया जा सकता है, जिन्हें क्रमविनिमेय या सहअनुक्रमिक होना आवश्यक नहीं है। एलेन कोन्स की गैर-अनुवांशिक ज्यामिति के अनुसार, विकृत वस्तु को एक गैर-अनुवांशिक यह सूचना लेनिनग्राद स्कूल द्वारा विकसित क्वांटम यांग-बैक्स्टर समीकरण और क्वांटम उलटी छिन्नन में क्वांटम समूहों की विशेष श्रेणियों के प्रयोगी होने का प्रमुख कारण था। उस समय कोई भी सहज,ज्ञान नहीं थी[1] कि ये क्वांटम समूह अन्य भी क्षेत्रों में उपयुक्त होंगे। दूसरे तरफ, बाईक्रॉसप्रोडक्ट क्वांटम समूह की श्रेणी की पहचान भिन्न थी और इसे क्वांटम भूगोल के रूप में क्वांटम गुरुत्व-समा समाधान के लिए आत्म-द्वित्वीय वस्तुएं की खोज से प्राप्त किया गया था।[2]
ड्रिनफेल्ड-जिम्बो प्रकार के क्वांटम समूह
एक प्रकार की संरचना जिसे सामान्यतः "क्वांटम समूह" कहा जाता है, व्लादिमीर ड्रिंफेल्ड और मिचिओ जिम्बो के काम में प्रकट हुई जो हॉप्फ़ बीजगणितके वर्ग में एक अर्धसरल ली बीजगणितय, और अधिक सामान्य रूप में, एक कैक-मूडी बीजगणित के सार्वभौमिक आच्छादक बीजगणित का विकृतिकरण था। उत्पन्न बीजगणित में अतिरिक्त संरचना होती है, जिससे यह एक क्वासित्रिकोण हॉपफ बीजगणित बन जाता है।
यदि A = (aij) कार्टन आव्यूह है केएसी-मूडी बीजगणित की, और q ≠ 0, 1 एक जटिल संख्या है, तो क्वांटम समूह Uq(G), जहां G वह ली बीजगणित है जिसकी कार्तन आव्यूह A है, निम्नलिखित रूप में परिभाषित होता है:
यह एक एककीय एसोसिएटिव बीजगणित है जिसमें जनित्र kλ जहां λ भार जाली का एक तत्व है, अर्थात् सभी i के लिए 2(λ, αi)/(αi, αi) एक पूर्णांक है, और सरल मूल αi के लिए ei और fi होते हैं, जो निम्नलिखित संबंधों के अधीन होते हैं:
और i ≠ j के लिए हमारे पास q-सेरे संबंध हैं, जो जीन पियरे सेरे संबंधों की विकृति हैं:
जहां q-कारख़ाने का , सामान्य फैक्टोरियल का q-एनालॉग, q-संख्या का उपयोग करके पुनरावर्ती रूप से परिभाषित किया गया है:
q → 1 जैसी सीमा में, ये संबंध सार्वभौमिक आवरण बीजगणित U(G) के संबंधों तक पहुंचते हैं, जहां
और tλ कार्टन उप-बीजगणित का तत्व है जो कार्टन उप-बीजगणित में सभी h के लिए (tλ, h) = λ(h) को संतुष्ट करता है।
ऐसे विभिन्न सहसंबंधी सहउत्पाद हैं जिनके अंतर्गत ये बीजगणित हॉपफ बीजगणित हैं, उदाहरण के लिए,
जहां आवश्यकता हो, वहां जनित्रो का समुच्चय विस्तारित किया गया है जिससे इसमें kλ भी सम्मिलित हो, जहां λ भार जाली के तत्व और रूट जाली के आधे तत्व के योग से व्यक्त किया जा सकता है।
इसके अतिरिक्त, कोई भी हॉपफ बीजगणित उलटे सहउत्पाद T o Δ के साथ दूसरे की ओर ले जाता है, जहां T को T(x ⊗ y) = y ⊗ x द्वारा दिया जाता है, जिससे तीन और संभावित संस्करण मिलते हैं।
इन सभी सह-उत्पादों के लिए Uq(A) पर गणक समान है: ε(kλ) = 1, ε(ei) = ε(fi) = 0, और उपरोक्त सह-उत्पादों के लिए संबंधित प्रतिध्रुव इस प्रकार दिए गए हैं
वैकल्पिक रूप से, क्वांटम समूह Uq(G) को क्षेत्र C(q) पर एक बीजगणित के रूप में माना जा सकता है, जो C पर एक अनिश्चित q के सभी तर्कसंगत कार्यों का क्षेत्र है।
इसी प्रकार, क्वांटम समूह Uq(G) को क्षेत्र Q(q) पर एक बीजगणित के रूप में माना जा सकता है, जो Q पर एक अनिश्चित q के सभी तर्कसंगत कार्यों का क्षेत्र है। क्वांटम समूह के केंद्र को क्वांटम निर्धारक द्वारा वर्णित किया जा सकता है।
प्रतिनिधित्व सिद्धांत
जिस तरह केएसी-मूडी बीजगणित और उनके सार्वभौमिक आवरण बीजगणित के लिए कई अलग-अलग प्रकार के प्रतिनिधित्व हैं, उसी तरह क्वांटम समूहों के लिए भी कई अलग-अलग प्रकार के प्रतिनिधित्व हैं।
जैसा कि सभी हॉपफ बीजगणित के मामले में है, Uq(G) के पास एक अनुखण्ड के रूप में स्वयं पर एक सहायक प्रतिनिधित्व है, जिसके द्वारा अनुयोजन दी जा रही है
जहाँ
केस 1: q एकता की जड़ नहीं है
एक महत्वपूर्ण प्रकार की प्रतिनिधि है एक भार प्रतिनिधि, और इससे संबंधित अनुखण्ड को भार अनुखण्ड कहते हैं। भार अनुखण्ड एक अनुखण्ड है जिसमें भार सदिशो के आधार से बना होता है। भार सदिश एक गैर-शून्य सदिश v है जिसके लिए सभी भार λ के लिए kλ · v = dλv होता है, जहां dλ सभी भार λ के लिए एक मिश्रित संख्या होता है, जैसा कि dλ के सभी भार λ के लिए होता है।
- सभी भारों के लिए λ और μ।
भार अनुखण्ड को "संयुक्त" कहा जाता है यदि ei और fi के क्रियाएँ स्थानिक शून्य हों अर्थात अनुखण्ड में किसी भी सदिश v के लिए, v पर निर्भर करते हुए एक सकारात्मक पूर्णांक k होता है, जो संभवतः v पर निर्भर करता है, ऐसा कि होता है सभी i के लिए। संयुक्त अनुखण्ड के विषय में, भार सदिश के साथ जुड़े जटिल संख्याएँ dλ निम्नलिखित रूप में होती हैं:
- सभी भारों के लिए λ और μ,
- सभी के लिए i.
विशेष रूप से उच्चतम-भार प्रतिनिधित्व और उससे संबंधित उच्चतम-भार अनुखंड बहुत महत्वपूर्ण होते हैं। एक उच्चतम-भार अनुखंड एक अनुखंड होता है जो भार सदिश v द्वारा उत्पन्न किया गया होता है, जो सभी भार μ के लिए kλ · v = dλv और सभी i के लिए ei · v = 0 को पूरा करता हो। इसी तरह, क्वांटम समूह के पास एक निम्नतम-भार प्रतिनिधित्व और उससे संबंधित निम्नतम-भार अनुखंड हो सकता है, जो एक भार सदिश v द्वारा उत्पन्न किया जाता है, जो सभी भार λ के लिए kλ · v = dλv और सभी i के लिए fi · v = 0 को पूरा करता है।
एक सदिश v को भार ν रखा जाता है यदि सभी भार λ के लिए हो। यहां, ν भार जाली का एक तत्व है और q एक गैर-शून्य जटिल संख्या है।
यदि G एक काक-मूडी बीजगणित है, तो U के किसी भी अघुलनशील उच्चतम भार प्रतिनिधित्व में q(G), उच्चतम भार ν के साथ, भार की बहुलता समान उच्चतम भार के साथ U(G) के अपरिवर्तनीय प्रतिनिधित्व में उनकी बहुलता के बराबर होती है। यदि उच्चतम भार प्रमुख और अभिन्न है एक भार μ प्रमुख और अभिन्न है यदि μ इस शर्त को पूरा करता है कि सभी i के लिए एक गैर-नकारात्मक पूर्णांक है, तो G के लिए वेइल समूह के तहत अपरिवर्तनीय प्रतिनिधित्व का भार स्पेक्ट्रम अपरिवर्तनीय है, और प्रतिनिधित्व पूर्णांक है।
इसके विपरीत, यदि उच्चतम भार अनुखण्ड पूर्णांकीय है, तो इसका उच्चतम भार सदिश v संतुष्ट करता है , जहां cλ · v = dλv ऐसी सम्मिश्रत संख्याएँ हैं
- सभी भारों के लिए λ और μ,
- i सभी लिए,
और ν प्रमुख और अभिन्न है।
जैसा कि सभी हॉपफ बीजगणित के स्थिति में है, दो अनुखण्ड का टेंसर उत्पाद एक अन्य अनुखण्ड है। U के एक तत्व x के लिए q(G), और संबंधित अनुखण्ड में वैक्टर v और w के लिए, x ⋅ (v ⊗ w) = Δ(x) ⋅ (v ⊗ w), जिससे
, और सहउत्पाद के विषय में Δ1, और
ऊपर वर्णित संयुक्त उच्चतम-भार अनुखंड एक एक-आयामीअनुखंड का एक टेंसर गुणन है (जिसमें सभी भार λ के लिए kλ = cλ है, और सभी i के लिए ei = fi = 0 है) और एक उच्चतम-भार अनुखंड जो एक गैर शून्य सदिश v0 द्वारा उत्पन्न किया गया है, जो सभी भार λ के लिए kλ⋅v0 = q(λ,ν)⋅v0 और सभी i के लिए ei⋅v0 = 0 को पूरा करता है।
विशेष रूप से, जब G एक सीमित-आयामी ली बीजगणित है , तो अधिकतम अवशेष पूर्णांशी उच्चतम-भार के अपूर्णिय रूपांतरण भी सीमित-आयामी होते हैं।
उच्चतम-भार अनुखंण्डो के एक टेंसर गुणन के विषय में, उनके उप-अनुखंण्डो में विभाजन का वही समान होता है जो कैक-मूडी बीजगणित के संबंधितअनुखंण्डों के टेंसर गुणन के विषय में होता है उच्चतम-भार समान होते हैं, उनकी अधिकतमता भी समान होती है।
केस 2: q एकता की जड़ है
अर्धत्रिकोणीयता
केस 1: q एकता की जड़ नहीं है
यद्यपि क्वांटम समूह Uq(G) नियमित त्रिकोणीय नहीं है, लेकिन इसे "लगभग त्रिकोणीय" समझा जा सकता है क्योंकि एक अनंत औपचारिक योग होता है जो आर-आव्यूह की भूमिका निभाता है। इस अनंत औपचारिक योग को उत्पन्न करने के लिए उत्पन्नकर्ता ei और fi, और कार्टन उत्पन्नकर्ता tλ के आधार पर अभिव्यक्ति किया जा सकता है, जहां kλ को औपचारिक रूप से qtλ के साथ खोला जा सकता है। इस अनंत औपचारिक योग को दो अंशों का गुणा करके प्रस्तुत किया जा सकता है।
और एक अनंत औपचारिक योग, जहां λj कार्टन उपसमघ के प्रतियोगी स्थान के लिए एक आधार है, और μj इसके प्रतियोगी आधार हैं, और एक स्थिर चिह्न η = ±1 है।
यदि v का भार α है और w का भार β है, तो यह औपचारिक अनंत योग दो अविभाज्य उच्चतम भार अनुखंडों के अथवा दो निम्नतम भार अनुखंडों के टेंसर गुणक पर विशेष रूप से प्रभावी होगा।
यदि अनुखंड दोनों ही उच्चतम भार अनुखंड हैं या दोनों ही निम्नतम भार अनुखंड हैं, तो दूसरे फैक्टर का v ⊗ W पर प्रभाव एक सीमित योग के रूप में कम हो जाएगा।
विशेष रूप से, यदि V एक उच्चतम वजन मॉड्यूल है, तो औपचारिक अनंत योग R, V ⊗ V पर एक स्पष्ट परिभाषित और परिवर्तनीय प्रभाव रखता है। और यह R का मान यांग-बैक्स्टर समीकरण को पूरा करता है, इससे हमें एक ब्रेड समूह के प्रतिनिधित्व को निर्धारित करने की अनुमति होती है, और कॉनट्स, लिंक्स और ब्रेड के लिए क्वासी-अपरिवर्तनीय को परिभाषित करने की अनुमति होती है।
केस 2: q एकता की जड़ है
q = 0 पर क्वांटम समूह
मसाकी काशीवारा ने क्वांटम समूहों के q → 0 के सीमित व्यवहार का अध्ययन किया है, और उन्होंने एक विशेष रूप से सुव्यवहृत आधार को "क्रिस्टल आधार" के रूप में पाया है।
रूट-प्रणाली और डायनकिन आरेख द्वारा विवरण और वर्गीकरण
ऊपर उल्लिखित Uq(g) जैसे क्वांटम समूहों के अंतिम अंश का विवरण करने में काफी प्रगति हुई है; सामान्यतः एक त्रुटियों के कक्ष का विचार किया जाता है, जिसका अर्थ है कि सभी उप-सहायक उपनिर्माता 1-आयामी होते हैं और इस तरह उनका योग एक समूह बनाता है, जिसे "कोराडिकल" कहते हैं।
- 2002 में एच.-जे. श्नाइडर और एन. एंड्रुस्किवित्च [3] ने अवेनेलियन सहायक बीजगणित समूह वाले विचारित होप्फ़ बीजगणितीय के अपने वर्गीकरण के वर्गीकरण को पूरा किया।,विशेष रूप से, उपर्युक्त सीमित व्यक्ति Uq(g) के अंतिम भागों का विभाजन E′s , पुनर्विलोम F′s और K′s में होता है, ठीक साधारण अर्धसरल ली बीजगणितीय की तरह विघटित होता है
- यहां, जैसा कि पारंपरिक सिद्धांत में, V एक ब्रेडेड सदिश स्पेस जिसका आयाम n है, जिसमें E′s द्वारा छापे गए हैं, और σ नानातत्विक संबंध को उत्पन्न करता है जो E′s और F′s के बीच लिंकिंग को सृजित करता है। ध्यान दें कि प्राचीन सिद्धांत के विपरीत, दो से अधिक लिंकिंग के घटक प्रकट हो सकते हैं। क्वांटम बोरेल बीजगणित सदिश स्पेस के निकोल्स बीजगणित सदिश स्पेस के रूप में काम करता है। * एक महत्वपूर्ण तत्व था I हेकेनबर्गर के द्वारा अवेनेलियन समूहों के लिए एक सामान्यीकृत डिंकिन आरेखनों के माध्यम से एक सीमित निकोल्स बीजगणित के वर्गीकरण का तत्व [4]। छोटे प्रधान संख्याएं उपस्थित होने पर, कुछ विचित्र उदाहरण, जैसे एक त्रिकोण, पाया जाता है (रैंक 3 डैंकिन आरेखन डायग्राम की चित्रित भी देखें)।
- साथ ही, श्नाइडर और हेकेनबर्गर ने अवेनेलियन विषय में भी एक अंकगणितीय रूट प्रणाली की अस्तित्व को सामान्य रूप से सिद्ध किया है,[5] जिसे खारचेंको ने अवेनेलियन विषय में प्रमाणित किया है इसे विशेष स्थितियों पर Uq(g) पर लागू किया जा सकता है और यह उदाहरण के रूप में समझाता है कि क्यों इन क्वांटम समूहों के कुछ कोइडील उप-बीजगणित उप-बीजगणित समूह और ली बीजगणित g के वेयल समूह के आदेश के बीच संख्यात्मक संयोजन होता है।[6]
संक्षिप्त आव्यूह क्वांटम समूह
एस. एल. वोरोनोविच ने संक्षिप्त आव्यूह क्वांटम समूह का परिचय दिया। संक्षिप्त आव्यूह क्वांटम समूह अर्थात एक संघटनशील संरचना है जिसमें संरचना के "निरंतर संख्याएँ" को C* -बीजगणित के तत्वों के रूप में दिया जाता है। संक्षिप्त आव्यूह क्वांटम समूह की ज्यामिति एक गैरसंवर्ती ज्यामिति के विशेष स्थितियों में से एक है।
संक्षिप्त हॉसडॉर्फ़ संस्थानिक स्पेस पर निरंतर जटिल संख्यात्मक फलन एक क्रमविनिमेय C*-बीजगणित के समान होते हैं। गेलफैंड प्रतिनिधित्व के अनुसार, एक कम्यूटेटिव सी*-बीजगणित एक संक्षिप्त हॉसडॉर्फ संस्थानिक स्पेस पर निरंतर जटिल संख्यात्मक वाले कार्यों के C*-बीजगणित के लिए समरूपी है, और संस्थानिक स्पेस को समरूपी तक C*-बीजगणित द्वारा विशिष्ट रूप से निर्धारित किया जाता है।
एक संक्षिप्त संस्थानिक समूह G के लिए, एक C*-बीजगणित समरूपता Δ: C(G) → C(G) ⊗ C(G) (जहां C(G) ⊗ C(G) C*-बीजगणित समरूपता है - C(G) और C(G) के सामान्य बीजगणित का पूर्णन्त है), ऐसा होता है जिसके लिए Δ(f)(x, y) = f(xy) सभी f ∈ C(G) के लिए होता है, और सभी x, y ∈ G के लिए (यहां (f ⊗ g)(x, y) = f(x)g(y) सभी f, g ∈ C(G) और सभी x, y ∈ G के लिए होता है)। इसके अतिरिक्त एक रैखिक गुणांकीय समरूपता κ: C(G) → C(G) ऐसा होता है जिसके लिए κ(f)(x) = f(x−1) सभी f ∈ C(G) और सभी x ∈ G के लिए होता है।
C(G) केवल तभी एक हॉपफ बीजगणित होता है जब G सीमित होता है। दूसरी ओर, एक सीमित आयामी प्रतिनिधित्व G का उपयोग C(G) का एक *-उपबीजगणित बनाने के लिए किया जा सकता है, जो साथ ही एक हॉपफ*-बीजगणित भी होता है। विशेष रूप से, यदि n-आयामी प्रतिनिधित्व G का है, तो सभी i, j के लिए u{ij} ∈ C(G) होता है और वे C(G) में पाए जाते हैं। और व
जिससे इससे पारंपरिक रूप से, सभी i, j के लिए u_{ij} और κ(u_{ij}) द्वारा जनित हुए *-उपबीजगणित बीजगणित एक हॉपफ बीजगणित होता है। यहां, परिपाक u_{ij} द्वारा निर्धारित होता है, ε(u_{ij}) = δ_{ij} हर एक i, j के लिए विरोधी है κ, और इकाई को निम्नलिखित द्वारा दिया गया है:
सामान्य परिभाषा
सामान्यीकरण के रूप में, एक संक्षिप्त आव्यूह क्वांटम समूह को एक जोड़ी (C, u) के रूप में परिभाषित किया गया है, जहां C एक C*-बीजगणित है और C में प्रविष्टियों वाला एक आव्यूह है जैसे कि
- C का *-उपबीजगणित उप-बीजगणित C0, जो u के आव्यूह तत्वों द्वारा जनित है, C में सघन है।;
- वास्तव में, Δ: C → C ⊗ C एक C*-बीजगणित मैप है, जिसके द्वारा वह C* बीजगणित को C ⊗ C में भेजा जाता है। इसमें निम्नलिखित गुण होते हैं:
- एक रेखीय प्रतिगुणक मानचित्र κ: C0 → C0 उपस्थित है जैसे कि κ(κ(v*)*) = v सभी v ∈ C0 के लिए और
जहां I, C का पहचान तत्व है। चूँकि κ प्रतिगुणक है, तो C0 में सभी v, w के लिए κ(vw) = κ(w) κ(v)
निरंतरता के परिणामस्वरूप, C पर सहगुणन सहसंबद्ध है।
सामान्यतः, C एक द्विफलगणित नहीं है, और C0 एक हॉपफ*-बीजगणित है।
अनौपचारिक रूप से, C को संक्षिप्त आव्यूह क्वांटम समूह पर निरंतर जटिल मान कार्यों के *-बीजगणित के रूप में माना जा सकता है, और u को संक्षिप्त आव्यूह क्वांटम समूह के एक परिमित-आयामी प्रतिनिधित्व के रूप में माना जा सकता है।
अभ्यावेदन
संक्षिप्त आव्यूह क्वांटम समूह का एक प्रतिनिधित्व हॉपफ *-बीजगणित के एक कोलजेब्रा द्वारा दिया गया है (एक कोइनिटल कोअसोसिएटिव कोलजेब्रा ए का एक मुख्य प्रस्तुतीकरण एक वर्ग आव्यूह है) A में प्रविष्टियों के साथ (इसलिए v, M(n, A) से संबंधित है) जैसे कि
सभी i, j और ε(v) के लिएij) = डीij सभी के लिए मैं, जे). इसके अलावा, एक प्रतिनिधित्व v को एकात्मक कहा जाता है यदि v के लिए आव्यूह एकात्मक है (या समकक्ष, यदि κ(v)ij) = वी*ijसभी के लिए मैं, जे).
उदाहरण
संक्षिप्त आव्यूह क्वांटम समूह का एक उदाहरण एसयू हैμ(2), जहां पैरामीटर μ एक सकारात्मक वास्तविक संख्या है। तो एसयूμ(2) = (सी(एसयूμ(2)), यू), जहां सी(एसयूμ(2)) α और γ द्वारा उत्पन्न C*-बीजगणित है, जिसके अधीन है
और
ताकि सहगुणन ∆(α) = α ⊗ α − γ ⊗ γ*, ∆(γ) = α ⊗ γ + γ ⊗ α* द्वारा निर्धारित हो, और संयोग κ(α) = α*, κ द्वारा निर्धारित हो (सी) = −एम−1γ, κ(γ*) = −μγ*, κ(α*) = α. ध्यान दें कि यू एक प्रतिनिधित्व है, परंतु एकात्मक प्रतिनिधित्व नहीं है। यू एकात्मक प्रतिनिधित्व के बराबर है
समतुल्य, एसयूμ(2) = (सी(एसयूμ(2)), डब्ल्यू), जहां सी(एसयूμ(2)) α और β द्वारा उत्पन्न C*-बीजगणित है, जिसके अधीन है
और
ताकि सहगुणन ∆(α) = α ⊗ α − μβ ⊗ β*, Δ(β) = α ⊗ β + β ⊗ α* द्वारा निर्धारित किया जाए, और संयोग व्युत्क्रम κ(α) = α*, κ द्वारा निर्धारित किया जाए (बी) = −एम−1β, κ(β*) = −μβ*, κ(α*) = α. ध्यान दें कि w एक एकात्मक निरूपण है। अहसासों को बराबर करके पहचाना जा सकता है .
जब μ = 1, तो SUμ(2) कंक्रीट संक्षिप्त समूह SU(2) पर कार्यों के बीजगणित C(SU(2)) के बराबर है।
बाइक्रॉसप्रोडक्ट क्वांटम समूह
जबकि संक्षिप्त आव्यूह स्यूडोग्रुप सामान्यतः दोहरे फ़ंक्शन बीजगणित फॉर्मूलेशन में ड्रिनफेल्ड-जिम्बो क्वांटम समूहों के संस्करण होते हैं, अतिरिक्त संरचना के साथ, बाइक्रोसप्रोडक्ट क्वांटम समूहों का एक अलग दूसरा परिवार है, जो अर्ध-सरल झूठ समूहों के बजाय हल करने योग्य विकृतियों के रूप में बढ़ते महत्व के हैं। वे लाई बीजगणित के लाई विभाजन या लाई समूहों के स्थानीय गुणनखंडन से जुड़े हुए हैं और इन्हें बीजगणित के लिए दूसरे पर कार्य करने वाले कारकों में से एक के क्रॉस उत्पाद या मैके परिमाणीकरण के रूप में देखा जा सकता है और दूसरे कारक के साथ सहउत्पाद Δ के लिए एक समान कहानी है। पहले पर वापस अभिनय करना।
सबसे सरल गैर-तुच्छ उदाहरण स्थानीय रूप से एक-दूसरे पर कार्य करने वाली आर की दो प्रतियों से मेल खाता है और जनरेटर पी, के, के के साथ एक क्वांटम समूह (यहां बीजगणितीय रूप में दिया गया) में परिणत होता है।−1, कहते हैं, और सहउत्पाद
जहां h विरूपण पैरामीटर है।
क्वांटम यांत्रिकी के हाइजेनबर्ग बीजगणित के विरूपण के रूप में देखे जाने पर यह क्वांटम समूह बोर्न पारस्परिकता को लागू करने वाले प्लैंक स्केल भौतिकी के एक खिलौना मॉडल से जुड़ा हुआ था। इसके अलावा, अर्धसरल लाई बीजगणित 'जी' के किसी भी संक्षिप्त वास्तविक रूप से शुरू करते हुए, दोगुने आयाम के वास्तविक लाई बीजगणित के रूप में इसकी जटिलता 'जी' और एक निश्चित हल करने योग्य लाई बीजगणित (इवासावा अपघटन) में विभाजित हो जाती है, और यह एक विहित बाइक्रोसप्रोडक्ट प्रदान करता है। 'जी' से संबंधित क्वांटम समूह। 'सु'(2) के लिए 3 आयामों में गतियों के यूक्लिडियन समूह ई(3) का क्वांटम समूह विरूपण प्राप्त होता है।
यह भी देखें
- हॉपफ बीजगणित
- बायलजेब्रा झूठ बोलना
- पॉइसन-लाई समूह
- क्वांटम एफ़िन बीजगणित
टिप्पणियाँ
- ↑ Schwiebert, Christian (1994), Generalized quantum inverse scattering, p. 12237, arXiv:hep-th/9412237v3, Bibcode:1994hep.th...12237S
- ↑ Majid, Shahn (1988), "Hopf algebras for physics at the Planck scale", Classical and Quantum Gravity, 5 (12): 1587–1607, Bibcode:1988CQGra...5.1587M, CiteSeerX 10.1.1.125.6178, doi:10.1088/0264-9381/5/12/010
- ↑ Andruskiewitsch, Schneider: Pointed Hopf algebras, New directions in Hopf algebras, 1–68, Math. Sci. Res. Inst. Publ., 43, Cambridge Univ. Press, Cambridge, 2002.
- ↑ Heckenberger: Nichols algebras of diagonal type and arithmetic root systems, Habilitation thesis 2005.
- ↑ Heckenberger, Schneider: Root system and Weyl gruppoid for Nichols algebras, 2008.
- ↑ Heckenberger, Schneider: Right coideal subalgebras of Nichols algebras and the Duflo order of the Weyl grupoid, 2009.
संदर्भ
- Grensing, Gerhard (2013). Structural Aspects of Quantum Field Theory and Noncommutative Geometry. World Scientific. doi:10.1142/8771. ISBN 978-981-4472-69-2.
- Jagannathan, R. (2001). "Some introductory notes on quantum groups, quantum algebras, and their applications". arXiv:math-ph/0105002.
- Kassel, Christian (1995), Quantum groups, Graduate Texts in Mathematics, vol. 155, Berlin, New York: Springer-Verlag, doi:10.1007/978-1-4612-0783-2, ISBN 978-0-387-94370-1, MR 1321145
- Lusztig, George (2010) [1993]. Introduction to Quantum Groups. Cambridge, MA: Birkhäuser. ISBN 978-0-817-64716-2.
- Majid, Shahn (2002), A quantum groups primer, London Mathematical Society Lecture Note Series, vol. 292, Cambridge University Press, doi:10.1017/CBO9780511549892, ISBN 978-0-521-01041-2, MR 1904789
- Majid, Shahn (January 2006), "What Is...a Quantum Group?" (PDF), Notices of the American Mathematical Society, 53 (1): 30–31, retrieved 2008-01-16
- Podles, P.; Muller, E. (1998), "Introduction to quantum groups", Reviews in Mathematical Physics, 10 (4): 511–551, arXiv:q-alg/9704002, Bibcode:1997q.alg.....4002P, doi:10.1142/S0129055X98000173, S2CID 2596718
- Shnider, Steven; Sternberg, Shlomo (1993). Quantum groups: From coalgebras to Drinfeld algebras. Graduate Texts in Mathematical Physics. Vol. 2. Cambridge, MA: International Press.
- Street, Ross (2007), Quantum groups, Australian Mathematical Society Lecture Series, vol. 19, Cambridge University Press, doi:10.1017/CBO9780511618505, ISBN 978-0-521-69524-4, MR 2294803